1
|
Pu H, Wen X, Luo D, Guo Z. Regulation of progesterone receptor expression in endometriosis, endometrial cancer, and breast cancer by estrogen, polymorphisms, transcription factors, epigenetic alterations, and ubiquitin-proteasome system. J Steroid Biochem Mol Biol 2023; 227:106199. [PMID: 36191723 DOI: 10.1016/j.jsbmb.2022.106199] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
The uterus and breasts are hormone-responsive tissues. Progesterone and estradiol regulate gonadotropin secretion, prepare the endometrium for implantation, maintain pregnancy, and regulate the differentiation of breast tissue. Dysregulation of these hormones causes endometriosis, endometrial cancer, and breast cancer, damaging the physical and mental health of women. Emerging evidence has shown that progesterone resistance or elevated progesterone activity is the primary hormonal substrate of these diseases. Since progesterone acts through its specific nuclear receptor, the abnormal expression of the progesterone receptor (PR) dysregulates progesterone function. This review discusses the regulatory mechanisms of PR expression in patients with endometriosis, and endometrial or breast cancer, including estrogen, polymorphisms, transcription factors, epigenetics, and the ubiquitin-proteasome system. (1) Estrogen promotes the expression of PRA (a PR isoform) mRNA and protein through the interaction of estrogen receptors (ERs) and Sp1 with half-ERE/Sp1 binding sites. ERs also affect the binding of Sp1 and Sp1 sites to promote the expression of PRB (another PR isoform)(2) PR polymorphisms, mainly PROGINS and + 331 G/A polymorphism, regulate PR expression by affecting DNA methylation and transcription factor binding. (3) The influence of epigenetic alterations on PR expression occurs through DNA methylation, histone modification, and microRNA. (4) As one of the main protein degradation pathways in vivo, the ubiquitin-proteasome system (UPS) regulates PR expression by participating in protein degradation. These mechanisms may provide new molecular targets for diagnosing and treating endometriosis, endometrial, and breast cancer.
Collapse
Affiliation(s)
- Huijie Pu
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - DiXian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong 518000, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Fan F, Mo H, Zhang H, Dai Z, Wang Z, Qu C, Liu F, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Ding F. HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomed Pharmacother 2022; 155:113800. [PMID: 36271576 DOI: 10.1016/j.biopha.2022.113800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
Abstract
HOX genes occupy a significant role in embryogenesis, hematopoiesis, and oncogenesis. HOXA5, a member of the A cluster of HOX genes, is essential for establishing the skeleton and normal organogenesis. As previously reported, aberrant HOXA5 expression contributes to anomalies and dysfunction of various organs, as well as affecting proliferation, differentiation, invasion, apoptosis, and other biological processes of tumor cells. Different cancers showed both downregulated and upregulated HOXA5 expression. The most common strategy for controlling HOXA5 downregulated expression may be CpG island hypermethylation. Additionally, current research demonstrated the regulatory network of HOXA5 and its connection with cancer stem cell progression and the immune microenvironment. Epigenetic modulators and upstream regulators, such as DNMTi and retinoic acid, may be beneficial for anti-tumor effects targeting HOXA5. Here, we summarize current knowledge about the HOXA5 gene, its role in various cancers, and its potential therapeutic value.
Collapse
Affiliation(s)
- Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
| | - Fengqin Ding
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China.
| |
Collapse
|
3
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Morgan R, Hunter K, Pandha HS. Downstream of the HOX genes: explaining conflicting tumour suppressor and oncogenic functions in cancer. Int J Cancer 2022; 150:1919-1932. [PMID: 35080776 PMCID: PMC9304284 DOI: 10.1002/ijc.33949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The HOX genes are a highly conserved group of transcription factors that have key roles in early development, but which are also highly expressed in most cancers. Many studies have found strong associative relationships between the expression of individual HOX genes in tumours and clinical parameters including survival. For the majority of HOX genes, high tumour expression levels seem to be associated with a worse outcome for patients, and in some cases this has been shown to result from the activation of pro-oncogenic genes and pathways. However, there are also many studies that indicate a tumour suppressor role for some HOX genes, sometimes with conclusions that contradict earlier work. In this review, we have attempted to clarify the role of HOX genes in cancer by focusing on their downstream targets as identified in studies that provide experimental evidence for their activation or repression. On this basis, the majority of HOX genes would appear to have a pro-oncogenic function, with the notable exception of HOXD10, which acts exclusively as a tumour suppressor. HOX proteins regulate a wide range of target genes involved in metastasis, cell death, proliferation, and angiogenesis, and activate key cell signalling pathways. Furthermore, for some functionally related targets, this regulation is achieved by a relatively small subgroup of HOX genes.
Collapse
Affiliation(s)
- Richard Morgan
- School of Biomedical SciencesUniversity of West LondonLondonUK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Hardev S. Pandha
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
5
|
Padam KSR, Chakrabarty S, Kabekkodu SP, Paul B, Hunter KD, Radhakrishnan R. In silico analysis of HOX-associated transcription factors as potential regulators of oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:72-79. [PMID: 33741282 DOI: 10.1016/j.oooo.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was identification of the transcription factor binding sites (TFBS) in the promoter of HOX genes and elucidation of the comprehensive interaction of transcription factors (TFs)/genes with HOX. METHODOLOGY Promoter sequences of HOXA3, HOXA5, HOXA9, HOXA10, HOXA13, HOXB5, HOXC10, HOXC12, and HOXD10 were analyzed to predict the TFBS and their targets using TRANSFAC, TRRUST, and Harmonizome. Functional analysis of the processed data sets was carried out using DAVID and GATHER gene annotation tools. A network of regulatory interactions was constructed using NetworkAnalyst and a comprehensive illustration of the TF-gene network was constructed with HOX as a central hub using the Encyclopedia of DNA Elements chromatin immunoprecipitation sequencing data. Further, the enriched network was constructed to elucidate the roles of these genes in the various pathways. RESULTS Binding sites for E2F1, HNF3α, SP3, and KLF6 were common to promoter regions of all of the HOX genes. The functional annotation and pathway analysis elucidated the regulatory activity of a distinct set of TF-genes in interaction with HOX. A P value ≤.05 and false discovery rate ≤0.01 were considered statistically significant. CONCLUSION We have confirmed that the predicted TFBSs in the HOX gene promoters function in transcriptional regulation by modulating target gene activity. TF-gene interactions are crucial to understanding oral carcinogenesis.
Collapse
Affiliation(s)
- Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
6
|
Yaiche H, Tounsi-Kettiti H, Ben Jemii N, Jaballah Gabteni A, Mezghanni N, Ardhaoui M, Fehri E, Maaloul A, Abdelhak S, Boubaker S. New insights in the clinical implication of HOXA5 as prognostic biomarker in patients with colorectal cancer. Cancer Biomark 2021; 30:213-221. [PMID: 33136093 DOI: 10.3233/cbm-201758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Homeobox A5 (HOXA5) is a member of the HOX protein family which is involved in several carcinogenesis pathways, and is dysregulated in many cancer types. However, its expression and function in human colorectal cancer (CRC) is still largely unknown. OBJECTIVE This study aimed to evaluate HOXA5 expression in Tunisian patients with CRC in order to define new potential biomarker. METHODS An immunohistochemical labeling using an HOXA5 antibody was performed on 85 formalin fixed paraffin embedded specimens from patients with CRC. Six normal colon mucosa cases were used as controls. RESULTS HOXA5 expression showed a cytoplasmic staining in both tumor and stromal/endothelial cells. Loss or low HOXA5 expression was seen in tumor cells in 74/85 cases (87.06%) and in stromal/endothelial cells, in 77/85 (90.59%). In control group of normal colon mucosa HOXA5 was moderately expressed in all the cases. The abnormal expression, was significantly associated to lymph nodes metastasis in tumor cells (p= 0.043) and in stromal/endothelial cells (p= 0.024). CONCLUSION HOXA5 immunostaining results suggest the valuable role of this protein in colorectal carcinogenesis. Moreover, the association of lymph node metastasis to HOXA5 abnormal expression underlies its crucial role in colorectal cancer dissemination and prognosis.
