1
|
Rafea R, Siragusa M, Fleming I. The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase. Basic Clin Pharmacol Toxicol 2025; 136:e70029. [PMID: 40150952 PMCID: PMC11950718 DOI: 10.1111/bcpt.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Nitric oxide (NO) generated by the endothelial NO synthase (eNOS) plays an essential role in the maintenance of vascular homeostasis and the prevention of vascular inflammation. There are a myriad of mechanisms that regulate the activity of the enzyme that may prove to represent interesting therapeutic opportunities. In this regard, the kinases that phosphorylate the enzyme and regulate its activity in situations linked to vascular disease seem to be particularly promising. Although the actions of NO were initially linked mainly to the activation of the guanylyl cyclase and the generation of cyclic GMP in vascular smooth muscle cells and platelets, it is now clear that NO elicits the majority of its actions via its ability to modify redox-activated cysteine residues in a process referred to as S-nitrosylation. The more wide spread use of mass spectrometry to detect S-nitrosylated proteins has helped to identify just how large the NO sphere of influence is and just how many cellular processes are affected. It may be an old target, but the sheer impact of eNOS on vascular health really justifies a revaluation of therapeutic options to maintain and protect its activity in situations associated with a high risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Riham Rafea
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe UniversityFrankfurt am MainGermany
- Partner Site RheinMainGerman Center for Cardiovascular Research (DZHK)Frankfurt am MainGermany
| |
Collapse
|
2
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
3
|
Li Z, Gu M, Zaparte A, Fu X, Mahen K, Mrdjen M, Li XS, Yang Z, Ma J, Thoudam T, Chandler K, Hesler M, Heathers L, Gorse K, Van TT, Wong D, Gibson AM, Wang Z, Taylor CM, Quijada P, Makarewich CA, Hazen SL, Liangpunsakul S, Brown JM, Lefer DJ, Welsh DA, Sharp TE. Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease. Nat Commun 2024; 15:10788. [PMID: 39738016 PMCID: PMC11685538 DOI: 10.1038/s41467-024-55084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- International Flavors and Fragrances Health and Bioscience, Shanghai, China
| | - Aline Zaparte
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Mahen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Marko Mrdjen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Themis Thoudam
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maggie Hesler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Heathers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thanh Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Wong
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher M Taylor
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pearl Quijada
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Heart and Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Thomas E Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Heart Institute, Morsani College of Medicine, USF Health, University South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Rosas PC, Neves LAA, Patel N, Tran D, Pereira CH, Bonilla KR, Zheng J, Sun J, Alvarado FJ, Banach K. Early pathological mechanisms in a mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H1524-H1543. [PMID: 39485297 PMCID: PMC11684889 DOI: 10.1152/ajpheart.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) constitutes more than half of all HF cases, yet evidence-based therapies remain lacking due to limited understanding of its underlying pathological mechanisms. Our study aimed to uncover early pathological mechanisms in HFpEF by exposing mice to dietary conditions resembling a Western diet-rich in fats, salt, and low in fiber-alongside excess mineralocorticoids to replicate significant aspects of human HFpEF. Echocardiography was performed at both 3-wk and 6-wk intervals postchallenge, revealing cardiac alterations as early as 3 wk. While ejection fraction remained preserved, mice exhibited signs of diastolic dysfunction, reduced stroke volume, and left atrial enlargement. In addition, changes in pulmonary flow velocities were noted by the 3-wk mark, suggesting elevated pulmonary pressure. Extracardiac comorbidities included organ congestion, increased adiposity, impaired glucose tolerance, and hypercholesterolemia. Molecular analyses unveiled evidence of low-grade inflammation, oxidative stress, and impaired NO-cGMP-PKG signaling, contributing to the observed decrease in titin phosphorylation, thereby impacting myocardial stiffness. In addition, impaired nitric oxide (NO) signaling might have influenced the alterations observed in coronary flow reserve. Moreover, dysregulation of calcium signaling in cardiomyocytes and reduced sarcoplasmic reticulum (SR) load were observed. Interestingly, elevated phosphorylation of cMyBP-C was linked to preserved ejection fraction despite reduced SR load. We also observed intestinal atrophy, possibly due to a high-fat diet, low dietary fiber intake, and diminished gut perfusion, potentially contributing to systemic low-grade inflammation. These findings reveal how excess mineralocorticoid salt-induced hypertension and dietary factors, like high-fat and low-fiber intake, contribute to cardiac dysfunction and metabolic disturbances, offering insights into early HFpEF pathology in this model.NEW & NOTEWORTHY Our study demonstrates that feeding mice a Western diet rich in fat and salt and low in fiber alongside excess mineralocorticoids replicates aspects of human HFpEF. Cardiac alterations including diastolic dysfunction and decreased stroke volume with preserved ejection fraction were observed. Extracardiac effects included organ congestion, adiposity, glucose intolerance, and intestinal atrophy. Molecular analysis revealed inflammation, oxidative stress, impaired NO-cGMP-PKG signaling pathways, and altered calcium signaling in cardiomyocytes, shedding light on early pathological changes in HFpEF.
Collapse
Grants
- HL155762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL155762 NHLBI NIH HHS
- R01 HL132871 NHLBI NIH HHS
- R01 HL164453 NHLBI NIH HHS
- S10 OD027016 NIH HHS
- HL155241-02S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161070 NHLBI NIH HHS
- HL164453 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167195 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01 HL155241 NHLBI NIH HHS
- HL161070 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155241 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA849387 American Heart Association (AHA)
- R01 HL167195 NHLBI NIH HHS
- University of Illinois
Collapse
Affiliation(s)
- Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Liomar A A Neves
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
- AbbVie Inc, Chicago, Illinois, United States
| | - Nisha Patel
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Duyen Tran
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Carlos H Pereira
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, Illinois, United States
| | - Karina R Bonilla
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Kathrin Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, Illinois, United States
| |
Collapse
|
5
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
6
|
Gyawali YP, Jiang T, Yang J, Zheng H, Liu R, Zhang H, Feng C. Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants. J Inorg Biochem 2024; 251:112454. [PMID: 38100901 PMCID: PMC10843652 DOI: 10.1016/j.jinorgbio.2023.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSμ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSμ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.
Collapse
Affiliation(s)
| | - Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rui Liu
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Haikun Zhang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
7
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
8
|
Huang S, Taylor CG, Zahradka P. Growth State-Dependent Activation of eNOS in Response to DHA: Involvement of p38 MAPK. Int J Mol Sci 2023; 24:ijms24098346. [PMID: 37176054 PMCID: PMC10179717 DOI: 10.3390/ijms24098346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Our laboratory previously reported that docosahexaenoic acid (DHA) differentially activates p38 mitogen-activated protein kinase (MAPK) in growing and quiescent human endothelial cells, which represent the dysfunctional and healthy states in vivo, respectively. Since endothelial nitric oxide synthase (eNOS) activity differs between healthy and dysfunctional endothelial cells, and p38 MAPK reportedly regulates both the activity and expression of eNOS, we hypothesized that the beneficial actions of DHA on endothelial cells are due to eNOS activation by p38 MAPK. The contribution of mitogen- and stress-activated protein kinase (MSK), a p38 MAPK substrate, was also investigated. Growing and quiescent EA.hy926 cells, prepared on Matrigel®-coated plates, were incubated with inhibitors of p38MAPK or MSK before adding DHA. eNOS phosphorylation and levels were quantified by Western blotting. Treatment with 20 µM DHA activated eNOS in both growth states whereas 125 µM DHA suppressed eNOS activation in growing cells. Quiescent cells had higher basal levels of eNOS than growing cells, while 125 µM DHA decreased eNOS levels in both growth states. p38 MAPK inhibition enhanced eNOS activation in quiescent cells but suppressed it in growing cells. Interestingly, 125 µM DHA counteracted these effects of p38 MAPK inhibition in both growth states. MSK was required for eNOS activation in both growth states, but it only mediated eNOS activation by DHA in quiescent cells. MSK thus affects eNOS via a pathway independent of p38MAPK. Quiescent cells were also more resistant to the apoptosis-inducing effect of 125 µM DHA compared to growing cells. The growth state-dependent regulation of p38MAPK and eNOS by DHA provides novel insight into the molecular mechanisms by which DHA influences endothelial cell function.
