1
|
Yu CL, Pang H, Run Z, Wang GH. Anti-Melanogenic Effects of L-Theanine on B16F10 Cells and Zebrafish. Molecules 2025; 30:956. [PMID: 40005265 PMCID: PMC11858779 DOI: 10.3390/molecules30040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
L-Theanine, a natural amino acid found in green tea (Camellia sinensis) leaves, is known for its diverse psychotropic effects. This study aimed to evaluate the inhibitory effect of L-theanine on melanin production and uncover its regulatory mechanism. We evaluated the anti-melanogenic activities of L-theanine in vitro and in vivo. In B16F10 murine melanoma cells induced by α-melanocyte-stimulating hormone, melanin content and intracellular tyrosinase activity were determined, and melanogenesis-related protein expression and signaling pathways were analyzed by Western blotting. Melanin reduction was further assessed using the zebrafish (Danio rerio) test. L-Theanine reduced the intracellular tyrosinase activity and melanin content of B16F10 cells. It also attenuated the expression of melanogenesis-related proteins, such as microphthalmia- associated transcription factor, tyrosinase (TYR), TYR-related protein-1, and dopachrome tautomerase. L-Theanine modulated the protein kinase A (PKA), cAMP responder element binding protein (CREB), phosphorylation of/protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and β-catenin. The antimelanogenic activity of L-theanine (<2 mg/mL) was further confirmed using zebrafish larvae. L-Theanine inhibited melanogenesis by downregulating the PKA/CREB and Akt/GSK-3β/β-catenin signaling pathways. In summary, L-theanine shows potential as a skin-whitening compound, warranting further investigation for its possible applications in cosmetic and pharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Guey-Horng Wang
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China; (C.-L.Y.); (H.P.)
| |
Collapse
|
2
|
Niu B, An X, Chen Y, He T, Zhan X, Zhu X, Ping F, Zhang W, Zhou J. Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes. Chin J Nat Med 2025; 23:203-213. [PMID: 39986696 DOI: 10.1016/s1875-5364(25)60824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 02/24/2025]
Abstract
Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.
Collapse
Affiliation(s)
- Ben Niu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Yongmei Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting He
- Drug Discovery and Development Laboratories, Ningxia Hui Medicine Research Institute, Yinchuan, 750021, China
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuqi Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fengfeng Ping
- Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Wei Zhang
- Hospital for Skin Diseases Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Hong Z, Wang D, Qiao X, Xie Y, Yang S, Hao K, Han C, Liu H, Liu Z. Wnt5a negatively regulates melanogenesis in primary Arctic fox epidermal melanocytes. Gene 2025; 934:149045. [PMID: 39461575 DOI: 10.1016/j.gene.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Melanocytes, which are mainly found in the epidermis, are responsible for the melanin of skin and hair, and thereby contribute to the appearance of skin and provide protection from damage by ultraviolet radiation. Our previous study revealed that the Wnt5a, one of the many genes that affect melanin production, might be involved in the coat color seasonal change of the Arctic fox by influencing skin melanogenesis. Although the role of Wnt5a in melanocyte lines and melanoma cells has been extensively studied, its role in primary epidermal melanocytes has not been explored. This study aimed to investigate the role and mechanism of the Wnt5a in influencing melanogenesis in Arctic fox primary epidermal melanocytes. We constructed the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout plasmid targeting exons of the Wnt5a and transfected it into primary epidermal melanocytes. The results of the amplification knockout region assay, RT-qPCR assay, and western blot assay showed the success of Wnt5a knockout. RT-qPCR assay and melanin content assay showed that melanin production in melanocytes was significantly increased after Wnt5a knockout, and melanin-related key genes, such as microphthalmia-associated transcription factor, tyrosinase and tyrosinase-related protein 1, were significantly elevated. In addition, we also found that the expression of the β-catenin gene of the Wnt canonical pathway was significantly elevated after Wnt5a knockout. In conclusion, our results indicate that the Wnt5a plays a negative regulatory role in melanogenesis in primary epidermal melanocytes, and is presumably involved in antagonizing or inhibiting canonical Wnt signaling.