Collapse
Affiliation(s)
- Hamza Yaiche
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Tounsi-Kettiti
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nadia Ben Jemii
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amira Jaballah Gabteni
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Najla Mezghanni
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Monia Ardhaoui
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Emna Fehri
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Afifa Maaloul
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Hussain I, Deb P, Chini A, Obaid M, Bhan A, Ansari KI, Mishra BP, Bobzean SA, Udden SMN, Alluri PG, Das HK, Brothers RM, Perrotti LI, Mandal SS. HOXA5 Expression Is Elevated in Breast Cancer and Is Transcriptionally Regulated by Estradiol. Front Genet 2021; 11:592436. [PMID: 33384715 PMCID: PMC7770181 DOI: 10.3389/fgene.2020.592436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERβ downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.
Collapse
Affiliation(s)
- Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Paromita Deb
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Monira Obaid
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Bibhu P Mishra
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - S M Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prasanna G Alluri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hriday K Das
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, Fort Worth, TX, United States
| | - Robert Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
8
|
Chen YQ, Yang TQ, Zhou B, Yang MX, Feng HJ, Wang YL. HOXA5 overexpression promotes osteosarcoma cell apoptosis through the p53 and p38α MAPK pathway. Gene 2019; 689:18-23. [DOI: 10.1016/j.gene.2018.11.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
9
|
Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 2017; 8:95332-95345. [PMID: 29221131 PMCID: PMC5707025 DOI: 10.18632/oncotarget.20521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Homeobox A5(Hoxa5), a member of the Hox family, plays a important role in the regulation of proliferation and apoptosis in cancer cells. The dysregulation of the adipocyte apoptosis in vivo leads to obesity and metabolic disorders. However, the effects of Hoxa5 on adipocyte apoptosis are still unknown. In this study, palmitic acid (PA) significantly increased the mRNA level of Hoxa5 and triggered white adipocyte apoptosis in vivo and in vitro. Further analysis revealed that Hoxa5 enhanced the early and late apoptotic cells and fragmentation of genomic DNA in adipocytes from inguinal white adipose tissue (iWAT) of mice. Moreover, Hoxa5 aggravated white adipocyte apoptosis through mitochondrial pathway rather than endoplasmic reticulum stress (ERS)-induced or death receptor (DR)-mediated pathway. Our data also confirmed that Hoxa5 promoted mitochondrial apoptosis pathway by elevating the transcription activity of Bax and inhibiting the protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In summary, these findings revealed a novel mechanism that linked Hoxa5 to white adipocyte apoptosis, which provided some potential possibilities to prevent and treat obesity and some metabolic diseases.
Collapse
|
10
|
HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene 2016; 35:5539-5551. [PMID: 27157614 PMCID: PMC5073039 DOI: 10.1038/onc.2016.95] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/05/2023]
Abstract
Loss of HOXA5 expression occurs frequently in breast cancer and correlates with higher pathological grade and poorer disease outcome. However, how HOX proteins drive differentiation in mammalian cells is poorly understood. In this paper, we investigated cellular and molecular consequences of loss of HOXA5 in breast cancer, and the role played by retinoic acid in HOXA5 function. Analysis of global gene expression data from HOXA5-depleted MCF10A breast epithelial cells, followed by validation, pointed to a role for HOXA5 in maintaining several molecular traits typical of the epithelial lineage such as cell-cell adhesion, tight junctions and markers of differentiation. Depleting HOXA5 in immortalized MCF10A or transformed MCF10A-Kras cells reduced their CD24+/CD44lo population, enhanced self-renewal capacity and reduced expression of E-cadherin (CDH1) and CD24. In the case of MCF10A-Kras, HOXA5 loss increased branching and protrusive morphology in Matrigel, all features suggestive of epithelial to basal transition. Further, orthotopically implanted xenografts of MCF10A-Kras-scr grew as well-differentiated pseudo-luminal carcinomas, while MCF10A-Kras-shHOXA5 cells formed aggressive, poorly differentiated carcinomas. Conversely, ectopic expression of HOXA5 in aggressive SUM149 or SUM159 breast cancer cells reversed the cellular and molecular alterations observed in the HOXA5-depleted cells. Retinoic acid is a known upstream regulator of HOXA5 expression. HOXA5 depletion in MCF10A cells engineered to express doxycycline-induced shHOXA5 slowed transition of cells from a less differentiated CD24-/CD44+ to the more differentiated CD24+/CD44+ state. This transition was promoted by retinal treatment, which upregulated endogenous HOXA5 expression and caused re-expression of occludin and claudin-7 (CLDN7). Expression of CDH1 and CD24 was transcriptionally upregulated by direct binding of HOXA5 to their promoter sequences as demonstrated by luciferase and ChIP analyses. Thus, loss of HOXA5 in mammary cells leads to loss of epithelial traits, an increase in stemness and cell plasticity, and the acquisition of more aggressive phenotypes.
Collapse
|
11
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, Butti M, Takata Y, Gaddis S, Shen J, Estecio MR, Sahin AA, Aldaz CM. A Molecular Portrait of High-Grade Ductal Carcinoma In Situ. Cancer Res 2015; 75:3980-90. [PMID: 26249178 DOI: 10.1158/0008-5472.can-15-0506] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/09/2015] [Indexed: 12/30/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a noninvasive precursor lesion to invasive breast carcinoma. We still have no understanding on why only some DCIS lesions evolve to invasive cancer whereas others appear not to do so during the life span of the patient. Here, we performed full exome (tumor vs. matching normal), transcriptome, and methylome analysis of 30 pure high-grade DCIS (HG-DCIS) and 10 normal breast epithelial samples. Sixty-two percent of HG-DCIS cases displayed mutations affecting cancer driver genes or potential drivers. Mutations were observed affecting PIK3CA (21% of cases), TP53 (17%), GATA3 (7%), MLL3 (7%) and single cases of mutations affecting CDH1, MAP2K4, TBX3, NF1, ATM, and ARID1A. Significantly, 83% of lesions displayed numerous large chromosomal copy number alterations, suggesting they might precede selection of cancer driver mutations. Integrated pathway-based modeling analysis of RNA-seq data allowed us to identify two DCIS subgroups (DCIS-C1 and DCIS-C2) based on their tumor-intrinsic subtypes, proliferative, immune scores, and in the activity of specific signaling pathways. The more aggressive DCIS-C1 (highly proliferative, basal-like, or ERBB2(+)) displayed signatures characteristic of activated Treg cells (CD4(+)/CD25(+)/FOXP3(+)) and CTLA4(+)/CD86(+) complexes indicative of a tumor-associated immunosuppressive phenotype. Strikingly, all lesions showed evidence of TP53 pathway inactivation. Similarly, ncRNA and methylation profiles reproduce changes observed postinvasion. Among the most significant findings, we observed upregulation of lncRNA HOTAIR in DCIS-C1 lesions and hypermethylation of HOXA5 and SOX genes. We conclude that most HG-DCIS lesions, in spite of representing a preinvasive stage of tumor progression, displayed molecular profiles indistinguishable from invasive breast cancer.