Collapse
Affiliation(s)
- Shiqi Huang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
9
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
10
|
The role of arginine and endothelial nitric oxide synthase in the pathogenesis of Covid-19 complicated by metabolic syndrome. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This literature review presents the role of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO), as well as arginine, the enzyme substrate, in the disease of metabolic syndrome and COVID-19 (SARS-CoV-2 virus). Metabolic syndrome is a combination of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. It has been shown that in elderly people, patients with obesity, metabolic syndrome, type 2 diabetes mellitus (DM2), and patients with COVID-19, endothelial dysfunction (ED) and vascular endothelial activation are detected. ED is the main cause of a number of pathological conditions during the development of COVID-19 and earlier in patients with metabolic syndrome, while a sharp drop in the level of nitric oxide (NO) is detected due to a decrease in the expression and activity of eNO synthase and enzyme depletion, which leads to a violation of the integrity of bloodvessels, that is, to vasoconstrictive, inflammatory and thrombotic conditions, followed by ischemia of organs and edema of tissues. It should be noted that metabolic syndrome, DM2, hypertension and obesity, in particular, are age-related diseases, and it is known that blood glucose levels increase with age, which reduces the bioavailability of NO in endothelial cells. Defects in the metabolism of NO cause dysfunction in the pulmonary blood vessels, the level of NO decreases, which leads to impaired lung function and coagulopathy. The review presents possible mechanisms of these disorders associated with ED, the release of eNO synthase, changes in phosphorylation and regulation of enzyme activity, as well as insulin resistance. A modern view of the role of the polymorphism of the eNO synthase gene in the development of these pathologies is presented. To increase the level of endothelial NO, drugs are offered that regulate the bioavailability of NO. These include arginine, agonist NO – minoxidil, steroid hormones, statins, metformin. However, further research and clinical trials are needed to develop treatment strategies that increase NO levels in the endothelium.
Collapse
|
11
|
Hill JC, Billaud M, Richards TD, Kotlarczyk MP, Shiva S, Phillippi JA, Gleason TG. Layer-specific Nos3 expression and genotypic distribution in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg 2022; 62:ezac237. [PMID: 35460403 PMCID: PMC9615433 DOI: 10.1093/ejcts/ezac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We hypothesized that expression and activity of nitric oxide synthase-3 enzyme (Nos3) in bicuspid aortic valve (BAV) aortopathy are related to tissue layer and Nos3 genotype. METHODS Gene expression of Nos3 and platelet and endothelial cell adhesion molecule-1 (Pecam1) and NOS activity were measured in intima-containing media and adventitial specimens of ascending aortic tissue. The presence of 2 Nos3 single-nucleotide polymorphisms (SNPs; -786T/C and 894G/T) was determined for non-aneurysmal (NA) and aneurysmal patients with BAV (n = 40, 89, respectively); patients with tricuspid aortic valve (TAV) and aneurysm (n = 151); and NA patients with TAV (n = 100). RESULTS Elevated Nos3 relative to Pecam1 and reduced Pecam1 relative to a housekeeping gene were observed within intima-containing aortic specimens from BAV patients when compared with TAV patients. Lower Nos3 in the adventitia of aneurysmal specimens was noted when compared with specimens of NA aorta, independent of valve morphology. NOS activity was similar among cohorts in media/intima and decreased in the diseased adventitia, relative to control patients. Aneurysmal BAV patients exhibited an under-representation of the wild-type genotype for -786 SNP. No differences in genotype distribution were noted for 894 SNP. Primary intimal endothelial cells from patients with at least 1 C allele at -786 SNP exhibited lower Nos3 when compared with wild-type cells. CONCLUSIONS These findings of differential Nos3 in media/intima versus adventitia depending on valve morphology or aneurysm reveal new information regarding aneurysmal pathophysiology and support our ongoing assertion that there are distinct mechanisms giving rise to ascending aortopathy in BAV and TAV patients.
Collapse
Affiliation(s)
- Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie Billaud
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary P Kotlarczyk
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Wenninger N, Bernhart C, Kappaun W, Kollau A, Kalcher K, Ortner A. High-performance amperometric determination of nitric oxide released by endothelial cells using flow injection analysis. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhao Y, Bai L, Zhang Y, Yao R, Sun Y, Hang R, Chen X, Wang H, Yao X, Xiao Y, Hang R. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials 2022; 288:121684. [DOI: 10.1016/j.biomaterials.2022.121684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 12/29/2022]
|
14
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
15
|
The influence of the dietary exposome on oxidative stress in pregnancy complications. Mol Aspects Med 2022; 87:101098. [DOI: 10.1016/j.mam.2022.101098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
|
16
|
El-Mahdy MA, Ewees MG, Eid MS, Mahgoup EM, Khaleel SA, Zweier JL. Electronic Cigarette Exposure Causes Vascular Endothelial Dysfunction Due to NADPH Oxidase Activation and eNOS Uncoupling. Am J Physiol Heart Circ Physiol 2022; 322:H549-H567. [PMID: 35089811 PMCID: PMC8917923 DOI: 10.1152/ajpheart.00460.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/ml nicotine for 16 and 60 weeks. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared to air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sahar A Khaleel
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
17
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022; 58. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
18
|
Mesquita A, Matsuoka M, Lopes S, Pernambuco Filho P, Cruz A, Nader H, Lopes C. Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Braz J Med Biol Res 2022; 55:e11612. [PMID: 35137850 PMCID: PMC8851903 DOI: 10.1590/1414-431x2021e11612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Anoikis is a type of apoptosis that occurs in response to the loss of adhesion to the extracellular matrix (ECM). Anoikis resistance is a critical mechanism in cancer and contributes to tumor metastasis. Nitric oxide (NO) is frequently upregulated in the tumor area and is considered an important player in cancer metastasis. The aim of this study was to evaluate the effect of NO on adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Here, we report that anoikis-resistant endothelial cells overexpress endothelial nitric oxide synthase. The inhibition of NO release in anoikis-resistant endothelial cells was able to decrease adhesiveness to fibronectin, laminin, and collagen IV. This was accompanied by an increase in cell invasiveness and migration. Furthermore, anoikis-resistant cell lines displayed a decrease in fibronectin and collagen IV protein expression after L-NAME treatment. These alterations in adhesiveness and invasiveness were the consequence of MMP-2 up-regulation observed after NO release inhibition. The decrease in NO levels was able to down-regulate the activating transcription factor 3 (ATF3) protein expression. ATF3 represses MMP-2 gene expression by antagonizing p53-dependent trans-activation of the MMP-2 promoter. We speculate that the increased release of NO by anoikis-resistant endothelial cells acted as a response to restrict the MMP-2 action, interfering in MMP-2 gene expression via ATF3 regulation. The up-regulation of nitric oxide by anoikis-resistant endothelial cells is an important response to restrict tumorigenic behavior. Without this mechanism, invasiveness and migration potential would be even higher, as shown after L-NAME treatment.