Collapse
Affiliation(s)
- Zhilin Hong
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Dongxian Wang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Xian Qiao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Yuchun Xie
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Shanshan Yang
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Kexing Hao
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Cong Han
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Huayun Liu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China
| | - Zhengzhu Liu
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Special Animal Germplasm Resources Mining and Innovation, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
4
|
Johns E, Ma Y, Louphrasitthiphol P, Peralta C, Hunter MV, Raymond JH, Molina H, Goding CR, White RM. The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. Pigment Cell Melanoma Res 2025; 38:e13208. [PMID: 39479752 DOI: 10.1111/pcmr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Lipid droplets are fat storage organelles composed of a protein envelope and lipid-rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid-mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Collapse
Affiliation(s)
- Eleanor Johns
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yilun Ma
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | | | - Christopher Peralta
- The Proteomics Resource Center at the Rockefeller University, New York, New York, USA
| | - Miranda V Hunter
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeremy H Raymond
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Henrik Molina
- The Proteomics Resource Center at the Rockefeller University, New York, New York, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Yuen GKW, Lin S, Dong TTX, Tsim KWK. Sophoricoside, a genistein glycoside from Fructus Sophorae, promotes hair growth via activation of M4 muscarinic AChR in dermal papilla cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118585. [PMID: 39019417 DOI: 10.1016/j.jep.2024.118585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alopecia, or hair loss, refers to ongoing decline of mature hair on the scalp or any other region of the body. Fructus Sophorae, a fruit from Sophora japonica L., contains various phytochemicals, e.g., sophoricoside, that exhibit a broad range of pharmacological effects. The potential functions of herbal extracts deriving from Fructus Sophorae and/or its major phytochemical, sophoricoside, in treating alopecia are probed here. AIM OF STUDY The objective was to determine the ability of Fructus Sophorae extract and sophoricoside in promoting hair growth and it signalling mechanism. METHODS Molecular docking studies were conducted to measure the binding affinities between sophoricoside and M4 mAChR in the allosteric binding site. The mechanism of Fructus Sophorae and sophoricoside in activating the signalling involving Wnt/β-catenin and muscarinic AChR was evaluated by using immortalized human dermal papilla cell line (DPC), as well as their roles in promoting hair growth. The activity of pTOPflash-luciferase in transfected DPCs was used to examine the transcriptional regulation of Wnt/β-catenin-mediated genes. RT-PCR was applied to quantify mRNA expressions of the biomarkers in DPCs responsible for hair growth. The phosphorylated protein levels of Wnt/β-catenin and PI3K/AKT in DPC were revealed by using Western blot analysis. The culture of ex vivo mouse vibrissae hair follicle was used to evaluate the hair growth after the treatments. RESULTS The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/β-catenin signalling. The result of molecular docking showed a high binding affinity between sophoricoside and M4 mAChR. The effect of sophoricoside was blocked by specific inhibitor of M4 mAChR, but not by other inhibitors of mAChRs. Sophoricoside promoted hair growth in cultured ex vivo mouse vibrissae hair follicle by acting through M4 mAChR. CONCLUSION The ethanol extract of Fructus Sophorae and sophoricoside activated Wnt/β-catenin signalling via activation of M4 mAChR. The results suggested beneficial functions of Fructus Sophorae and sophoricoside as a potential candidate in treating alopecia.
Collapse
Affiliation(s)
- Gary Ka-Wing Yuen
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Shengying Lin
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Tina Ting-Xia Dong
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Karl Wah-Keung Tsim
- Division of Life Science, Centre for Chinese Medicine, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Min Y, Li Q, Yu H, Du S. Examination of wnt signaling mediated melanin transport and shell color formation in Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:488-501. [PMID: 39219677 PMCID: PMC11358575 DOI: 10.1007/s42995-024-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 09/04/2024]
Abstract
Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy. In addition, we characterized CgWnt1 and CgWnt2b-a in Crassostrea gigas, and analyzed Wnt signaling in melanocyte formation. Expression analysis revealed that these genes were predominantly expressed in the mantle of black-shelled individuals, particularly in the outer fold of the mantle. Furthermore, we employed RNA interference and inhibitors to specifically inhibit Wnt signaling in both in vivo and in vitro. The results revealed impaired melanogenesis and diminished tyrosinase activity upon Wnt signaling inhibition. These findings suggest the crucial role of Wnt ligands and downstream factors in melanogenesis. In summary, our study provides valuable insights into the regulatory mechanism of shell pigmentation in C. gigas. By demonstrating the promotion of melanogenesis through Wnt signaling modulation, we contribute to a better understanding of the complex processes underlying molluscan melanin production and shell coloration. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00221-5.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003 China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, 21240 USA
| |
Collapse
|
8
|
Leask A, Nguyen J, Naik A, Chitturi P, Riser BL. The role of yes activated protein (YAP) in melanoma metastasis. iScience 2024; 27:109864. [PMID: 38770136 PMCID: PMC11103372 DOI: 10.1016/j.isci.2024.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Hippo was first identified in a genetic screen as a protein that suppressed proliferation and cell growth. Subsequently, it was shown that hippo acted in a so-called canonical cascade to suppress Yorkie, the Drosophila equivalent of Yes-activated protein (YAP), a mechanosensitive transcriptional cofactor that enhances the activity of the TEAD family of transcription factors. YAP promotes fibrosis, activation of cancer-associated fibroblasts, angiogenesis and cancer cell invasion. YAP activates the expression of the matricellular proteins CCN1 (cyr61) and CCN2 (ctgf), themselves mediators of fibrogenesis and oncogenesis, and coordination of matrix deposition and angiogenesis. This review discusses how therapeutically targeting YAP through YAP inhibitors verteporfin and celastrol and its downstream mediators CCN1 and CCN2 might be useful in treating melanoma.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Bruce L. Riser
- Department of Physiology & Biophysics, Center for Cancer Cell Biology, Immunology & Infection, Rosalind Franklin University, 3333 N. Green Bay Road, Chicago, IL 60064, USA
- BLR Bio, LLC, Kenosha, WI 53140, USA
| |
Collapse
|
9
|
Coutant K, Magne B, Ferland K, Fuentes-Rodriguez A, Chancy O, Mitchell A, Germain L, Landreville S. Melanocytes in regenerative medicine applications and disease modeling. J Transl Med 2024; 22:336. [PMID: 38589876 PMCID: PMC11003097 DOI: 10.1186/s12967-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.
Collapse
Affiliation(s)
- Kelly Coutant
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Brice Magne
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Karel Ferland
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Olivier Chancy
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Lucie Germain
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada.
- Université Laval Cancer Research Center, Quebec City, QC, Canada.
| |
Collapse
|
10
|
Johns E, Ma Y, Louphrasitthipol P, Peralta C, Hunter MV, Raymond JH, Molina H, Goding CR, White RM. The lipid droplet protein DHRS3 is a regulator of melanoma cell state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586589. [PMID: 38586016 PMCID: PMC10996640 DOI: 10.1101/2024.03.25.586589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Collapse
|
11
|
Feng Y, Xie N, Inoue F, Fan S, Saskin J, Zhang C, Zhang F, Hansen MEB, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Belay G, Njamnshi AK, Marks MS, Oancea E, Ahituv N, Tishkoff SA. Integrative functional genomic analyses identify genetic variants influencing skin pigmentation in Africans. Nat Genet 2024; 56:258-272. [PMID: 38200130 PMCID: PMC11005318 DOI: 10.1038/s41588-023-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.