Collapse
Affiliation(s)
- Martin C Abba
- CINIBA, School of Medical Sciences, National University of La Plata, La Plata, Argentina
| | - Ting Gong
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Jaeho Lee
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yi Zhong
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Ezequiel Lacunza
- CINIBA, School of Medical Sciences, National University of La Plata, La Plata, Argentina
| | - Matias Butti
- CINIBA, School of Medical Sciences, National University of La Plata, La Plata, Argentina
| | - Yoko Takata
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Sally Gaddis
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Jianjun Shen
- The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Marcos R Estecio
- The University of Texas MD Anderson Cancer Center, Smithville, Texas. The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul A Sahin
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Marcelo Aldaz
- The University of Texas MD Anderson Cancer Center, Smithville, Texas.
| |
Collapse
|
13
|
Lee JY, Hur H, Yun HJ, Kim Y, Yang S, Kim SI, Kim MH. HOXB5 Promotes the Proliferation and Invasion of Breast Cancer Cells. Int J Biol Sci 2015; 11:701-11. [PMID: 25999793 PMCID: PMC4440260 DOI: 10.7150/ijbs.11431] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/10/2015] [Indexed: 12/24/2022] Open
Abstract
HOX transcription factors play an important role in determining body patterning and cell fate during embryogenesis. Accumulating evidence has shown that these genes act as positive and/or negative modulators in many types of cancer, including breast cancer, in a tissue-specific manner. We have previously reported that HOXB5 is aberrantly overexpressed in breast cancer tissues and cell lines. Here, we investigated the biological roles and clinical relevance of HOXB5 in breast cancer. Immunohistochemical analysis of HOXB5 on tissue microarray (TMA) including 34 normal and 67 breast cancer specimens revealed that HOXB5 was highly expressed in cancer tissues, particularly from estrogen receptor (ER)-positive breast cancer patients. An online survival analysis confirmed the correlation between HOXB5 expression and poor distant metastasis-free survival in ER-positive, but not in ER-negative, breast cancer. In vitro studies indicated that HOXB5 silencing in ER-positive cells significantly decreased cell proliferation and anchorage-independent cell growth. In contrast, overexpression of HOXB5 displayed EMT characteristics with a greater invasive ability, higher cell proliferation and colony formation in soft agar. HOXB5 knockdown or overexpression led to changes in the expression levels of RET, ERBB2, and EGFR, but not of ESR1. In conclusion, we suggest that HOXB5 acts as a positive modulator most likely by promoting cell proliferative response and invasiveness in ER-positive breast cancer. These results would help predict prognosis of breast cancer and identify a new valuable therapeutic target.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- 1. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 plus project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ho Hur
- 2. Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang 410-719, Korea ; 3. Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyo Jung Yun
- 1. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 plus project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Yeejeong Kim
- 4. Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 410-719, Korea
| | - Seoyeon Yang
- 1. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 plus project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seung Il Kim
- 3. Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myoung Hee Kim
- 1. Department of Anatomy, Embryology Laboratory, and Brain Korea 21 plus project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
14
|
Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl) 2014; 92:811-23. [PMID: 24996520 DOI: 10.1007/s00109-014-1181-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/27/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022]
Abstract
In this review, we summarize published findings on the involvement of HOX genes in oncogenesis. HOX genes are developmental genes--they code for proteins that function as critical master regulatory transcription factors during embryogenesis. Many reports have shown that the protein products of HOX genes also play key roles in the development of cancers. Based on our review of the literature, we found that the expression of HOX genes is not only up- or downregulated in most solid tumors but also that the expression of specific HOX genes in cancers tends to differ based on tissue type and tumor site. It was also observed that HOXC family gene expression is upregulated in most solid tumor types, including colon, lung, and prostate cancer. The two HOX genes that were reported to be most commonly altered in solid tumors were HOXA9 and HOXB13. HOXA were often reported to have altered expression in breast and ovarian cancers, HOXB genes in colon cancers, HOXC genes in prostate and lung cancers, and HOXD genes in colon and breast cancers. It was found that HOX genes are also regulated at the nuclear-cytoplasmic transport level in carcinomas. Tumors arising from tissue having similar embryonic origin (endodermal), including colon, prostate, and lung, showed relatively similar HOXA and HOXB family gene expression patterns compared to breast tumors arising from mammary tissue, which originates from the ectoderm. The differential expression of HOX genes in various solid tumors thus provides an opportunity to advance our understanding of cancer development and to develop new therapeutic agents.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, 4701 Ogletown-Stanton Road, Newark, DE, 19713, USA
| | | | | |
Collapse
|
15
|
Dorfman VB, Saucedo L, Di Giorgio NP, Inserra PIF, Fraunhoffer N, Leopardo NP, Halperín J, Lux-Lantos V, Vitullo AD. Variation in Progesterone Receptors and GnRH Expression in the Hypothalamus of the Pregnant South American Plains Vizcacha, Lagostomus maximus (Mammalia, Rodentia)1. Biol Reprod 2013; 89:115. [DOI: 10.1095/biolreprod.113.107995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Zhang Y, Cheng JC, Huang HF, Leung PCK. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha. Biochem Biophys Res Commun 2013; 440:652-7. [PMID: 24099775 DOI: 10.1016/j.bbrc.2013.09.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
17
|
Asuthkar S, Stepanova V, Lebedeva T, Holterman AL, Estes N, Cines DB, Rao JS, Gondi CS. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer. Mol Biol Cell 2013; 24:2620-32. [PMID: 23864708 PMCID: PMC3756915 DOI: 10.1091/mbc.e12-04-0306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost always lethal. One of the underlying reasons for this lethality is believed to be the presence of cancer stem cells (CSC), which impart chemoresistance and promote recurrence, but the mechanisms responsible are unclear. Recently the poor prognosis of PDAC has been correlated with increased expression of urokinase plasminogen activator (uPA). In the present study we examine the role of uPA in the generation of PDAC CSC. We observe a subset of cells identifiable as a side population (SP) when sorted by flow cytometry of MIA PaCa-2 and PANC-1 pancreatic cancer cells that possess the properties of CSC. A large fraction of these SP cells are CD44 and CD24 positive, are gemcitabine resistant, possess sphere-forming ability, and exhibit increased tumorigenicity, known characteristics of cancer stemness. Increased tumorigenicity and gemcitabine resistance decrease after suppression of uPA. We observe that uPA interacts directly with transcription factors LIM homeobox-2 (Lhx2), homeobox transcription factor A5 (HOXA5), and Hey to possibly promote cancer stemness. uPA regulates Lhx2 expression by suppressing expression of miR-124 and p53 expression by repressing its promoter by inactivating HOXA5. These results demonstrate that regulation of gene transcription by uPA contributes to cancer stemness and clinical lethality.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Coradini D, Oriana S. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. CHINESE JOURNAL OF CANCER 2013; 33:51-67. [PMID: 23845141 PMCID: PMC3935006 DOI: 10.5732/cjc.013.10040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical and Community Health Sciences, Medical Statistics, Biometry and Bioinformatics, University of Milan 20133, Italy.
| | | |
Collapse
|
19
|
Moselhy SS, Kumosani TA, Kamal IH, Jalal JA, Jabaar HSA, Dalol A. Hypermethylation of P15, P16, and E-cadherin genes in ovarian cancer. Toxicol Ind Health 2013; 31:924-30. [PMID: 23572389 DOI: 10.1177/0748233713484657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both p16 and p15 proteins are inhibitors of cyclin-dependent kinases that prevent the cell going through the G1/S phase transaction. E-cadherin is a transmembrane glycoprotein that mediates calcium-dependent interactions between adjacent epithelial cells. Two groups of patients were selected: the first group suffered from epithelial serous ovarian tumors and the second group suffered from benign ovarian lesions; ovarian tissue samples from all the subjects (benign and malignant) were subjected to methylation-specific polymerase chain reaction for methylated and unmethylated alleles of the genes (E-cadherin, p15, and p16). Results obtained showed that aberrant methylation of p15 and p16 genes were detected in 64.29 and 50% of ovarian cancer patients, while E-cadherin hypermethylation was detected in 78.57% of ovarian cancer patients. Methylation of E-cadherin was significantly correlated with different stage of disease (p < 0.05). It was found that the risk of E-cadherin hypermethylation was 1.347-fold, while risk of p15 hypermethylation was 1.543-fold and p16 was 1.2-fold among patients with ovarian cancer than that among patients with benign ovarian lesions. In conclusion, Dysfunction of the cell cycle and/or the cell-cell adhesion molecule plays a role in the pathogenesis of ovarian cancer and that the analysis of the methylation of p15 and E-cadherin genes can provide clinically important evidence on which to base the treatment.