Collapse
Affiliation(s)
| | | | - S.A. Lopes
- Universidade Federal de São Paulo, Brasil
| | | | - A.S. Cruz
- Universidade Federal de São Paulo, Brasil
| | - H.B. Nader
- Universidade Federal de São Paulo, Brasil
| | - C.C. Lopes
- Universidade Federal de São Paulo, Brasil; Universidade Federal de São Paulo, Brasil
| |
Collapse
|
19
|
Yang C, Lavayen BP, Liu L, Sanz BD, DeMars KM, Larochelle J, Pompilus M, Febo M, Sun YY, Kuo YM, Mohamadzadeh M, Farr SA, Kuan CY, Butler AA, Candelario-Jalil E. Neurovascular protection by adropin in experimental ischemic stroke through an endothelial nitric oxide synthase-dependent mechanism. Redox Biol 2021; 48:102197. [PMID: 34826783 PMCID: PMC8633041 DOI: 10.1016/j.redox.2021.102197] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Bianca P Lavayen
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Brian D Sanz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Min Kuo
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, MO, USA; Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest 2021; 131:e145734. [PMID: 34499618 DOI: 10.1172/jci145734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
Formation of NO by endothelial NOS (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation, and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and induce the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as by Ca2+ and phosphoinositide-dependent protein kinase 1 (PDK1), plays a pivotal role in this process. Active PKN2 promoted the phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved the phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation, whereas active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ramesh Chennupati
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Molecular Medicine, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| |
Collapse
|
21
|
Horinouchi T, Miwa S. Comparison of cytotoxicity of cigarette smoke extract derived from heat-not-burn and combustion cigarettes in human vascular endothelial cells. J Pharmacol Sci 2021; 147:223-233. [PMID: 34507631 DOI: 10.1016/j.jphs.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
The present study compared the properties of mainstream smoke generated from heat-not-burn (HNB) cigarettes and a combustion cigarette (hi-lite™ brand). Three types of cigarette heating devices were used to generate cigarette smoke at different heating temperatures [Ploom S™ (200 °C), glo™ (240 °C), and IQOS™ (300-350 °C)]. Mainstream smoke was generated using the following puffing regimen: volume, 55 mL; duration, 3 s; and interval, 30 s. The rank order of particulate phase (nicotine and tar) amounts trapped on a Cambridge filter was Ploom S < glo < IQOS < hi-lite. Heated cigarette-derived smoke extract (hCSE) from the devices except for Ploom S, and burned CSE (bCSE) decreased mitochondrial metabolic activity (glo < IQOS < hi-lite) in human vascular endothelial cells. Furthermore, the cytotoxicity was reduced by removing the particulate phase from the mainstream smoke. Endothelial nitric oxide synthase activity was reduced by nicotine- and tar-free CSE of IQOS and hi-lite (IQOS < hi-lite), but not Ploom S and glo. These inhibitory effects were diminished by removing the carbonyl compounds from the mainstream smoke. These results indicated that the cytotoxicity of hCSE was lower than that of bCSE in vascular endothelial cells.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Soichi Miwa
- Toyooka General Hospital, 1094 Tobera, Toyooka, Hyogo, 668-8501, Japan
| |
Collapse
|
22
|
Kamiya C, Odagiri K, Hakamata A, Sakurada R, Inui N, Watanabe H. Omeprazole suppresses endothelial calcium response and eNOS Ser1177 phosphorylation in porcine aortic endothelial cells. Mol Biol Rep 2021; 48:5503-5511. [PMID: 34291395 DOI: 10.1007/s11033-021-06561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although high doses of proton pump inhibitors can elicit an anticancer effect, this strategy may impair vascular biology. In particular, their effects on endothelial Ca2+ signaling and production of endothelium-derived relaxing factor (EDRF) are unknown. To this end, we investigated the effects of high dosages of omeprazole on endothelial Ca2+ responses and EDRF production in primary cultured porcine aortic endothelial cells. METHODS AND RESULTS Omeprazole (10-1000 μM) suppressed both bradykinin (BK)- and thapsigargin-induced endothelial Ca2+ response in a dose-dependent manner. Furthermore, omeprazole slightly attenuated Ca2+ mobilization from the endoplasmic reticulum, whereas no inhibitory effects on endoplasmic reticulum Ca2+-ATPase were observed. Omeprazole decreased BK-induced phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and tended to decrease BK-induced nitric oxide production. Production of prostaglandin I2 metabolites, especially 6-keto-prostaglandin 1α, also tended to be reduced by omeprazole. CONCLUSION Our results are the first to indicate that high doses of omeprazole may suppress both store-operated Ca2+ channels and partially the G protein-coupled receptor/phospholipase C/inositol 1,4,5-triphosphate pathway, and decreased BK-induced, Ca2+-dependent phosphorylation of eNOS(Ser1177). Thus, high dosages of omeprazole impaired EDRF production by attenuating intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Chiaki Kamiya
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Keiichi Odagiri
- Center for Clinical Research, Hamamatsu University Hospital, 1-20-1 Handayama, Hamamatsu, Japan.
| | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Ryugo Sakurada
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Japan
| |
Collapse
|
23
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
24
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
25
|
Chen J, Lu L, Zhang C, Zhu X, Zhuang S. Endothelial dysfunction and transcriptome aberration in mouse aortas induced by black phosphorus quantum dots and nanosheets. NANOSCALE 2021; 13:9018-9030. [PMID: 33978034 DOI: 10.1039/d1nr01965a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) nanomaterials have shown great potential in versatile applications including biomedicine and potentially interact with vessel walls following intravenous injection in biomedical usage or environmental exposure. However, it remains unknown whether the exposure to BP nanomaterials induces alterations of the endothelium and further vascular injury. Herein, the endothelial function of human umbilical vein endothelial cells (HUVECs) and the structure and transcriptome of C57BL/6 mouse aortas are evaluated after the exposure to BP quantum dots (BPQDs) and nanosheets (BPNSs). BPNSs with irregular shapes and larger lateral size are more prone to inhibit in vitro angiogenesis at non-cytotoxic concentrations and markedly trigger platelet adhesion to HUVECs compared to BPQDs. Decreased nitric oxide (NO) production resulting from endothelial NO synthase (eNOS) dysregulation is involved in the BP-induced endothelial dysfunction. Both BPQDs and BPNSs at 0.8 and 6.4 μg mL-1 inhibit eNOS enzymatic activity through dephosphorylation of eNOS-Ser1177 and phosphorylation of eNOS-Thr495, but unlike BPQDs, BPNSs also downregulate eNOS expression. Despite no pathological damage in the structure of mouse aortas, BPQDs and BPNSs trigger aberration of aortic transcriptome involved in vasoconstriction abnormality, metabolic disturbance, and immune perturbation. This study demonstrates the adverse effect of BP nanomaterials on vasculature, and suggests that the morphological attribute of BP plays a crucial role in the vascular risks.
Collapse
Affiliation(s)
- Jiayan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liping Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, Texas 77058, USA
| | - Xiaoming Zhu
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
27
|
Nitric oxide and the brain. Part 2: Effects following neonatal brain injury-friend or foe? Pediatr Res 2021; 89:746-752. [PMID: 32563184 DOI: 10.1038/s41390-020-1021-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) has critical roles in a wide variety of key biologic functions and has intricate transport mechanisms for delivery to key distal tissues under normal conditions. However, NO also plays important roles during disease processes, such as hypoxia-ischemia, asphyxia, neuro-inflammation, and retinopathy of prematurity. The effects of exogenous NO on the developing neonatal brain remain controversial. Inhaled NO (iNO) can be neuroprotective or toxic depending on a variety of factors, including cellular redox state, underlying disease processes, duration of treatment, and dose. This review identifies key gaps in knowledge that should prompt further investigation into the possible role of iNO as a therapeutic agent after injury to the brain. IMPACT: NO is a key signal mediator in the neonatal brain with neuroprotective and neurotoxic properties. iNO, a commonly used medication, has significant effects on the neonatal brain. Dosing, duration, and timing of administration of iNO can affect the developing brain. This review article summarizes the roles of NO in association with various disease processes that impact neonates, such as brain hypoxia-ischemia, asphyxia, retinopathy of prematurity, and neuroinflammation. The impact of this review is that it clearly describes gaps in knowledge, and makes the case for further, targeted studies in each of the identified areas.