Collapse
Affiliation(s)
- Yuanqing Feng
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ning Xie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Shaohua Fan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Human Phenome Institute, School of Life Science, Fudan University, Shanghai, China
| | - Joshua Saskin
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Chao Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Zhang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Nyambo
- Department of Biochemistry and Molecular Biology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone, Botswana
| | | | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN); Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Elena Oancea
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
13
|
Lin X, Meng X, Lin J. The possible role of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol 2023; 37:2208-2221. [PMID: 36912722 DOI: 10.1111/jdv.19022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Vitiligo is a common chronic skin disease which has an adverse impact on patients' life. Its pathogenesis is complex, involving autoimmunity and oxidative stress (OS). Autoimmunity leads to the loss of epidermal melanocytes and the formation of the depigmented patches of the disease. Treatment of vitiligo should control the exaggerated immune response to arrest the progress of active disease, and then promote melanocytes to repigmentation. Wnt/β-catenin signalling pathway has been of recent interest in vitiligo. Wnt/β-catenin signalling pathway is downregulated in vitiligo. Upregulation of Wnt/β-catenin signalling possibly control vitiligo autoimmune response by protecting melanocyte from OS damage, inhibiting CD8+ T cell effector cell differentiation and enhancing Treg. Wnt/β-catenin signalling plays a critical role in the melanocyte regeneration by driving the differentiation of melanocyte stem cells (McSCs) into melanocytes. Promoting Wnt/β-catenin signalling can not only arrest the progress of active disease of vitiligo but also promote repigmentation. Some of the main effective therapies for vitiligo are likely to work by activating Wnt/β-catenin signalling. Agents that can enhance the effect of Wnt/β-catenin signalling may become potential candidates for the development of new drugs for vitiligo treatment.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, Pennsylvania, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Bouchard KV, Costin GE. Promoting New Approach Methodologies (NAMs) for research on skin color changes in response to environmental stress factors: tobacco and air pollution. FRONTIERS IN TOXICOLOGY 2023; 5:1256399. [PMID: 37886123 PMCID: PMC10598764 DOI: 10.3389/ftox.2023.1256399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023] Open
Abstract
Aging is one of the most dynamic biological processes in the human body and is known to carry significant impacts on individuals' self-esteem. Skin pigmentation is a highly heritable trait made possible by complex, strictly controlled cellular and molecular mechanisms. Genetic, environmental and endocrine factors contribute to the modulation of melanin's amount, type and distribution in the skin layers. One of the hallmarks of extrinsic skin aging induced by environmental stress factors is the alteration of the constitutive pigmentation pattern clinically defined as senile lentigines and/or melasma or other pigmentary dyschromias. The complexity of pollutants and tobacco smoke as environmental stress factors warrants a thorough understanding of the mechanisms by which they impact skin pigmentation through repeated and long-term exposure. Pre-clinical and clinical studies demonstrated that pollutants are known to induce reactive oxygen species (ROS) or inflammatory events that lead directly or indirectly to skin hyperpigmentation. Another mechanistic direction is provided by Aryl hydrocarbon Receptors (AhR) which were shown to mediate processes leading to skin hyperpigmentation in response to pollutants by regulation of melanogenic enzymes and transcription factors involved in melanin biosynthesis pathway. In this context, we will discuss a diverse range of New Approach Methodologies (NAMs) capable to provide mechanistic insights of the cellular and molecular pathways involved in the action of environmental stress factors on skin pigmentation and to support the design of raw ingredients and formulations intended to counter their impact and of any subsequently needed clinical studies.
Collapse
|
15
|
Galvan C, Lowry WE. Yo-yoing stem cells defy dogma to maintain hair colour. Nature 2023; 616:666-667. [PMID: 37076710 DOI: 10.1038/d41586-023-00918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
|
16
|
Saidani M, Darle A, Jarrige M, Polveche H, El Kassar L, Julié S, Bessou-Touya S, Holic N, Lemaitre G, Martinat C, Baldeschi C, Allouche J. Generating Functional and Highly Proliferative Melanocytes Derived from Human Pluripotent Stem Cells: A Promising Tool for Biotherapeutic Approaches to Treat Skin Pigmentation Disorders. Int J Mol Sci 2023; 24:ijms24076398. [PMID: 37047372 PMCID: PMC10094141 DOI: 10.3390/ijms24076398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Melanocytes are essential for skin homeostasis and protection, and their loss or misfunction leads to a wide spectrum of diseases. Cell therapy utilizing autologous melanocytes has been used for years as an adjunct treatment for hypopigmentary disorders such as vitiligo. However, these approaches are hindered by the poor proliferative capacity of melanocytes obtained from skin biopsies. Recent advances in the field of human pluripotent stem cells have fueled the prospect of generating melanocytes. Here, we have developed a well-characterized method to produce a pure and homogenous population of functional and proliferative melanocytes. The genetic stability and potential transformation of melanocytes from pluripotent stem cells have been evaluated over time during the in vitro culture process. Thanks to transcriptomic analysis, the molecular signatures all along the differentiation protocol have been characterized, providing a solid basis for standardizing the protocol. Altogether, our results promise meaningful, broadly applicable, and longer-lasting advances for pigmentation disorders and open perspectives for innovative biotherapies for pigment disorders.