Collapse
Affiliation(s)
- Said S Moselhy
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - I H Kamal
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - J A Jalal
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia Pharmaceutical Chemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hassan S Abdul Jabaar
- Gynecology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ashraf Dalol
- Excellence center of human Genome, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Hernandez JM, Siegel EM, Riggs B, Eschrich S, Elahi A, Qu X, Ajidahun A, Berglund A, Coppola D, Grady WM, Giuliano AR, Shibata D. DNA methylation profiling across the spectrum of HPV-associated anal squamous neoplasia. PLoS One 2012; 7:e50533. [PMID: 23226306 PMCID: PMC3511539 DOI: 10.1371/journal.pone.0050533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/27/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia. METHODOLOGY/PRINCIPAL FINDINGS Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26-81) were included in the study. Using the SFP(10) LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation "hotspots" and viral integration sites. CONCLUSIONS We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.
Collapse
Affiliation(s)
- Jonathan M. Hernandez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Erin M. Siegel
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bridget Riggs
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Steven Eschrich
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Abul Elahi
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Xiaotao Qu
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Anders Berglund
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - William M. Grady
- Division of Gastroenterology, University of Washington, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anna R. Giuliano
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - David Shibata
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
21
|
Liu XH, Lu KH, Wang KM, Sun M, Zhang EB, Yang JS, Yin DD, Liu ZL, Zhou J, Liu ZJ, De W, Wang ZX. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer 2012; 12:348. [PMID: 22876840 PMCID: PMC3503718 DOI: 10.1186/1471-2407-12-348] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/03/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNAs (~22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating gene expression. Although miR-196a has been implicated in several other cancers, its role in non-small cell lung cancer (NSCLC) is unknown. The aim of the present study was to examine the expression pattern of miR-196a in NSCLC and its clinical significance, as well as its biological role in tumor progression. METHODS Expression of miR-196a was analyzed in 34 NSCLC tissues and five NSCLC cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of DNA methylation on miR-196a expression was investigated by 5-aza-2-deoxy-cytidine treatment and bisulfite sequencing. The effect of miR-196a on proliferation was evaluated by MTT and colony formation assays, and cell migration and invasion were evaluated by transwell assays. Analysis of target protein expression was determined by western blotting. Luciferase reporter plasmids were constructed to confirm the action of miR-196a on downstream target genes, including HOXA5. Differences between the results were tested for significance using Student's t-test (two-tailed). RESULTS miR-196a was highly expressed both in NSCLC samples and cell lines compared with their corresponding normal counterparts, and the expression of miR-196a may be affected by DNA demethylation. Higher expression of miR-196a in NSCLC tissues was associated with a higher clinical stage, and also correlated with NSCLC lymph-node metastasis. In vitro functional assays demonstrated that modulation of miR-196a expression affected NSCLC cell proliferation, migration and invasion. Our analysis showed that miR-196a suppressed the expression of HOXA5 both at the mRNA and protein levels, and luciferase assays confirmed that miR-196a directly bound to the 3'untranslated region of HOXA5. Knockdown of HOXA5 expression in A549 cells using RNAi was shown to promote NSCLC cell proliferation, migration and invasion. Finally, we observed an inverse correlation between HOXA5 and miR-196a expression in NSCLC tissues. CONCLUSIONS Our findings indicate that miR-196a is significantly up-regulated in NSCLC tissues, and regulates NSCLC cell proliferation, migration and invasion, partially via the down-regulation of HOXA5. Thus, miR-196a may represent a potential therapeutic target for NSCLC intervention.
Collapse
Affiliation(s)
- Xiang-hua Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
RODINI CAMILAOLIVEIRA, XAVIER FLÁVIACALÓAQUINO, PAIVA KATIÚCIABATISTASILVA, DE SOUZA SETÚBAL DESTRO MARIAFERNANDA, MOYSES RAQUELAJUB, MICHALUARTE PEDRO, CARVALHO MARCOSBRASILINO, FUKUYAMA ERICAERINA, TAJARA ELOIZAHELENA, OKAMOTO OSWALDOKEITH, NUNES FABIODAUMAS. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma. Int J Oncol 2012; 40:1180-1188. [PMID: 22227861 PMCID: PMC3584618 DOI: 10.3892/ijo.2011.1321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/11/2011] [Indexed: 12/18/2022] Open
Abstract
The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC.