Collapse
|
28
|
An inquest into regulatory mechanism of caveolin by ischemic preconditioning against orchidectomy-challenged rat heart. Mol Cell Biochem 2021; 476:2587-2601. [PMID: 33646465 DOI: 10.1007/s11010-021-04109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Lower level of testosterone in men is related to major risks of cardiovascular diseases. This risk may increase due to the opening of mitochondrial permeability transition pore (mPTP). The mPTP is also regulated by ischemic preconditioning (IPC) and a membrane protein known as caveolin. The cardioprotective effect of IPC is the most effective methodologies used in testosterone deficiency. Daidzein (DDZ) a caveolin inhibitor shows cardioprotective action. The experiment has been designed to evaluate the pretreated DDZ effect in IPC-mediated cardioprotective action in orchidectomy (OCZ)-challenged rat heart. The experiment was designed on male Wistar rats with/without OCZ. The level of testosterone is decreased by OCZ which reduces general body growth. Isolated heart from normal and OCZ rat was tied up on Langendorff's perfused apparatus and followed by ischemic reperfusion (IR) and IPC cycle. To investigate the cardioprotective effect of DDZ in heart with testosterone deficiency, a total of nine groups, each consisting of six rats (n = 6) were as follows: Sham, IR, IPC, IPC + OCZ, IPC + DDZ, IPC + OCZ + DDZ, IPC + sodium nitrite, IPC + OCZ + sodium nitrite, IPC + OCZ + DDZ + sodium nitrite. Hemodynamic parameters, cellular injury (infarct size, LDH, CKMB and cardiac troponin-T), oxidative stress, mitochondrial function, integrity and immunoblot analysis were assessed for each group. The experimental data showed that DDZ potentiated IPC-mediated increase in the heart rate, left ventricular diastolic pressure, coronary flow; + dp/dtmax, and - dp/dtmax. The pretreated DDZ decreases the action of LDH and CKMB, myocyte size, cardiac collagen content, infarct size and ventricular fibrillation and attenuation in oxidative stress and mitochondrial dysfunction in OCZ-challenged rat heart in all sets of experiments. Sodium nitrite, a producer of nitric oxide (NO), enhanced potentiating effects of DDZ on IPC-mediated cardioprotection in OCZ-challenged rats. These observations show that the downregulation of caveolin through impaired opening of mPTP during reperfusion and caveolin might be a potential adjuvant to IPC against cardiac injury in OCZ-challenged rats.
Collapse
|
29
|
Bolanle IO, Riches-Suman K, Williamson R, Palmer TM. Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacol Res 2021; 165:105467. [PMID: 33515704 DOI: 10.1016/j.phrs.2021.105467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
Collapse
Key Words
- (R)-N-(Furan-2-ylmethyl)-2-(2-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinoline-6-sulfonamido)-N-(thiophen-2-ylmethyl)acetamide [OSMI-1] (PubChem CID: 118634407)
- 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-one [PD98059] (PubChem CID: 4713)
- 5H-Pyrano[3,2-d]thiazole-6,7-diol, 2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR) [Thiamet-G] (PubChem CID: 1355663540)
- 6-Diazo-5-oxo-l-norleucine [DON] (PubChem CID: 9087)
- Alloxan (PubChem CID: 5781)
- Azaserine (PubChem CID: 460129)
- BADGP, Benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside [BADGP] (PubChem CID: 561184)
- Cardiovascular disease
- Methoxybenzene-sulfonamide [KN-93] (PubChem CID: 5312122)
- N-[(5S,6R,7R,8R)-6,7-Dihydroxy-5-(hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-8-yl]-2-methylpropanamide [GlcNAcstatin] (PubChem CID: 122173013)
- O-(2-Acetamido-2-deoxy-d-glucopyranosyliden)amino-N-phenylcarbamate [PUGNAc] (PubChem CID: 9576811)
- O-GlcNAc transferase
- O-GlcNAcase
- Protein O-GlcNAcylation
- Streptozotocin (PubCHem CID: 7067772)
Collapse
Affiliation(s)
- Israel Olapeju Bolanle
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Kirsten Riches-Suman
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, UK
| | - Ritchie Williamson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
30
|
He A, Zuo D, Liang X, Guo Y, Suxin L, Xia Y. Hypoglycemia increases endothelial-dependent vasodilation through suppressing phosphorylation at Threonine 495/497 site of endothelial nitric oxide synthase. Microvasc Res 2021; 133:104075. [PMID: 32950484 DOI: 10.1016/j.mvr.2020.104075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Phosphorylation plays an essential role in the regulation of endothelial nitric oxide synthase (eNOS) activity. However, the phosphorylation of eNOS under hypoglycemia and whether hypoglycemia changes eNOS activity is unknown. This paper aims to clarify the regulation of eNOS phosphorylation and its activity change under hypoglycemia. METHODS Bovine aortic endothelial cells (BAECs) and Sprague-Dawley rats were treated with hypoglycemia, and the phosphorylation of eNOS was subjected to western blot. Blood nitric oxide (NO) concentration was determined by NO kit and endothelial-dependent vasodilation was detected by multi-wire myograph. RESULTS In both BAECs and rats' thoracic aorta, hypoglycemia induced eNOS phosphorylation decrease specifically on Threonine (Thr) 497. Inhibition of ubiquitination of protein kinase C α subunit (PKCα) reverses the decrease of eNOS phosphorylation in hypoglycemia. Ubiquitinated PKCα can be reversed by AMPK knockdown. In rats, insulin induced hypoglycemia increased the concentration of NO in arterial blood, and progressively enhanced the endothelium-dependent vasodilation of the thoracic and mesenteric aorta. CONCLUSIONS In vitro, the activation of AMPK may lead to the expression of PKCα by regulating ubiquitination, resulting in a decrease in the level of P-eNOS Thr497 phosphorylation under hypoglycemia. In vivo, insulin-induced hypoglycemia produces a beneficial cardiovascular effect on rats.
Collapse
Affiliation(s)
- An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Deyu Zuo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoxue Liang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Luo Suxin
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Translational insight into prothrombotic state and hypercoagulation in nonalcoholic fatty liver disease. Thromb Res 2020; 198:139-150. [PMID: 33340925 DOI: 10.1016/j.thromres.2020.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging and threatening pathological condition, ranging from fatty liver (FL) to chronic steatohepatitis (NASH), liver cirrhosis, and eventually to hepatocellular carcinoma (HCC). Recent findings suggest that patients with NAFLD have a higher risk of cardiovascular events and thromboembolism and that this risk is independent of metabolic diseases that are frequently associated with NAFLD, such as diabetes, hyperlipidaemia, and obesity. The vascular involvement of NAFLD might be considered its systemic burden, conditioning higher mortality in patients affected by the disease. These clinical findings suggested the existence of a prothrombotic state in NAFLD, which is partially unexplored and whose underlying mechanisms are to date not completely understood. Here, we review the mechanisms involved in the pathogenesis of the prothrombotic state in NAFLD across the progression from the healthy liver through the different stages of the disease. We focused on the possible role of several metabolic features of NAFLD possibly leading to hypercoagulation other than endothelial and platelet activation, such as insulin-resistance, nitric oxide production regulation, and gut microbiota homeostasis. Also, we analysed the involvement of plasminogen activator inhibitor-1 (PAI-1) and thromboinflammation taking place in NAFLD. Finally, we described factors striking a prothrombotic imbalance in NASH cirrhosis, with a particular focus on the pathogenesis of portal vein thrombosis.