Collapse
|
17
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
18
|
Kamilijiang M, Zang D, Abudukelimu N, Aidarhan N, Liu G, Aisa HA. Anti-Melanogenesis Effect of Polysaccharide from Saussurea involucrata on Forskolin-Induced Melanogenesis in B16F10 Melanoma Cells. Nutrients 2022; 14:5044. [PMID: 36501075 PMCID: PMC9736293 DOI: 10.3390/nu14235044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
As one of the prominent medicinal plants listed in the Chinese pharmacopoeia (2020), Saussurea involucrata (Kar. et Kir.) Sch.-Bip was demonstrated to possess various therapeutic effects. In our recent research, we extracted the polysaccharides from S. involucrata (SIP) at optimal conditions and conducted further structure elucidation on the main fraction as well as the confirmation of its possible anti-inflammatory activity. Hence, in this work, we assessed the in vitro antioxidant activity and anti-melanogenesis effects of the crude SIP in forskolin-induced B16F10 melanoma cells. The results show that SIP possessed strong antioxidant activity and was effective in concentration-dependently decreasing melanin formation and inhibiting tyrosinase activity in forskolin-induced B16F10 cells. Based on these results, the inhibitory mechanism of melanogenesis was investigated by measuring Tyrosinase (TYR), Tyrosinase related protein-1 (TRP-1), Tyrosinase related protein-2 (TRP-2), Microphthalmia-associated transcription factor (MITF), cAMP-response element binding protein (CREB), mitogen-activated protein kinases (MAPK) signaling protein members, and β-catenin degradation in forskolin-induced B16F10 cells. The anti-melanogenesis response of SIP might be attributed to the regulation of c-Jun N-terminal kinase (JNK) phosphorylation and β-catenin degradation pathways. These results suggest that polysaccharides from S. involucrata possess a strong anti-melanogenic effect, and thus could be used as a high-value natural material for skin whitening in cosmeceutical industries.
Collapse
Affiliation(s)
- Mayila Kamilijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nurbolat Aidarhan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
19
|
Chauhan JS, Hölzel M, Lambert JP, Buffa FM, Goding CR. The MITF regulatory network in melanoma. Pigment Cell Melanoma Res 2022; 35:517-533. [PMID: 35771179 PMCID: PMC9545041 DOI: 10.1111/pcmr.13053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
Bidirectional interactions between plastic tumor cells and the microenvironment critically impact tumor evolution and metastatic dissemination by enabling cancer cells to adapt to microenvironmental stresses by switching phenotype. In melanoma, a key determinant of phenotypic identity is the microphthalmia‐associated transcription factor MITF that promotes proliferation, suppresses senescence, and anticorrelates with immune infiltration and therapy resistance. What determines whether MITF can activate or repress genes associated with specific phenotypes, or how signaling regulating MITF might impact immune infiltration is poorly understood. Here, we find that MITF binding to genes associated with high MITF is via classical E/M‐box motifs, but genes downregulated when MITF is high contain FOS/JUN/AP1/ATF3 sites. Significantly, the repertoire of MITF‐interacting factors identified here includes JUN and ATF3 as well as many previously unidentified interactors. As high AP1 activity is a hallmark of MITFLow, invasive, slow‐cycling, therapy resistant cells, the ability of MITF to repress AP1‐regulated genes provides an insight into how MITF establishes and maintains a pro‐proliferative phenotype. Moreover, although β‐catenin has been linked to immune exclusion, many Hallmark β‐catenin signaling genes are associated with immune infiltration. Instead, low MITF together with Notch signaling is linked to immune infiltration in both mouse and human melanoma tumors.
Collapse
Affiliation(s)
- Jagat S Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, QC, Canada.,CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, Canada
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Headington, Oxford, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Lee KW, Kim M, Lee SH, Kim KD. The Function of Autophagy as a Regulator of Melanin Homeostasis. Cells 2022; 11:cells11132085. [PMID: 35805169 PMCID: PMC9265842 DOI: 10.3390/cells11132085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Melanosomes are melanocyte-specific organelles that protect cells from ultraviolet (UV)-induced deoxyribonucleic acid damage through the production and accumulation of melanin and are transferred from melanocytes to keratinocytes. The relatively well-known process by which melanin is synthesized from melanocytes is known as melanogenesis. The relationship between melanogenesis and autophagy is attracting the attention of researchers because proteins associated with autophagy, such as WD repeat domain phosphoinositide-interacting protein 1, microtubule-associated protein 1 light chain 3, autophagy-related (ATG)7, ATG4, beclin-1, and UV-radiation resistance-associated gene, contribute to the melanogenesis signaling pathway. Additionally, there are reports that some compounds used as whitening cosmetics materials induce skin depigmentation through autophagy. Thus, the possibility that autophagy is involved in the removal of melanin has been suggested. To date, however, there is a lack of data on melanosome autophagy and its underlying mechanism. This review highlights the importance of autophagy in melanin homeostasis by providing an overview of melanogenesis, autophagy, the autophagy machinery involved in melanogenesis, and natural compounds that induce autophagy-mediated depigmentation.
Collapse
Affiliation(s)
- Ki Won Lee
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
| | - Minju Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Si Hyeon Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
| | - Kwang Dong Kim
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (S.H.L.)