Collapse
Affiliation(s)
- CAMILA OLIVEIRA RODINI
- Laboratory of Molecular Pathology, Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, 05508-000 São Paulo
| | - FLÁVIA CALÓ AQUINO XAVIER
- Laboratory of Molecular Pathology, Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, 05508-000 São Paulo
| | - KATIÚCIA BATISTA SILVA PAIVA
- Laboratory of Molecular Pathology, Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, 05508-000 São Paulo
| | - MARIA FERNANDA DE SOUZA SETÚBAL DESTRO
- Laboratory of Molecular Pathology, Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, 05508-000 São Paulo
| | - RAQUEL AJUB MOYSES
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, Cerqueira César, 01246903 São Paulo
| | - PEDRO MICHALUARTE
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo, Av. Dr. Arnaldo 455, Cerqueira César, 01246903 São Paulo
| | - MARCOS BRASILINO CARVALHO
- Head and Neck Surgery Division, Heliópolis Hospital Complex, Rua Cônego Xavier 276, Sacomã, 04231-030 São Paulo
| | - ERICA ERINA FUKUYAMA
- Department of Head and Neck Surgery, Arnaldo Vieira de Carvalho Cancer Institute, Rua Dr Cesário Motta Junior 112, Vila Buarque, 01221020 São Paulo
| | | | - ELOIZA HELENA TAJARA
- Department of Molecular Biology, São José do Rio Preto School of Medicine, Av. Brigadeiro Faria Lima 5416-Vila São Pedro, 15090-000 São José do Rio Preto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, R. do Matão, travessa 14 321, Cidade Universitária, 05508-090 São Paulo
| | - OSWALDO KEITH OKAMOTO
- Human Genome Research Center, Department of Genetics, Biosciences Institute, University of São Paulo, Rua do Matão, trav. 14 321, Cidade Universitária, 05508-090 São Paulo, Brazil
| | - FABIO DAUMAS NUNES
- Laboratory of Molecular Pathology, Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, 05508-000 São Paulo
| |
Collapse
|
23
|
Hewitt SC, Li L, Grimm SA, Chen Y, Liu L, Li Y, Bushel PR, Fargo D, Korach KS. Research resource: whole-genome estrogen receptor α binding in mouse uterine tissue revealed by ChIP-seq. Mol Endocrinol 2012; 26:887-98. [PMID: 22446102 DOI: 10.1210/me.2011-1311] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To advance understanding of mechanisms leading to biological and transcriptional endpoints related to estrogen action in the mouse uterus, we have mapped ERα and RNA polymerase II (PolII) binding sites using chromatin immunoprecipitation followed by sequencing of enriched chromatin fragments. In the absence of hormone, 5184 ERα-binding sites were apparent in the vehicle-treated ovariectomized uterine chromatin, whereas 17,240 were seen 1 h after estradiol (E₂) treatment, indicating that some sites are occupied by unliganded ERα, and that ERα binding is increased by E₂. Approximately 15% of the uterine ERα-binding sites were adjacent to (<10 kb) annotated transcription start sites, and many sites are found within genes or are found more than 100 kb distal from mapped genes; however, the density (sites per base pair) of ERα-binding sites is significantly greater adjacent to promoters. An increase in quantity of sites but no significant positional differences were seen between vehicle and E₂-treated samples in the overall locations of ERα-binding sites either distal from, adjacent to, or within genes. Analysis of the PolII data revealed the presence of poised promoter-proximal PolII on some highly up-regulated genes. Additionally, corecruitment of PolII and ERα to some distal enhancer regions was observed. A de novo motif analysis of sequences in the ERα-bound chromatin confirmed that estrogen response elements were significantly enriched. Interestingly, in areas of ERα binding without predicted estrogen response element motifs, homeodomain transcription factor-binding motifs were significantly enriched. The integration of the ERα- and PolII-binding sites from our uterine sequencing of enriched chromatin fragments data with transcriptional responses revealed in our uterine microarrays has the potential to greatly enhance our understanding of mechanisms governing estrogen response in uterine and other estrogen target tissues.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Park S, Kim D, Dan HC, Chen H, Testa JR, Cheng JQ. Identification of Akt interaction protein PHF20/TZP that transcriptionally regulates p53. J Biol Chem 2012; 287:11151-63. [PMID: 22334668 DOI: 10.1074/jbc.m111.333922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Akt regulates a diverse array of cellular functions, including cell survival, proliferation, differentiation, and metabolism. Although a number of molecules have been identified as upstream regulators and downstream targets of Akt, the mechanisms by which Akt regulates these cellular processes remain elusive. Here, we demonstrate that a novel transcription factor, PHF20/TZP (referring to Tudor and zinc finger domain containing protein), binds to Akt and induces p53 expression at the transcription level. Knockdown of PHF20 significantly reduces p53. PHF20 inhibits cell growth, DNA synthesis, and cell survival. Akt phosphorylates PHF20 at Ser(291) in vitro and in vivo, which results in its translocation from the nucleus to the cytoplasm and attenuation of PHF20 function. These data indicate that PHF20 is a substrate of Akt and plays a role in Akt cell survival/growth signaling.
Collapse
Affiliation(s)
- Sungman Park
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kim SD, Park RY, Kim YR, Kim IJ, Kang TW, Nam KI, Ahn KY, Bae CS, Kim BY, Park SS, Jung C. HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression. Anat Cell Biol 2010; 43:284-93. [PMID: 21267402 PMCID: PMC3026180 DOI: 10.5115/acb.2010.43.4.284] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/14/2010] [Accepted: 08/18/2010] [Indexed: 11/27/2022] Open
Abstract
During the prostate cancer (PCa) development and its progression into hormone independency, androgen receptor (AR) signals play a central role by triggering the regulation of target genes, including prostate-specific antigen. However, the regulation of these AR-mediated target genes is not fully understood. We have previously demonstrated a unique role of HOXB13 homeodomain protein as an AR repressor. Expression of HOXB13 was highly restricted to the prostate and its suppression dramatically increased hormone-activated AR transactivation, suggesting that prostate-specific HOXB13 was a highly potent transcriptional regulator. In this report, we demonstrated the action mechanism of HOXB13 as an AR repressor. HOXB13 suppressed androgen-stimulated AR activity by interacting with AR. HOXB13 did neither bind to AR responsive elements nor disturb nuclear translocation of AR in response to androgen. In PCa specimen, we also observed mutual expression pattern of HOXB13 and AR. These results suggest that HOXB13 not only serve as a DNA-bound transcription factor but play an important role as an AR-interacting repressor to modulate hormone-activated androgen receptor signals. Further extensive studies will uncover a novel mechanism for regulating AR-signaling pathway to lead to expose new role of HOXB13 as a non-DNA-binding transcriptional repressor.
Collapse
Affiliation(s)
- Sin Do Kim
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ozaki T, Nakagawara A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2010; 2011:603925. [PMID: 21188172 PMCID: PMC3004423 DOI: 10.1155/2011/603925] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/07/2010] [Indexed: 01/16/2023] Open
Abstract
p53 is one of the most studied tumor suppressors in the cancer research field. Of note, over 50% of human tumors carry loss of function mutations, and thus p53 has been considered to be a classical Knudson-type tumor suppressor. From the functional point of view, p53 is a nuclear transcription factor to transactivate a variety of its target genes implicated in the induction of cell cycle arrest, DNA repair, and apoptotic cell death. In response to cellular stresses such as DNA damage, p53 is activated and promotes cell cycle arrest followed by the replacement of DNA lesions and/or apoptotic cell death. Therefore, p53 is able to maintain the genomic integrity to prevent the accumulation of genetic alterations, and thus stands at a crossroad between cell survival and cell death. In this paper, we describe a variety of molecular mechanisms behind the regulation of p53.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-Tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Akira Nakagawara
- Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| |
Collapse
|
27
|
Sifuentes-Romero I, Merchant-Larios H, García-Gasca A. Hox gene expression in the embryonic genital system of the sea turtle Lepidochelys olivacea (Eschscholt, 1829), a species with temperature-dependent sex determination. Gene Expr Patterns 2010; 10:290-8. [DOI: 10.1016/j.gep.2010.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/03/2010] [Accepted: 06/10/2010] [Indexed: 11/30/2022]
|
28
|
Okamoto J, Hirata T, Chen Z, Zhou HM, Mikami I, Li H, Yagui-Beltran A, Beltran A, Johansson M, Coussens LM, Clement G, Shi Y, Zhang F, Koizumi K, Shimizu K, Jablons D, He B. EMX2 is epigenetically silenced and suppresses growth in human lung cancer. Oncogene 2010; 29:5969-75. [PMID: 20697358 DOI: 10.1038/onc.2010.330] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lung cancer is a common cancer and the leading cause of cancer-related death worldwide. Aberrant activation of WNT signaling is implicated in lung carcinogenesis. EMX2, a human homologue of the Drosophila empty spiracles gene is a homeodomain-containing transcription factor. The function of EMX2 has been linked to the WNT signaling pathway during embryonic patterning in mice. However, little is known about the role of EMX2 in human tumorigenesis. In this study, we found that EMX2 was dramatically downregulated in lung cancer tissue samples and this downregulation was associated with methylation of the EMX2 promoter. Restoration of EMX2 expression in lung cancer cells lacking endogenous EMX2 expression suppressed cell proliferation and invasive phenotypes, inhibited canonical WNT signaling, and sensitized lung cancer cells to the treatment of the chemo cytotoxic drug cisplatin. On the other hand, knockdown of EMX2 expression in lung cancer cells expressing endogenous EMX2 promoted cell proliferation, invasive phenotypes and canonical WNT signaling. Taken together, our study suggests that EMX2 may have important roles as a novel suppressor in human lung cancer.