Collapse
|
32
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
33
|
Horinouchi T, Mazaki Y, Terada K, Miwa S. Cigarette Smoke Extract and Its Cytotoxic Factor Acrolein Inhibit Nitric Oxide Production in Human Vascular Endothelial Cells. Biol Pharm Bull 2020; 43:1804-1809. [PMID: 32879145 DOI: 10.1248/bpb.b20-00522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrolein (ACR), a highly reactive α,β-unsaturated aldehyde, is a major cytotoxic factor in nicotine- and tar-free cigarette smoke extract (CSE). There are conflicting results regarding endothelial functions despite the fact that both CSE and ACR cause cellular damage. Several lines of evidence indicate that CSE impairs endothelium-derived nitric oxide (NO)-dependent vasodilation by reducing the activity and protein expression of endothelial NO synthase (eNOS), whereas ACR elicits endothelium-dependent vasorelaxation by increasing the production of NO and expression of eNOS. To clarify whether CSE and its cytotoxic factor ACR cause endothelial dysfunction, this study examined the effects of CSE and ACR on human vascular endothelial EA.hy926 cells. CSE and ACR reduced the phosphorylation of eNOS at serine (Ser)1177 and total expression of eNOS. The CSE- and ACR-induced decrease in the phosphorylation and expression of eNOS was counteracted by glutathione (reduced form), an antioxidant. Basal NO production was inhibited by CSE, ACR, NG-nitro-L-arginine methyl ester (a competitive eNOS inhibitor), and nominally Ca2+-free solution supplemented with BAPTA-AM (a membrane permeable Ca2+ chelator). These results indicate that CSE and ACR increase oxidative stress, and reduce NO production by reducing the activity and total protein level of eNOS.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| | - Koji Terada
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
34
|
Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 2020; 259:118377. [PMID: 32898526 DOI: 10.1016/j.lfs.2020.118377] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The endothelium is the innermost vascular lining performing significant roles all over the human body while maintaining the blood pressure at physiological levels. Malfunction of endothelium is thus recognized as a biomarker linked with many vascular diseases including but not limited to atherosclerosis, hypertension and thrombosis. Alternatively, prevention of endothelial malfunctioning or regulating the functions of its associated physiological partners like endothelial nitric oxide synthase can prevent the associated vascular disorders which account for the highest death toll worldwide. While many anti-hypertensive drugs are available commercially, a comprehensive description of the key physiological roles of the endothelium and its regulation by endothelial nitric oxide synthase or vice versa is the need of the hour to understand its contribution in vascular homeostasis. This, in turn, will help in designing new therapeutics targeting endothelial nitric oxide synthase or its interacting partners present in the cellular pool. This review describes the central role of vascular endothelium in the regulation of endothelial nitric oxide synthase while outlining the emerging drug targets present in the vasculature with potential to treat vascular disorders including hypertension.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India; Center for Advanced Biotechnology and Medicine, Rutgers University, NJ 08854, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi, South Campus, New Delhi 110021, India.
| |
Collapse
|
35
|
Yoshida M, Nakamura K, Miyoshi T, Yoshida M, Kondo M, Akazawa K, Kimura T, Ohtsuka H, Ohno Y, Miura D, Ito H. Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet. Cardiovasc Diabetol 2020; 19:149. [PMID: 32979918 PMCID: PMC7520032 DOI: 10.1186/s12933-020-01132-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Background Statins suppress the progression of atherosclerosis by reducing low-density lipoprotein (LDL) cholesterol levels. Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor α modulator, is expected to reduce residual risk factors including high triglycerides (TGs) and low high-density lipoprotein (HDL) cholesterol during statin treatment. However, it is not known if statin therapy with add-on pemafibrate improves the progression of atherosclerosis. The aim of this study was to assess the effect of combination therapy with pitavastatin and pemafibrate on lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Methods Seven-week-old male Dahl salt-sensitive (DS) rats were divided into the following five treatment groups (normal diet (ND) plus vehicle, high-salt and high-fat diet (HD) plus vehicle, HD plus pitavastatin (0.3 mg/kg/day), HD plus pemafibrate (K-877) (0.5 mg/kg/day), and HD plus combination of pitavastatin and pemafibrate) and treated for 12 weeks. At 19 weeks, endothelium-dependent relaxation of the thoracic aorta in response to acetylcholine was evaluated. Results After feeding for 12 weeks, systolic blood pressure and plasma levels of total cholesterol were significantly higher in the HD-vehicle group compared with the ND-vehicle group. Combination therapy with pitavastatin and pemafibrate significantly reduced systolic blood pressure, TG levels, including total, chylomicron (CM), very LDL (VLDL), HDL-TG, and cholesterol levels, including total, CM, VLDL, and LDL-cholesterol, compared with vehicle treatment. Acetylcholine caused concentration-dependent relaxation of thoracic aorta rings that were pre-contracted with phenylephrine in all rats. Relaxation rates in the HD-vehicle group were significantly lower compared with the ND-vehicle group. Relaxation rates in the HD-combination of pitavastatin and pemafibrate group significantly increased compared with the HD-vehicle group, although neither medication alone ameliorated relaxation rates significantly. Western blotting experiments showed increased phosphorylated endothelial nitric oxide synthase protein expression in aortas from rats in the HD-pemafibrate group and the HD-combination group compared with the HD-vehicle group. However, the expression levels did not respond significantly to pitavastatin alone. Conclusions Combination therapy with pitavastatin and pemafibrate improved lipid profiles and endothelial dysfunction in hypertension and insulin resistance model rats. Pemafibrate as an add-on strategy to statins may be useful for preventing atherosclerosis progression.
Collapse
Affiliation(s)
- Masatoki Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Kondo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kaoru Akazawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomonari Kimura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroaki Ohtsuka
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuko Ohno
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Department of Medical Technology, Kawasaki College of Allied Health Professions, Okayama, Japan
| | - Daiji Miura
- Department of Basic and Clinical Medicine, Nagano College of Nursing, Nagano, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
36
|
Muniyappa R, Chen H, Montagnani M, Sherman A, Quon MJ. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. Am J Physiol Endocrinol Metab 2020; 319:E629-E646. [PMID: 32776829 PMCID: PMC7642854 DOI: 10.1152/ajpendo.00247.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we have used mathematical modeling to gain mechanistic insights into insulin-stimulated glucose uptake. Phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling required for metabolic actions of insulin also regulates endothelium-dependent production of the vasodilator nitric oxide (NO). Vasodilation increases blood flow that augments direct metabolic actions of insulin in skeletal muscle. This is counterbalanced by mitogen-activated protein kinase (MAPK)-dependent insulin signaling in endothelium that promotes secretion of the vasoconstrictor endothelin-1 (ET-1). In the present study, we extended our model of metabolic insulin signaling into a dynamic model of insulin signaling in vascular endothelium that explicitly represents opposing PI3K/NO and MAPK/ET-1 pathways. Novel NO and ET-1 subsystems were developed using published and new experimental data to generate model structures/parameters. The signal-response relationships of our model with respect to insulin-stimulated NO production, ET-1 secretion, and resultant vascular tone, agree with published experimental data, independent of those used for model development. Simulations of pathological stimuli directly impairing only insulin-stimulated PI3K/Akt activity predict altered dynamics of NO and ET-1 consistent with endothelial dysfunction in insulin-resistant states. Indeed, modeling pathway-selective impairment of PI3K/Akt pathways consistent with insulin resistance caused by glucotoxicity, lipotoxicity, or inflammation predict diminished NO production and increased ET-1 secretion characteristic of diabetes and endothelial dysfunction. We conclude that our mathematical model of insulin signaling in vascular endothelium supports the hypothesis that pathway-selective insulin resistance accounts, in part, for relationships between insulin resistance and endothelial dysfunction. This may be relevant for developing novel approaches for the treatment of diabetes and its cardiovascular complications.