- Correspondence: ; Tel.: +82-55-772-1365; Fax: +82-55-772-1359
| |
Collapse
|
21
|
Fang CL, Goswami D, Kuo CH, Day CH, Lin MY, Ho TJ, Yang LY, Hsieh DJY, Lin TK, Huang CY. Angelica dahurica attenuates melanogenesis in B16F0 cells by repressing Wnt/β-catenin signaling. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
23
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
24
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Han X, Chang L, Qiu Z, Lin M, Wang Y, Liu D, Diao Q, Zhong JL, Xu DW. Micro-injury Induces Hair Regeneration and Vitiligo Repigmentation Through Wnt/β-catenin Pathway. Stem Cells Dev 2022; 31:111-118. [PMID: 35044224 DOI: 10.1089/scd.2021.0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extrinsic injury can evoke intrinsic stimulation and subsequently initiate the physiological repair process. This study aims to investigate whether clinically acceptable micro-injury could be employed to create local stimuli to induce hair regeneration and vitiligo repigmentation. A novel device was designed and manufactured to precisely control the micro-injury parameters. Then the most appropriate extent of micro-injury without over-damaging the skin was evaluated. Finally, the effects of micro-injury on hair regeneration and vitiligo repigmentation were examined by macroscopical observation, histological staining, gene and protein expression analysis. We discover that proper micro-injury effectively induces hair regeneration by activating the hair follicle stem cell proliferation and migration downwards to the hair matrix, finally shifting the hair follicle stage from telogen into anagen. On vitiligo model mice, micro-injury also induces the hair follicle melanocyte stem cells to migrate upwards to the interfollicular epidermis, activating and giving rise to melanocytes to repopulate the vitiligo lesion. Mechanistic analysis indicates that the canonical Wnt/-catenin pathway plays a key role in the micro-injury-induced repair process. The present study demonstrates that micro-injury has great potential in inducing hair regeneration and vitiligo repigmentation, laid a foundation to develop a micro-injury-based treatment method in alopecia and vitiligo.
Collapse
Affiliation(s)
- Xiaofeng Han
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China;
| | - Li Chang
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | - Zhijin Qiu
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | - Mao Lin
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | - Yuyi Wang
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | - Deming Liu
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | - Qingchun Diao
- Chongqing Hospital of Traditional Chinese Medicine, China;
| | | | - David Wei Xu
- Beijing University of Chinese Medicine Affiliated Chongqing Traditional Chinese Medicine Hospital, 117933, Department of Dermatology, No. 40 Daomenkou St., District Yuzhong, Chongqing, Chongqing, China, 400011;
| |
Collapse
|
26
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Sutton G, Kelsh RN, Scholpp S. Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Front Cell Dev Biol 2021; 9:782445. [PMID: 34912811 PMCID: PMC8667473 DOI: 10.3389/fcell.2021.782445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field's potential future directions.
Collapse
Affiliation(s)
- Gemma Sutton
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Farjami S, Camargo Sosa K, Dawes JHP, Kelsh RN, Rocco A. Novel generic models for differentiating stem cells reveal oscillatory mechanisms. J R Soc Interface 2021; 18:20210442. [PMID: 34610261 PMCID: PMC8492175 DOI: 10.1098/rsif.2021.0442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding cell fate selection remains a central challenge in developmental biology. We present a class of simple yet biologically motivated mathematical models for cell differentiation that generically generate oscillations and hence suggest alternatives to the standard framework based on Waddington's epigenetic landscape. The models allow us to suggest two generic dynamical scenarios that describe the differentiation process. In the first scenario, gradual variation of a single control parameter is responsible for both entering and exiting the oscillatory regime. In the second scenario, two control parameters vary: one responsible for entering, and the other for exiting the oscillatory regime. We analyse the standard repressilator and four variants of it and show the dynamical behaviours associated with each scenario. We present a thorough analysis of the associated bifurcations and argue that gene regulatory networks with these repressilator-like characteristics are promising candidates to describe cell fate selection through an oscillatory process.
Collapse
Affiliation(s)
- Saeed Farjami
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Karen Camargo Sosa
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
29
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Cho H, Kim B, Kim OS, Kim Y, Yang Y, Song J, Liu D, Jeon S, Kim O. Photochemical reaction to increase melanogenesis using Buddleja officinalis and blue light-emitting diode irradiation in B16F10. Photodiagnosis Photodyn Ther 2021; 35:102456. [PMID: 34311092 DOI: 10.1016/j.pdpdt.2021.102456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Recently, the incidence of vitiligo has increased because of stresses induced by external environment. Ultraviolet (UV) light therapy is the most commonly used method of treating the disease; however, UV light therapy requires a long treatment period, and prolonged exposure to UV radiation has side effects. The purpose of the present study was to investigate the effects of natural products and LED irradiation (LED-IR) on the synthesis of melanin. It was not possible to effectively increase intracellular melanin production through individual applications of Buddleja officinalis (BO), which is a natural substance selected through screening, or blue light irradiation (Blue-IR). However, when used in combination, these two agents stimulated adenylyl cyclase (AC) and melanin production was induced in the stimulated cells via the CREB/MITF/TYR pathway. Furthermore, the combined treatment with BO and Blue-IR generated low levels of cellular reactive oxygen species (ROS) and induced p38 phosphorylation, which in turn activated MITF in ROS-stimulated synthetic melanocytes, resulting in the promotion of melanogenic pathways other than the CREB/MITF/TYR pathway. In addition, this treatment combination effected melanin transport. These results suggested that the combined therapies can be used to treat melanin-deficiency skin diseases such as vitiligo.
Collapse
Affiliation(s)
- Hyejoung Cho
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jianan Song
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sangmi Jeon
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
31
|
Wessely A, Steeb T, Berking C, Heppt MV. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance. Int J Mol Sci 2021; 22:ijms22115761. [PMID: 34071193 PMCID: PMC8198848 DOI: 10.3390/ijms22115761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (T.S.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
32
|
Nazir Y, Rafique H, Kausar N, Abbas Q, Ashraf Z, Rachtanapun P, Jantanasakulwong K, Ruksiriwanich W. Methoxy-Substituted Tyramine Derivatives Synthesis, Computational Studies and Tyrosinase Inhibitory Kinetics. Molecules 2021; 26:molecules26092477. [PMID: 33922836 PMCID: PMC8122972 DOI: 10.3390/molecules26092477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.