Collapse
Affiliation(s)
- J Okamoto
- Department of Surgery, University of California, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. ACTA ACUST UNITED AC 2010; 22:369-81. [PMID: 19890494 DOI: 10.1358/dnp.2009.22.7.1405072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as a reversible and heritable change in gene expression that is not accompanied by alteration in gene sequence. DNA methylation and histone modifications are the two major epigenetic changes that influence gene expression in cancer. The interaction between methylation and histone modification is intricately orchestrated by the formation of repressor complexes. Several genes involved in proliferation, antiapoptosis, invasion and metastasis have been shown to be methylated in various malignant and premalignant breast neoplasms. The histone deacetylase inhibitors (HDi) have emerged as an important class of drugs to be used synergistically with other systemic therapies in the treatment of breast cancer. Since epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer.
Collapse
Affiliation(s)
- M B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, USA
| | | |
Collapse
|
30
|
Kim DS, Kim MJ, Lee JY, Lee SM, Choi JY, Yoon GS, Na YK, Hong HS, Kim SG, Choi JE, Lee SY, Park JY. Epigenetic inactivation of Homeobox A5 gene in nonsmall cell lung cancer and its relationship with clinicopathological features. Mol Carcinog 2009; 48:1109-15. [PMID: 19554572 DOI: 10.1002/mc.20561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Promoter methylation is an important mechanism in gene silencing and is a key epigenetic event in cancer development. Homeobox A5 (HOXA5) is a master regulator of the morphogenesis and cell differentiation to be implicated as a tumor suppressor gene in breast cancer, but its role in lung cancer is still unknown. In this study, we have investigated the methylation status of the promoter region of the HOXA5 gene in nonsmall cell lung cancers (NSCLCs) using nested and standard methylation-specific PCR (MSP) and correlated the methylation status with clinicopathological features. With standard MSP analysis, HOXA5 methylation were found in 113 (81.3%) of 139 NSCLCs and 72 (51.8%) in their corresponding nonmalignant lung tissues. RT-PCR and immunohistochemical analysis showed that HOXA5 methylation correlates with gene expression. Moreover, in the patients with stage I disease, HOXA5 methylation was more frequent in smokers than in never-smokes (P = 0.01). There was no influence of HOXA5 methylation on survival in all NSCLCs or at stages II-IV. However, in the patients with stage I disease, HOXA5 methylation was associated with a borderline significantly worse survival (P = 0.09). These findings suggest that downregulation of the HOXA5 gene by aberrant promoter methylation occurs in the vast majority of NSCLCs and that it may play a role in the pathogenesis of NSCLC. Additional studies with larger sample sizes are required to evaluate the prognostic value of HOXA5 methylation in patients with stage I NSCLC.
Collapse
Affiliation(s)
- Dong-Sun Kim
- Department of Anatomy, Kyungpook National University, Daegu 702-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, Rosen JM. Transcriptional Profiling of Mammary Gland Side Population Cells. Stem Cells 2009; 24:1065-74. [PMID: 16282442 DOI: 10.1634/stemcells.2005-0375] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Similar to the bone marrow, the mammary gland contains a distinct population of Hoechst-effluxing side population cells, mammary gland side population cells (MG-SPs). To better characterize MG-SPs, their microarray gene profiles were compared to the remaining cells, which retain Hoechst dye (mammary gland non-side population cells [MG-NSPs]). For analysis, Gene Ontology (GO) that describes genes in terms of biological processes and Ontology Traverser (OT) that performs enrichment analysis were used. OT showed that MG-SP-specific genes were enriched in the GO categories of cell cycle regulation and checkpoints, multidrug-resistant transporters, organogenesis, and vasculogenesis. The MG-NSP-upregulated genes were enriched in the GO category of cellular organization and biogenesis, which includes basal epithelial markers, p63, smooth muscle actin, myosin, alpha6 integrin, cytokeratin (CK) 14, and luminal markers CK8 and CD24. Additional studies showed that a higher percentage of MG-SPs exist in the G1 phase of the cell cycle compared with the MG-NSPs. G1 cell cycle block of MG-SPs may be explained by higher expression of cell cycle-negative regulatory genes such as transforming growth factor-beta2, insulin-like growth factor binding protein-5, P18(INK4C), and wingless-5a (Wnt-5a). Accordingly, a smaller percentage of MG-SPs expressed nuclear beta-catenin, possibly as a consequence of the higher expression of Wnt-5a. In conclusion, microarray gene profiling suggests that MG-SPs are a lineage-deficient mammary gland subpopulation expressing key genes involved in cell cycle regulation, development, and angiogenesis.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Molecular and Cellular Biology, DeBakey Building, M638a, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA
| | | | | | | | | | | |
Collapse
|
32
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
33
|
Bagadi SAR, Prasad CP, Kaur J, Srivastava A, Prashad R, Gupta SD, Ralhan R. Clinical significance of promoter hypermethylation of RASSF1A, RARbeta2, BRCA1 and HOXA5 in breast cancers of Indian patients. Life Sci 2008; 82:1288-92. [PMID: 18538349 DOI: 10.1016/j.lfs.2008.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 04/19/2008] [Accepted: 04/25/2008] [Indexed: 12/31/2022]
Abstract
Promoter hypermethylation of genes is implicated in the pathogenesis of many cancers, including breast cancer. Herein, we analyzed the promoter methylation status of a panel of critical growth regulatory genes, RASSF1A, RARbeta2, BRCA1 and HOXA5, in 54 breast cancers and 5 distant normal breast tissues of Indian patients. The methylation data were correlated with clinicopathological characteristics and hormone receptor status to determine the impact of methylation in breast carcinogenesis. Promoter hypermethylation of RASSF1A was observed in 39/54 (72%), HOXA5 in 36/54 (67%), BRCA1 in 15/54 (28%) and RARbeta2 in 8/54 (15%) breast cancers. Our most significant findings were the association of RASSF1A methylation with nodal metastasis (p=0.05); and RARbeta2 methylation with age (all tumors in patients in the older age group were methylated, p=0.04). Further, the interactions between DNA methylation and hormone receptor biology in breast cancer cells are beginning to be clearly understood. In this context the association of HOXA5 methylation with loss of ERalpha (p=0.009) is noteworthy.
Collapse
|
34
|
Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A, Kizaki H. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 2007; 283:3979-87. [PMID: 18056705 DOI: 10.1074/jbc.m705232200] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53-dependent stress response pathways play an important role in cell fate determination. In this study, we have found that glucose depletion promotes the phosphorylation of AMP-activated protein kinase catalytic subunit alpha (AMPKalpha) in association with a significant up-regulation of p53, thereby inducing p53-dependent apoptosis in vivo and in vitro. Thymocytes prepared from glucose-depleted wild-type mice but not from p53-deficient mice underwent apoptosis, which was accompanied by a remarkable phosphorylation of AMPKalpha and a significant induction of p53 as well as pro-apoptotic Bax. Similar results were also obtained in human osteosarcoma-derived U2OS cells bearing wild-type p53 following glucose starvation. Of note, glucose deprivation led to a significant accumulation of p53 phosphorylated at Ser-46, but not at Ser-15 and Ser-20, and a transcriptional induction of p53 as well as proapoptotic p53 AIP1. Small interference RNA-mediated knockdown of p53 caused an inhibition of apoptosis following glucose depletion. Additionally, apoptosis triggered by glucose deprivation was markedly impaired by small interference RNA-mediated depletion of AMPKalpha. Under our experimental conditions, down-regulation of AMPKalpha caused an attenuation of p53 accumulation and its phosphorylation at Ser-46. In support of these observations, enforced expression of AMPKalpha led to apoptosis and resulted in an induction of p53 at protein and mRNA levels. Furthermore, p53 promoter region responded to AMPKalpha and glucose deprivation as judged by luciferase reporter assay. Taken together, our present findings suggest that AMPK-dependent transcriptional induction and phosphorylation of p53 at Ser-46 play a crucial role in the induction of apoptosis under carbon source depletion.