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Hui Chen
- Clinical and Integrative Diabetes and Obesity Integrated Review Group, Center for Scientific Review, National Institutes of Health, Bethesda, Maryland
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Michael J Quon
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Aulak KS, Barnes JW, Tian L, Mellor NE, Haque MM, Willard B, Li L, Comhair SC, Stuehr DJ, Dweik RA. Specific O-GlcNAc modification at Ser-615 modulates eNOS function. Redox Biol 2020; 36:101625. [PMID: 32863226 PMCID: PMC7334407 DOI: 10.1016/j.redox.2020.101625] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and devastating disease characterized by vascular smooth muscle and endothelial cell proliferation leading to a narrowing of the vessels in the lung. The increased resistance in the lung and the higher pressures generated result in right heart failure. Nitric Oxide (NO) deficiency is considered a hallmark of IPAH and altered function of endothelial nitric oxide synthase (eNOS), decreases NO production. We recently demonstrated that glucose dysregulation results in augmented protein serine/threonine hydroxyl-linked N-Acetyl-glucosamine (O-GlcNAc) modification in IPAH. In diabetes, dysregulated glucose metabolism has been shown to regulate eNOS function through inhibition of Ser-1177 phosphorylation. However, the link between O-GlcNAc and eNOS function remains unknown. Here we show that increased protein O-GlcNAc occurs on eNOS in PAH and Ser-615 appears to be a novel site of O-GlcNAc modification resulting in reduced eNOS dimerization. Functional characterization of Ser-615 demonstrated the importance of this residue on the regulation of eNOS activity through control of Ser-1177 phosphorylation. Here we demonstrate a previously unidentified regulatory mechanism of eNOS whereby the O-GlcNAc modification of Ser-615 results in reduced eNOS activity and endothelial dysfunction under conditions of glucose dysregulation.
Collapse
Affiliation(s)
- Kulwant S Aulak
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Jarrod W Barnes
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Liping Tian
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Noel E Mellor
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Mohammad M Haque
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic, OH, USA
| | - Ling Li
- Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic, OH, USA
| | - Suzy C Comhair
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Dennis J Stuehr
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Raed A Dweik
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA; Department of Pulmonary, Allergy and Critical Care Medicine. Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
38
|
Xu H, Fang B, Du S, Wang S, Li Q, Jia X, Bao C, Ye L, Sui X, Qian L, Luan Z, Yang G, Zheng F, Wang N, Chen L, Zhang X, Guan Y. Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis. JCI Insight 2020; 5:138505. [PMID: 32641583 DOI: 10.1172/jci.insight.138505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Prostaglandin E2 and its cognate EP1-4 receptors play important roles in blood pressure (BP) regulation. Herein, we show that endothelial cell-specific (EC-specific) EP4 gene-knockout mice (EC-EP4-/-) exhibited elevated, while EC-specific EP4-overexpression mice (EC-hEP4OE) displayed reduced, BP levels compared with the control mice under both basal and high-salt diet-fed conditions. The altered BP was completely abolished by treatment with l-NG-nitro-l-arginine methyl ester (l-NAME), a competitive inhibitor of endothelial nitric oxide synthase (eNOS). The mesenteric arteries of the EC-EP4-/- mice showed increased vasoconstrictive response to angiotensin II and reduced vasorelaxant response to acetylcholine, both of which were eliminated by l-NAME. Furthermore, EP4 activation significantly reduced BP levels in hypertensive rats. Mechanistically, EP4 deletion markedly decreased NO contents in blood vessels via reducing eNOS phosphorylation at Ser1177. EP4 enhanced NO production mainly through the AMPK pathway in cultured ECs. Collectively, our findings demonstrate that endothelial EP4 is essential for BP homeostasis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | | | - Shengnan Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Qingwei Li
- Advanced Institute for Medical Sciences and
| | - Xiao Jia
- Advanced Institute for Medical Sciences and
| | | | - Lan Ye
- Advanced Institute for Medical Sciences and
| | - Xue Sui
- Advanced Institute for Medical Sciences and
| | - Lei Qian
- Advanced Institute for Medical Sciences and
| | | | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| |
Collapse
|
39
|
Wu Q, Finley SD. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. J Clin Med 2020; 9:jcm9051255. [PMID: 32357492 PMCID: PMC7287924 DOI: 10.3390/jcm9051255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
The endothelial nitric oxide synthase (eNOS) signaling pathway in endothelial cells has multiple physiological significances. It produces nitric oxide (NO), an important vasodilator, and enables a long-term proliferative response, contributing to angiogenesis. This signaling pathway is mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic species that is often targeted to inhibit tumor angiogenesis. However, inhibiting VEGF-mediated eNOS signaling can lead to complications such as hypertension. Therefore, it is important to understand the dynamics of eNOS signaling in the context of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important angiogenic inhibitor that, through interaction with its receptor CD47, has been shown to redundantly inhibit eNOS signaling. However, the exact mechanisms of TSP1's inhibitory effects on this pathway remain unclear. To address this knowledge gap, we established a molecular-detailed mechanistic model to describe VEGF-mediated eNOS signaling, and we used the model to identify the potential intracellular targets of TSP1. In addition, we applied the predictive model to investigate the effects of several approaches to selectively target eNOS signaling in cells experiencing high VEGF levels present in the tumor microenvironment. This work generates insights for pharmacologic targets and therapeutic strategies to inhibit tumor angiogenesis signaling while avoiding potential side effects in normal vasoregulation.
Collapse
Affiliation(s)
- Qianhui Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Stacey D. Finley
- Department of Biomedical Engineering, Mork Family Department of Chemical Engineering and Materials Science, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-740-8788
| |
Collapse
|
40
|
Ghaleh B, Thireau J, Cazorla O, Soleti R, Scheuermann V, Bizé A, Sambin L, Roubille F, Andriantsitohaina R, Martinez MC, Lacampagne A. Cardioprotective effect of sonic hedgehog ligand in pig models of ischemia reperfusion. Am J Cancer Res 2020; 10:4006-4016. [PMID: 32226535 PMCID: PMC7086352 DOI: 10.7150/thno.40461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Sonic hedgehog (SHH) signaling pathway is involved in embryonic tissue patterning and development. Our previous work identified, in small rodent model of ischemia reperfusion, SHH as a specific efficient tool to reduce infarct size and subsequent arrhythmias by preventing ventricular repolarization abnormalities. The goal of the present study was to provide a proof of concept of the cardioprotective effect of SHH ligand in a porcine model of acute ischemia. Methods: The antiarrhythmic effect of SHH, either by a recombinant peptide (N-SHH) or shed membrane microparticles harboring SHH ligand (MPsSHH+), was evaluated in a first set of pigs following a short (25 min) coronary artery occlusion (CAO) followed by 24 hours-reperfusion (CAR) (Protocol A). The infarct-limiting effect was evaluated on a second set of pigs with 40 min of coronary artery occlusion followed by 24 hours reperfusion (Protocol B). Electrocardiogram (ECG) was recorded and arrhythmia's scores were evaluated. Area at risk and myocardial infarct size were quantified. Results: In protocol A, administration of N-SHH 15 min. after the onset of coronary occlusion significantly reduced the occurrence of ventricular fibrillation compared to control group. Evaluation of arrhythmic score showed that N-SHH treatment significantly reduced the overall occurrence of arrhythmias. In protocol B, massive infarction was observed in control animals. Either N-SHH or MPsSHH+ treatment reduced significantly the infarct size with a concomitant increase of salvaged area. The reduction in infarct size was both accompanied by a significant decrease in systemic biomarkers of myocardial injury, i.e., cardiac troponin I and fatty acid-binding protein and an increase of eNOS activation. Conclusions: We show for the first time in a large mammalian model that the activation of the SHH pathway by N-SHH or MPsSHH+ offers a potent protection of the heart to ischemia-reperfusion by preventing the reperfusion arrhythmias, reducing the infarct area and the circulating levels of biomarkers for myocardial injury. These data open up potentially theranostic prospects for patients suffering from myocardial infarction to prevent the occurrence of arrhythmias and reduce myocardial tissue damage.