Collapse
Affiliation(s)
- Yasir Nazir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Hummera Rafique
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (H.R.); (N.K.)
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan; (H.R.); (N.K.)
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain;
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Correspondence: (Z.A.); (W.R.)
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Agro Bio-Circular Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (P.R.); (K.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (Z.A.); (W.R.)
| |
Collapse
|
33
|
Hossain MR, Ansary TM, Komine M, Ohtsuki M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int J Mol Sci 2021; 22:3970. [PMID: 33921371 PMCID: PMC8070342 DOI: 10.3390/ijms22083970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The production of melanin pigments by melanocytes and their quantity, quality, and distribution play a decisive role in determining human skin, eye, and hair color, and protect the skin from adverse effects of ultraviolet radiation (UVR) and oxidative stress from various environmental pollutants. Melanocytes reside in the basal layer of the interfollicular epidermis and are compensated by melanocyte stem cells in the follicular bulge area. Various stimuli such as eczema, microbial infection, ultraviolet light exposure, mechanical injury, and aging provoke skin inflammation. These acute or chronic inflammatory responses cause inflammatory cytokine production from epidermal keratinocytes as well as dermal fibroblasts and other cells, which in turn stimulate melanocytes, often resulting in skin pigmentation. It is confirmed by some recent studies that several interleukins (ILs) and other inflammatory mediators modulate the proliferation and differentiation of human epidermal melanocytes and also promote or inhibit expression of melanogenesis-related gene expression directly or indirectly, thereby participating in regulation of skin pigmentation. Understanding of mechanisms of skin pigmentation due to inflammation helps to elucidate the relationship between inflammation and skin pigmentation regulation and can guide development of new therapeutic pathways for treating pigmented dermatosis. This review covers the mechanistic aspects of skin pigmentation caused by inflammation.
Collapse
Affiliation(s)
| | | | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; (M.R.H.); (T.M.A.); (M.O.)
| | | |
Collapse
|
34
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
35
|
Hsiao YJ, Chang WH, Chen HY, Hsu YC, Chiu SC, Chiang CC, Chang GC, Chen YJ, Wang CY, Chen YM, Lin CY, Chen YJ, Yang PC, Chen JJW, Yu SL. MITF functions as a tumor suppressor in non-small cell lung cancer beyond the canonically oncogenic role. Aging (Albany NY) 2020; 13:646-674. [PMID: 33293474 PMCID: PMC7835003 DOI: 10.18632/aging.202171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Microphthalamia-associated transcription factor (MITF) is a critical mediator in melanocyte differentiation and exerts oncogenic functions in melanoma progression. However, the role of MITF in non-small cell lung cancer (NSCLC) is still unknown. We found that MITF is dominantly expressed in the low-invasive CL1-0 lung adenocarcinoma cells and paired adjacent normal lung tissues. MITF expression is significantly associated with better overall survival and disease-free survival in NSCLC and serves as an independent prognostic marker. Silencing MITF promotes tumor cell migration, invasion and colony formation in lung adenocarcinoma cells. In xenograft mouse model, MITF knockdown enhances metastasis and tumorigenesis, but decreases angiogenesis in the Matrigel plug assay. Whole transcriptome profiling of the landscape of MITF regulation in lung adenocarcinoma indicates that MITF is involved in cell development, cell cycle, inflammation and WNT signaling pathways. Chromatin immunoprecipitation assays revealed that MITF targets the promoters of FZD7, PTGR1 and ANXA1. Moreover, silencing FZD7 reduces the invasiveness that is promoted by silencing MITF. Strikingly, MITF has significantly inverse correlations with the expression of its downstream genes in lung adenocarcinoma. In summary, we demonstrate the suppressive role of MITF in lung cancer progression, which is opposite to the canonical oncogenic function of MITF in melanoma.
Collapse
Affiliation(s)
- Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Chin Chiu
- Inservice Master Program in Life Sciences, College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Ching-Cheng Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yan-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Infarinato NR, Stewart KS, Yang Y, Gomez NC, Pasolli HA, Hidalgo L, Polak L, Carroll TS, Fuchs E. BMP signaling: at the gate between activated melanocyte stem cells and differentiation. Genes Dev 2020; 34:1713-1734. [PMID: 33184221 PMCID: PMC7706702 DOI: 10.1101/gad.340281.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Through recurrent bouts synchronous with the hair cycle, quiescent melanocyte stem cells (McSCs) become activated to generate proliferative progeny that differentiate into pigment-producing melanocytes. The signaling factors orchestrating these events remain incompletely understood. Here, we use single-cell RNA sequencing with comparative gene expression analysis to elucidate the transcriptional dynamics of McSCs through quiescence, activation, and melanocyte maturation. Unearthing converging signs of increased WNT and BMP signaling along this progression, we endeavored to understand how these pathways are integrated. Employing conditional lineage-specific genetic ablation studies in mice, we found that loss of BMP signaling in the lineage leads to hair graying due to a block in melanocyte maturation. We show that interestingly, BMP signaling functions downstream from activated McSCs and maintains WNT effector, transcription factor LEF1. Employing pseudotime analysis, genetics, and chromatin landscaping, we show that following WNT-mediated activation of McSCs, BMP and WNT pathways collaborate to trigger the commitment of proliferative progeny by fueling LEF1- and MITF-dependent differentiation. Our findings shed light upon the signaling interplay and timing of cues that orchestrate melanocyte lineage progression in the hair follicle and underscore a key role for BMP signaling in driving complete differentiation.