Collapse
Affiliation(s)
- Rintaro Okoshi
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen H, Zhang H, Lee J, Liang X, Wu X, Zhu T, Lo PK, Zhang X, Sukumar S. HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition. Cancer Res 2007; 67:8007-13. [PMID: 17804711 DOI: 10.1158/0008-5472.can-07-1405] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The promise of retinoids as chemopreventive agents in breast cancer is based on the differentiation and apoptosis induced upon their binding to the retinoic acid (RA) receptor beta (RARbeta). We have previously shown that HOXA5 induces apoptosis in breast cancer cells. In this study, we investigated whether RA/RARbeta and HOXA5 actions intersect to induce apoptosis and differentiation in breast cancer cells. We found that HOXA5 expression can be induced by RA only in RARbeta-positive breast cancer cells. We have, for the first time, identified the RA response element in HOXA5, which was found to be located in the 3' end of the gene. Chromatin immunoprecipitation assays showed that RARbeta binds directly to this region in vivo. Overexpression of RARbeta strongly enhances RA responsiveness, and knocking down RARbeta expression abolishes RA-mediated induction of HOXA5 expression in breast cancer cells. In addition, there is coordinated loss of both HOXA5 and RARbeta expression during neoplastic transformation and progression in the breast epithelial cell model, MCF10A. Knockdown of HOXA5 expression partially abrogates retinoid-induced apoptosis and promotes cell survival upon RA treatment. These results strongly suggest that HOXA5 acts directly downstream of RARbeta and may contribute to retinoid-induced anticancer and chemopreventive effects.
Collapse
Affiliation(s)
- Hexin Chen
- The Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen Y, Leal AD, Patel S, Gorski DH. The homeobox gene GAX activates p21WAF1/CIP1 expression in vascular endothelial cells through direct interaction with upstream AT-rich sequences. J Biol Chem 2007; 282:507-17. [PMID: 17074759 PMCID: PMC1865102 DOI: 10.1074/jbc.m606604200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumors secrete pro-angiogenic factors to induce the ingrowth of blood vessels from the surrounding stroma, the end targets of which are vascular endothelial cells (ECs). The homeobox gene GAX inhibits angiogenesis and induces p21(WAF1/CIP1) expression in vascular ECs. To elucidate the mechanism through which GAX activates p21(WAF1/CIP1) expression, we constructed GAX cDNAs with deletions of the N-terminal domain, the homeodomain, or the C-terminal domain and then assessed these constructs for their ability to activate p21(WAF1/CIP1). There was an absolute requirement for the homeodomain, whereas deleting the C-terminal domain decreased but did not abolish transactivation of the p21(WAF1/CIP1) promoter by GAX. Deleting the N-terminal domain did abolish transactivation. Next, we performed chromatin immunoprecipitation and found, approximately 15 kb upstream of the p21(WAF1/CIP1) ATG codon, an ATTA-containing GAX-binding site (designated A6) with a sequence similar to that of other homeodomain-binding sites. GAX was able to bind to A6 in a homeodomain-dependent manner and thereby activate the expression of a reporter gene coupled to this sequence, and this activation was abolished by mutating specific residues in this sequence. On the basis of the sequence of A6, we were then able to locate other ATTA-containing sequences that also bound GAX and activated transcription in reporter constructs. Finally, we found that the ability of these GAX deletions to induce G(0)/G(1) arrest correlates with their ability to transactivate the p21(WAF1/CIP1) promoter. We conclude that GAX activates p21(WAF1/CIP1) through multiple upstream AT-rich sequences. Given the multiple biological activities of GAX in regulating EC function, identification of a putative GAX-binding site will allow the study of how GAX activates or represses other downstream targets to inhibit angiogenesis.
Collapse
Affiliation(s)
- Yun Chen
- From the Division of Surgical Oncology, UMDNJ-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 088901
| | - Alejandro D. Leal
- From the Division of Surgical Oncology, UMDNJ-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 088901
| | - Sejal Patel
- From the Division of Surgical Oncology, UMDNJ-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 088901
| | - David H. Gorski
- From the Division of Surgical Oncology, UMDNJ-Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, NJ 088901
| |
Collapse
|
37
|
Garin E, Lemieux M, Coulombe Y, Robinson GW, Jeannotte L. Stromal Hoxa5 function controls the growth and differentiation of mammary alveolar epithelium. Dev Dyn 2006; 235:1858-71. [PMID: 16607641 DOI: 10.1002/dvdy.20822] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent progress has enlightened the involvement of Hox genes in organogenesis. Several Hox genes are expressed in normal and neoplastic mammary glands. Using Hoxa5 mutant mice, we showed that Hoxa5-/- females present nursing defects. Characterization of the Hoxa5-/- mammary gland phenotype reveals changes in proliferation and differentiation of the epithelium of nulliparous and pregnant Hoxa5-/- females that precede the abnormal secretory activity at parturition. These defects likely underlie the incapacity of Hoxa5-/- dams to properly feed their pups. Hoxa5 expression is restricted to the mammary stroma at specific stages of mammary gland development. The loss of Hoxa5 function causes accelerated lobuloalveolar epithelium development, a phenotype that can be rescued upon grafting of mutant mammary epithelium into wild-type fat pads. Conversely, reciprocal grafting experiments demonstrate that Hoxa5-/- stroma cannot support normal proliferation of wild-type mammary epithelium. These data establish the essential contribution of Hoxa5 to mammary epithelium instruction by means of mesenchymal-epithelial crosstalk.
Collapse
Affiliation(s)
- Elisabeth Garin
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
38
|
Duriseti S, Winnard PT, Mironchik Y, Vesuna F, Raman A, Raman V. HOXA5 regulates hMLH1 expression in breast cancer cells. Neoplasia 2006; 8:250-8. [PMID: 16756717 PMCID: PMC1600677 DOI: 10.1593/neo.05766] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Homeobox protein HOXA5 functions as a transcriptional factor for genes that are not only involved in segmentation identity but also in cell differentiation. Although HOXA5 has been shown to regulate the expression of the tumor-suppressor protein p53, its role in breast tumorigenesis is not well understood. Using yeast as a model system, we now demonstrate that overexpression of HOXA5 in yeast can be used to identify downstream target genes that are homologous in humans. One such identified gene was that of the mismatch repair pathway component MutL homolog 1. Analysis of the promoter region of the gene for human MutL homolog 1 (hMLH1) displayed several putative HOXA5-binding sites. In transient transfection experiments, the overexpression of HOXA5 transactivated the hMLH1 promoter-reporter construct. In addition, chromatin immunoprecipitation assay using a human breast cancer cell line MCF-7 demonstrated that HOXA5 binds to the hMLH1 promoter in vivo. Furthermore, we demonstrate that, in the presence of HOXA5, there is an increase in in vivo repair activity in MCF-7 cells. Taken together, our results indicate that HOXA5 is a transcriptional regulator of hMLH1 in breast cancer cells.