Collapse
|
41
|
Zhu J, Song W, Xu S, Ma Y, Wei B, Wang H, Hua S. Shenfu Injection Promotes Vasodilation by Enhancing eNOS Activity Through the PI3K/Akt Signaling Pathway In Vitro. Front Pharmacol 2020; 11:121. [PMID: 32161546 PMCID: PMC7054240 DOI: 10.3389/fphar.2020.00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Vasomotor dysfunction is one of the key pathological aspects of shock and heart failure (HF). Shenfu injection (SFI) has been widely used for the treatment of shock and HF in China. Pharmacological studies have suggested that SFI can reduce peripheral circulation resistance and improve microcirculation. However, whether it has a regulatory effect on macrovascular has not been elucidated. In this study, we used thoracic aorta rings isolated from Wistar rats and the human umbilical vein cell line (EA.hy926) to explore the vasodilative activity of SFI and its potential mechanisms. The relaxation due to SFI was measured after pre-treatment with selective soluble guanylate cyclase (sGC) inhibitor or cyclooxygenase (COX) inhibitor and compared with the vasodilation effect of SFI only treated with norepinephrine (NE). The contents of NO, endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), COX-1, 6-K-PGF1α, and caveolin-1 were evaluated respectively. Additionally, the level of eNOS mRNA and total eNOS and its phosphorylation were studied to investigate the potential mechanisms involved. Experimental results showed that SFI markedly attenuated NE-induced vasoconstriction but that this effect was significantly eliminated after pre-incubation with the selective sGC inhibitor 1-H-[1, 2, 4] oxadiazolo [4, 3-α] quinoxaline-1-one (ODQ), instead of the COX inhibitor indomethacin (INDO). SFI significantly increased the eNOS content and up-regulated the eNOS mRNA expression, while it did not affect the content of COX-1 and 6-K-PGF1α. SFI also markedly increased NO content but significantly reduced the content of ET-1 and caveolin-1 in the cell supernatant. Furthermore, it promoted the expression of total eNOS and the phosphorylation of eNOS at serine (Ser) 1177 but inhibited the phosphorylation at threonine (Thr) 495, which was significantly reversed by PI3K-specific inhibitor LY294002. In conclusion, our study showed the vasodilation effect of SFI in thoracic aorta is mediated entirely by enhancing eNOS activity through the PI3K/Akt signaling pathway, providing novel knowledge on the effect of SFI on shock and HF for future clinical applications.
Collapse
Affiliation(s)
- Jinqiang Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanshan Song
- Encephalopathy Acupuncture Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Ma
- Encephalopathy Acupuncture Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baoyu Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Mazrouei S, Sharifpanah F, Caldwell RW, Franz M, Shatanawi A, Muessig J, Fritzenwanger M, Schulze PC, Jung C. Regulation of MAP kinase-mediated endothelial dysfunction in hyperglycemia via arginase I and eNOS dysregulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1398-1411. [DOI: 10.1016/j.bbamcr.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
|
44
|
Tabari FS, Karimian A, Parsian H, Rameshknia V, Mahmoodpour A, Majidinia M, Maniati M, Yousefi B. The roles of FGF21 in atherosclerosis pathogenesis. Rev Endocr Metab Disord 2019; 20:103-114. [PMID: 30879171 DOI: 10.1007/s11154-019-09488-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FGF21 is a peptide hormone that regulates homeostasis of lipid and glucose as well as energy metabolism. It is mainly expressed and secreted in liver and adipose tissues, and it is expressed in lower amounts in the aorta. Recent clinical and preclinical studies indicate increased serum FGF21 levels in atherosclerosis patients. Also, FGF21 therapy has been reported to reduce the initiation and progression of atherosclerosis in animal models and in vitro studies. Moreover, growing evidence indicates that administration of exogenous FGF21 induces anti-atherosclerotic effects, because of its ability to reduce lipid profile, alleviation of oxidative stress, inflammation, and apoptosis. Therefore, FGF21 can not only be considered as a biomarker for predicting atherosclerosis, but also induce protective effects against atherosclerosis. Besides, serum levels of FGF21 increase in various diseases including in diabetes mellitus, hypertension, and obesity, which may be related to initiating and exacerbating atherosclerosis. On the other hand, FGF21 therapy significantly improves lipid profiles, and reduces vascular inflammation and oxidative stress in atherosclerosis related diseases. Therefore, further prospective studies are needed to clarify whether FGF21 can be used as a prognostic biomarker to identify individuals at future risk of atherosclerosis in these atherosclerosis-associated diseases. In this review, we will discuss the possible mechanism by which FGF21 protects against atherosclerosis.
Collapse
Affiliation(s)
- Farzane Shanebandpour Tabari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vahid Rameshknia
- Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Biochemistry, Baku State University, Baku, Azerbaijan
| | - Ata Mahmoodpour
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahmood Maniati
- Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
45
|
Etwebi Z, Landesberg G, Preston K, Eguchi S, Scalia R. Mechanistic Role of the Calcium-Dependent Protease Calpain in the Endothelial Dysfunction Induced by MPO (Myeloperoxidase). Hypertension 2019; 71:761-770. [PMID: 29507101 DOI: 10.1161/hypertensionaha.117.10305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
MPO (myeloperoxidase) is a peroxidase enzyme secreted by activated leukocytes that plays a pathogenic role in cardiovascular disease, mainly by initiating endothelial dysfunction. The molecular mechanisms of the endothelial damaging action of MPO remain though largely elusive. Calpain is a calcium-dependent protease expressed in the vascular wall. Activation of calpains has been implicated in inflammatory disorders of the vasculature. Using endothelial cells and genetically modified mice, this study identifies the µ-calpain isoform as novel downstream signaling target of MPO in endothelial dysfunction. Mouse lung microvascular endothelial cells were stimulated with 10 nmol/L MPO for 180 minutes. MPO denitrosylated µ-calpain C-terminus domain, and time dependently activated µ-calpain, but not the m-calpain isoform. MPO also reduced Thr172 AMPK (AMP-activated protein kinase) and Ser1177 eNOS (endothelial nitric oxide synthase) phosphorylation via upregulation of PP2A (protein phosphatase 2) expression. At the functional level, MPO increased endothelial VCAM-1 (vascular cell adhesion molecule 1) abundance and the adhesion of leukocytes to the mouse aorta. In MPO-treated endothelial cells, pharmacological inhibition of calpain activity attenuated expression of VCAM-1 and PP2A, and restored Thr172 AMPK and Ser1177 eNOS phosphorylation. Compared with wild-type mice, µ-calpain deficient mice experienced reduced leukocyte adhesion to the aortic endothelium in response to MPO. Our data first establish a role for calpain in the endothelial dysfunction and vascular inflammation of MPO. The MPO/calpain/PP2A signaling pathway may provide novel pharmacological targets for the treatment of inflammatory vascular disorders.