Collapse
Affiliation(s)
- Nicole R Infarinato
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Katherine S Stewart
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Yihao Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Lynette Hidalgo
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Lisa Polak
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
37
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Mandal SC, Tripathy PS, Khatei A, Behera DU, Ghosh A, Pandey PK, Parhi J. Genetics of colour variation in wild versus cultured queen loach, Botia dario (Hamilton, 1822). Genomics 2020; 112:3256-3267. [DOI: 10.1016/j.ygeno.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
|
39
|
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci 2020; 21:ijms21176129. [PMID: 32854423 PMCID: PMC7503925 DOI: 10.3390/ijms21176129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jiro Ogino
- Department of Pathology, JR Sapporo Hospital, Sapporo 060-0033, Hokkaido, Japan;
| | - Hitoshi Sohma
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, Sapporo 060-0042, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-887-8266
| |
Collapse
|
40
|
Kato S, Weng QY, Insco ML, Chen KY, Muralidhar S, Pozniak J, Diaz JMS, Drier Y, Nguyen N, Lo JA, van Rooijen E, Kemeny LV, Zhan Y, Feng Y, Silkworth W, Powell CT, Liau BB, Xiong Y, Jin J, Newton-Bishop J, Zon LI, Bernstein BE, Fisher DE. Gain-of-Function Genetic Alterations of G9a Drive Oncogenesis. Cancer Discov 2020; 10:980-997. [PMID: 32269030 PMCID: PMC7334057 DOI: 10.1158/2159-8290.cd-19-0532] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/05/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic regulators, when genomically altered, may become driver oncogenes that mediate otherwise unexplained pro-oncogenic changes lacking a clear genetic stimulus, such as activation of the WNT/β-catenin pathway in melanoma. This study identifies previously unrecognized recurrent activating mutations in the G9a histone methyltransferase gene, as well as G9a genomic copy gains in approximately 26% of human melanomas, which collectively drive tumor growth and an immunologically sterile microenvironment beyond melanoma. Furthermore, the WNT pathway is identified as a key tumorigenic target of G9a gain-of-function, via suppression of the WNT antagonist DKK1. Importantly, genetic or pharmacologic suppression of mutated or amplified G9a using multiple in vitro and in vivo models demonstrates that G9a is a druggable target for therapeutic intervention in melanoma and other cancers harboring G9a genomic aberrations. SIGNIFICANCE: Oncogenic G9a abnormalities drive tumorigenesis and the "cold" immune microenvironment by activating WNT signaling through DKK1 repression. These results reveal a key druggable mechanism for tumor development and identify strategies to restore "hot" tumor immune microenvironments.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Shinichiro Kato
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Megan L Insco
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Kevin Y Chen
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Sathya Muralidhar
- Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Joanna Pozniak
- Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Joey Mark S Diaz
- Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Yotam Drier
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nhu Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yao Zhan
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yang Feng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Whitney Silkworth
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - C Thomas Powell
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmaceutical Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmaceutical Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia Newton-Bishop
- Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Leonard I Zon
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
41
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kim KI, Jung KE, Shin YB, Kim CD, Yoon TJ. Sorafenib induces pigmentation via the regulation of β-catenin signalling pathway in melanoma cells. Exp Dermatol 2020; 31:57-63. [PMID: 32391926 DOI: 10.1111/exd.14112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/23/2023]
Abstract
We conducted large-scale screening test on drugs that were already approved for other diseases to find pigmentation-modulating agents. Among drugs with potential for pigmentation control, we selected sorafenib and further investigated the effect on pigmentation using HM3KO melanoma cells. As a result of treating melanoma cells with sorafenib, pigmentation was promoted in terms of melanin content and tyrosinase activity. Sorafenib increased mRNA and protein levels of pigmentation-related genes such as MITF, tyrosinase and TRP1. To uncover the action mechanism, we investigated the effect of sorafenib on the intracellular signalling pathways. Sorafenib reduced phosphorylation of AKT and ERK, suggesting that sorafenib induces pigmentation through inhibition of the AKT and ERK pathways. In addition, sorafenib significantly increased the level of active β-catenin, together with activation of β-catenin signalling. Mechanistic study revealed that sorafenib decreased phosphorylation of serine 9 (S9) of GSK3β, while it increased phosphorylation of tyrosine 216 (Y216) of GSK3β. These results suggest that sorafenib activates the β-catenin signalling through the regulation of GSK3β phosphorylation, thereby affecting the pigmentation process.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Bin Shin
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| |
Collapse
|
43
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
44
|
Raja DA, Subramaniam Y, Aggarwal A, Gotherwal V, Babu A, Tanwar J, Motiani RK, Sivasubbu S, Gokhale RS, Natarajan VT. Histone variant dictates fate biasing of neural crest cells to melanocyte lineage. Development 2020; 147:dev.182576. [PMID: 32098766 DOI: 10.1242/dev.182576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022]
Abstract
In the neural crest lineage, progressive fate restriction and stem cell assignment are crucial for both development and regeneration. Whereas fate commitment events have distinct transcriptional footprints, fate biasing is often transitory and metastable, and is thought to be moulded by epigenetic programmes. Therefore, the molecular basis of specification is difficult to define. In this study, we established a role for a histone variant, H2a.z.2, in specification of the melanocyte lineage from multipotent neural crest cells. H2a.z.2 silencing reduces the number of melanocyte precursors in developing zebrafish embryos and from mouse embryonic stem cells in vitro We demonstrate that this histone variant occupies nucleosomes in the promoter of the key melanocyte determinant mitf, and enhances its induction. CRISPR/Cas9-based targeted mutagenesis of this gene in zebrafish drastically reduces adult melanocytes, as well as their regeneration. Thereby, our study establishes the role of a histone variant upstream of the core gene regulatory network in the neural crest lineage. This epigenetic mark is a key determinant of cell fate and facilitates gene activation by external instructive signals, thereby establishing melanocyte fate identity.