Collapse
Affiliation(s)
- Zienab Etwebi
- From the Department of Physiology and the Cardiovascular Research Center, Temple University, Philadelphia, PA
| | - Gavin Landesberg
- From the Department of Physiology and the Cardiovascular Research Center, Temple University, Philadelphia, PA
| | - Kyle Preston
- From the Department of Physiology and the Cardiovascular Research Center, Temple University, Philadelphia, PA
| | - Satoru Eguchi
- From the Department of Physiology and the Cardiovascular Research Center, Temple University, Philadelphia, PA
| | - Rosario Scalia
- From the Department of Physiology and the Cardiovascular Research Center, Temple University, Philadelphia, PA.
| |
Collapse
|
46
|
Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. Br J Pharmacol 2019; 176:189-196. [PMID: 30341769 PMCID: PMC6295413 DOI: 10.1111/bph.14522] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Endothelial NOS (eNOS), and its product NO, are vital components of the control of vasomotor function and cardiovascular homeostasis. In the present review, we will take a deep dive into eNOS enzymology, function and mechanisms regulating endothelial NO. The mechanisms regulating eNOS and NO synthesis discussed here include alterations to transcriptional, post-translational modifications and protein-protein regulations. Also, we will discuss the phenotypes associated with various eNOS mutants and the consequences of a disrupted eNOS/NO cascade, highlighting the importance of eNOS function and vascular homeostasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
47
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Generation and characterization of functional phosphoserine-incorporated neuronal nitric oxide synthase holoenzyme. J Biol Inorg Chem 2018; 24:1-9. [PMID: 30315355 DOI: 10.1007/s00775-018-1621-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation. The pSer1412 nNOS protein demonstrates UV-Vis, far-UV CD and fluorescence spectral properties that are identical to those of nNOS overexpressed in other bacterial strains. The protein is also functional, possessing normal NO production and NADPH oxidation activities in the presence of abundant substrate L-Arg. Conversely, the rate of FMN-heme interdomain electron transfer (IET) in pSer1412 nNOS is considerably lower than that of wild-type (wt) nNOS, while the phosphomimetic S1142E mutant possesses similar electron transfer kinetics to that of wt. The successful incorporation and high yield of pSer1412 into rat nNOS and the significant change in the IET kinetics upon the phosphorylation demonstrate a highly useful method for incorporating native phosphorylation sites as a substantial improvement to commonly used phosphomimetics.
Collapse
|
49
|
Bai L, Liu Y, Du Z, Weng Z, Yao W, Zhang X, Huang X, Yao X, Crawford R, Hang R, Huang D, Tang B, Xiao Y. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater 2018; 76:344-358. [PMID: 29908975 DOI: 10.1016/j.actbio.2018.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
Coating materials applied for intraosseous implants must be optimized to stimulate osseointegration. Osseointegration is a temporal and spatial physiological process that not only requires interactions between osteogenesis and angiogenesis but also necessitates a favorable immune microenvironment. It is now well-documented that hierarchical nano-micro surface structures promote the long-term stability of implants, the interactions between nano-micro structure and the immune response are largely unknown. Here, we report the effects of microporous titanium (Ti) surfaces coated with nano-hydroxyapatite (HA) produced by micro-arc oxidation and steam-hydrothermal treatment (SHT) on multiple cell behavior and osseointegration. By altering the processing time of SHT it was possible to shift HA structures from nano-particles to nano-rods on the microporous Ti surfaces. Ti surfaces coated with HA nano-particles were found to modulate the inflammatory response resulting in an osteoimmune microenvironment more favorable for osteo-/angio-genesis, most likely via the activation of certain key signaling pathways (TGF-β, OPG/RANKL, and VEGF). By contrast, Ti surfaces coated with nano-rod shaped HA particles had a negative impact on osteo-/angio-genesis and osteoimmunomodulation. In vivo results further demonstrated that Ti implant surfaces decorated with HA nano-particles can stimulate new bone formation and osseointegration with enhanced interaction between osteocytes and implant surfaces. This study demonstrated that Ti implants with micro-surfaces coated with nano-particle shaped HA have a positive impact on osseointegration. STATEMENT OF SIGNIFICANCE Osteo-/angio-genesis are of importance during osteointegration of the implants. Recent advances unravel that immune response of macrophages and its manipulated osteoimmunomodulation also exerts a pivotal role to determine the fate of the implant. Surface nano-micro modification has evidenced to be efficient to influence osteogenesis, however, little is known links nano-microstructured surface to immune response, as well the osteoimmunomodulation. This study demonstrates that the nano-particles decorated micro-surface, compared with the nano-rods decorated micro-surface enables osteogenesis and angiogenesis concurrently that has not been investigated previously. This study also unravels that the immune response of macrophages can be manipulated by the nano-micro surface, especially the nano-dimension matters, leading to a differential effect on osteointegration. The additional knowledge obtained from this study may provide foundation and reference for future design of the coating materials for implantable materials.
Collapse
|
50
|
Karakus S, Musicki B, Burnett AL. Phosphodiesterase type 5 in men with vasculogenic and post-radical prostatectomy erectile dysfunction: is there a molecular difference? BJU Int 2018; 122:1066-1074. [PMID: 29888556 DOI: 10.1111/bju.14433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To clarify the molecular basis of penile erection at the human level and distinguish the mechanisms underlying vasculogenic and post-radical prostatectomy (RP) erectile dysfunction (ED) subtypes. PATIENTS AND METHODS Erectile tissue was obtained from men without history of ED who underwent penile surgery for Peyronie's disease (control group, n = 5) and from men with ED who underwent penile prosthesis implantation (n = 17). ED was categorized into vasculogenic (n = 8) and post-RP (n = 9) subtypes. Penile erectile tissue samples were collected for molecular analyses of protein expressions of neuronal and endothelial isoforms of nitric oxide synthase (nNOS and eNOS, respectively), phospho-nNOS (Ser-1412), phospho-eNOS (Ser-1177), phospho-protein kinase B (Ser-473), phosphodiesterase type 5 (PDE5), α-smooth muscle actin, phospho-myosin phosphatase target subunit 1, RhoA/Rho-associated protein kinase (ROCK)-α, ROCK-β, 4-hydroxy-2-nonenal, and nNOS and eNOS uncoupling by Western blot. RESULTS Vasculogenic ED was characterized by decreased eNOS protein expression and eNOS and nNOS phosphorylation on their activatory sites (Ser-1177 and Ser-1412, respectively), uncoupled eNOS, upregulated PDE5 protein expression, increased ROCK activity, and increased oxidative stress in erectile tissue. Post-RP ED was characterized by decreased nNOS protein expression, increased nNOS phosphorylation on its activatory site (Ser-1412), uncoupled nNOS, downregulated PDE5 protein expression, and increased oxidative stress in erectile tissue. CONCLUSION The mechanisms of vasculogenic and post-RP ED in the human penis involve derangements in constitutive nitric oxide synthase function, PDE5 protein expression and ROCK activity, and increased oxidative stress, which conceivably provide a molecular basis for chronically reduced nitric oxide bioavailability and increased smooth muscle contraction contributing to erectile impairment. Selective differences in PDE5 protein expression suggest distinct molecular mechanisms are in play for these ED subtypes.
Collapse
Affiliation(s)
- Serkan Karakus
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - Biljana Musicki
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - Arthur L Burnett
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| |
Collapse
|