Collapse
Affiliation(s)
- Desingu Ayyappa Raja
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Yogaspoorthi Subramaniam
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Ayush Aggarwal
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vishvabandhu Gotherwal
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aswini Babu
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Jyoti Tanwar
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajender K Motiani
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Sridhar Sivasubbu
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Rajesh S Gokhale
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Vivek T Natarajan
- Pigment Cell Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India .,Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
45
|
Theophylline enhances melanogenesis in B16F10 murine melanoma cells through the activation of the MEK 1/2, and Wnt/β-catenin signaling pathways. Food Chem Toxicol 2020; 137:111165. [DOI: 10.1016/j.fct.2020.111165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 11/18/2022]
|
46
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
47
|
Takano K, Hachiya A, Murase D, Tanabe H, Kasamatsu S, Takahashi Y, Moriwaki S, Hase T. Quantitative changes in the secretion of exosomes from keratinocytes homeostatically regulate skin pigmentation in a paracrine manner. J Dermatol 2020; 47:265-276. [PMID: 31916286 DOI: 10.1111/1346-8138.15202] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
The content and distribution of melanin in the epidermis determines the wide variety of skin colors associated with ethnic/racial diversity. Although it was previously reported that qualitative changes in keratinocyte-derived exosomes regulate melanocyte pigmentation in vitro, their practical involvement, especially in skin color development in vivo, has remained unclear. To address this unexplained scientific concern, the correlation of epidermal exosomes isolated from human skin tissues with melanosomal protein expression levels was demonstrated in this study for the first time. After confirming the quantitative effect of human keratinocyte-derived exosomes on human melanocyte activation, even in the absence of ultraviolet B (UV-B) exposure, the impact of exosomes secreted from UV-B-irradiated keratinocytes on melanogenesis was consistently detected, which suggests their constitutive role in regulating cutaneous pigmentation. Additionally, both a specific exosome secretion inducer and a suppressor were consistently found to significantly control melanin synthesis in a co-culture system composed of keratinocytes and melanocytes as well as in an ex vivo skin culture system. These results suggest that quantitative changes, in addition to already known qualitative changes, in exosomes secreted from human epidermal keratinocytes homeostatically regulate melanogenic activity in a paracrine manner, which leads to skin color determination.
Collapse
Affiliation(s)
- Kei Takano
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Akira Hachiya
- Planning and Implementation, Kao Corporation, Haga, Tochigi, Japan
| | - Daiki Murase
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Hiroki Tanabe
- Skin Care Laboratories, Kao Corporation, Sumida, Tokyo, Japan
| | - Shinya Kasamatsu
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Yoshito Takahashi
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Tadashi Hase
- Core Technology Sector, Kao Corporation, Sumida, Tokyo, Japan
| |
Collapse
|
48
|
Hovland AS, Rothstein M, Simoes-Costa M. Network architecture and regulatory logic in neural crest development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1468. [PMID: 31702881 DOI: 10.1002/wsbm.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell-intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping-stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates Developmental Biology > Lineages Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Austin S Hovland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
49
|
Louphrasitthiphol P, Chauhan J, Goding CR. ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation. Pigment Cell Melanoma Res 2019; 33:112-118. [PMID: 31595650 DOI: 10.1111/pcmr.12830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Tsang TF, Chan B, Tai WCS, Huang G, Wang J, Li X, Jiang ZH, Hsiao WLW. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:153008. [PMID: 31288940 DOI: 10.1016/j.phymed.2019.153008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Melanogenesis is a physiological process of melanin production in response to UV exposure, which is modulated through multi-signaling pathways including cAMP/PKA, Wnt/β-catenin and MAPK signaling cascades. HYPOTHESIS/PURPOSE The present study aims to investigate the molecular mechanism of hyperpigmentation induced by Gynostemma pentaphyllum saponins. STUDY DESIGN/METHODS In this study, we investigated the melanogenic effects of triterpenoid saponins of Gynostemma pentaphyllum (GpS), a medicinal plant. Two mouse melanogenic cell lines B16 and B16F10 were employed for the current study. RESULTS The results showed that non-toxic doses of GpS markedly increased melanin formation in both B16 and B16F10 cells. Western blot analysis showed that GpS treatment significantly up-regulated the expression levels of the key melanogenic proteins, including tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), TRP-1 and TRP-2 in a dose-dependent manner. The phospho-CREB, which is the downstream target of PKA is also elevated upon GpS treatment. We further observed that H89, a PKA inhibitor, attenuated the GpS induced tyrosinase activity, melanin content, the expression of phospho-CREB. In addition to the cAMP/PKA signaling pathway, GpS treatment also up-regulated the β-catenin of the Wnt signaling pathway which is involved in the transcriptional activation of MITF in melanogensis. We further demonstrated that treatment with GpS markedly enhance mRNA expression of MITF, along with the downstream target molecules, TYR, TRP-1 and TRP-2. Knock-down MITF with siMITF inhibited the expression of MITF mRNA by 63%, and the melanin content was reduced 70% in the siMITF-transfected cells compared to untransfected or scramble siRNA control cells. CONCLUSION These findings demonstrated strong melanogenic activities of GpS, and the MITF is essential for the melanogenesis stimulated by GpS.
Collapse
Affiliation(s)
- Ting-Fung Tsang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Brandon Chan
- Department of Applied Biology Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William Chi-Shing Tai
- Department of Applied Biology Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jingrong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|