Collapse
Affiliation(s)
- Sai Duriseti
- Department of Radiology, Johns Hopkins University School of Medicine, 340 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Paul T Winnard
- Department of Radiology, Johns Hopkins University School of Medicine, 340 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Yelena Mironchik
- Department of Radiology, Johns Hopkins University School of Medicine, 340 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Farhad Vesuna
- Department of Radiology, Johns Hopkins University School of Medicine, 340 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Ana Raman
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD 21250, USA
| | - Venu Raman
- Department of Radiology, Johns Hopkins University School of Medicine, 340 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
39
|
Wang S, El-Deiry WS. p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res 2006; 66:6982-9. [PMID: 16849542 DOI: 10.1158/0008-5472.can-06-0511] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas the p53 tumor suppressor protein plays a central role in cellular checkpoints that respond to damage or stress to prevent tumorigenesis, the transcriptional control of the p53 gene has remained unclear. We show that chemotherapeutic agents induce p53 transcription and that p73 or p53 transactivates endogenous p53 expression through direct binding to the p53 promoter. Silencing of p53 or p73 by RNA interference significantly suppresses p53 transcription under physiologic conditions or in response to cellular stress. Mutational analysis of the human p53 promoter localized a p53 DNA-binding site, which confers p53- or p73-dependent p53 promoter activation. Importantly, impaired p53-mediated autoregulation of p53 transcription by inducible-interfering RNA results in aberrant cell cycle regulation and suppression of p53-mediated apoptosis. Thus, a positive feedback loop regulates human p53 expression and involves p73 and p53. Disruption of p53 transcription contributes to defective checkpoint control.
Collapse
Affiliation(s)
- Shulin Wang
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Department of Medicine (Hematology/Oncology), University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
40
|
Svingen T, Tonissen KF. Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb) 2006; 97:88-96. [PMID: 16721389 DOI: 10.1038/sj.hdy.6800847] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain-DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.
Collapse
Affiliation(s)
- T Svingen
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia
| | | |
Collapse
|
41
|
Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N. A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol 2006; 3:240-52. [PMID: 16379594 DOI: 10.1089/lrb.2005.3.240] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Homeobox (Hox) genes are transcriptional regulators which modulate embryonic morphogenesis and pathological tissue remodeling in adults via regulation of genes associated with cell-cell or cell extracellular matrix (ECM) interactions. We previously showed that while Hox 3 genes promote angiogenesis, Hox D10 inhibits this process. METHODS AND RESULTS Here we show that another Hox family gene, Hox A5, also blocks angiogenesis but accomplishes this by targeting different downstream genes than Hox D10. Sustained expression of Hox A5 leads to down regulation of many pro-angiogenic genes including VEGFR2, ephrin A1, Hif1alpha and COX-2. In addition, Hox A5 also upregulates expression of anti-angiogenic genes including Thrombospondin-2. Furthermore, we show that while Hox A5 mRNA is expressed in quiescent endothelial cells (EC), its expression is diminished or absent in active angiogenic EC found in association with breast tumors or in proliferating infantile hemangiomas. CONCLUSIONS Together our results suggest that restoring Hox A5 expression may provide a novel means to limit breast tumor growth or expansion of hemangiomas.
Collapse
Affiliation(s)
- Kim Rhoads
- Surgical Research Laboratory, Dept of Surgery, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sauter CN, McDermid RL, Weinberg AL, Greco TL, Xu X, Murdoch FE, Fritsch MK. Differentiation of murine embryonic stem cells induces progesterone receptor gene expression. Exp Cell Res 2005; 311:251-64. [PMID: 16223481 PMCID: PMC1350973 DOI: 10.1016/j.yexcr.2005.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 08/05/2005] [Accepted: 09/12/2005] [Indexed: 12/18/2022]
Abstract
The role of steroid hormone receptors in very early embryonic development remains unknown. Clearly, expression during organogenesis is important for tissue-specific development. However, progesterone receptor (PR) and estrogen receptors (ERalpha, ERbeta) are expressed during early development through the blastocyst stage in mice and other species, and yet are not essential for embryonic viability. We have utilized the mouse embryonic stem (mES) cell model to investigate the regulated expression of these receptors during differentiation. Surprisingly, one of the earliest changes in gene expression in response to a differentiation signal observed is PR gene induction. It parallels the time course of expression for the patterning genes Hoxb1 and Hoxa5. Unexpectedly, PR gene expression is not regulated in an estrogen-dependent manner by endogenous ERs or by transiently overexpressed ERalpha. Our results suggest a potentially novel mechanism of PR gene regulation within mES cells compared to adult tissues and the possibility of unique targets of PR action during early mES cell differentiation.
Collapse
Affiliation(s)
- Carley N. Sauter
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
| | - Rebecca L. McDermid
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
| | - Amy L. Weinberg
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
| | - Tamara L. Greco
- Biology Department, Eastern Michigan University, Ypsilanti, Michigan 48197 USA
| | - Xiaojie Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
| | - Fern E. Murdoch
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
| | - Michael K. Fritsch
- Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, Madison, Wisconsin 53706 USA
- *Address all correspondence to: Michael K. Fritsch MD, PhD, Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, 1300 University Ave., MSC 5250, Madison, WI 53706 USA, Telephone: 608-263-5351, FAX: 608-265-3301, E-mail:
| |
Collapse
|
43
|
Pawitan Y, Bjöhle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S, Liu ET, Miller L, Nordgren H, Ploner A, Sandelin K, Shaw PM, Smeds J, Skoog L, Wedrén S, Bergh J. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7:R953-64. [PMID: 16280042 PMCID: PMC1410752 DOI: 10.1186/bcr1325] [Citation(s) in RCA: 582] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/19/2005] [Accepted: 09/02/2005] [Indexed: 11/17/2022] Open
Abstract
Introduction Adjuvant breast cancer therapy significantly improves survival, but overtreatment and undertreatment are major problems. Breast cancer expression profiling has so far mainly been used to identify women with a poor prognosis as candidates for adjuvant therapy but without demonstrated value for therapy prediction. Methods We obtained the gene expression profiles of 159 population-derived breast cancer patients, and used hierarchical clustering to identify the signature associated with prognosis and impact of adjuvant therapies, defined as distant metastasis or death within 5 years. Independent datasets of 76 treated population-derived Swedish patients, 135 untreated population-derived Swedish patients and 78 Dutch patients were used for validation. The inclusion and exclusion criteria for the studies of population-derived Swedish patients were defined. Results Among the 159 patients, a subset of 64 genes was found to give an optimal separation of patients with good and poor outcomes. Hierarchical clustering revealed three subgroups: patients who did well with therapy, patients who did well without therapy, and patients that failed to benefit from given therapy. The expression profile gave significantly better prognostication (odds ratio, 4.19; P = 0.007) (breast cancer end-points odds ratio, 10.64) compared with the Elston–Ellis histological grading (odds ratio of grade 2 vs 1 and grade 3 vs 1, 2.81 and 3.32 respectively; P = 0.24 and 0.16), tumor stage (odds ratio of stage 2 vs 1 and stage 3 vs 1, 1.11 and 1.28; P = 0.83 and 0.68) and age (odds ratio, 0.11; P = 0.55). The risk groups were consistent and validated in the independent Swedish and Dutch data sets used with 211 and 78 patients, respectively. Conclusion We have identified discriminatory gene expression signatures working both on untreated and systematically treated primary breast cancer patients with the potential to spare them from adjuvant therapy.
Collapse
Affiliation(s)
- Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Judith Bjöhle
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Anna-Lena Borg
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Suzanne Egyhazi
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xia Han
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Lars Holmberg
- Regional Oncological Center, Uppsala University Hospital, Uppsala, Sweden
| | - Fei Huang
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Sigrid Klaar
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | | | - Hans Nordgren
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Sandelin
- Department of Surgery Sciences, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Peter M Shaw
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Johanna Smeds
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Lambert Skoog
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Sara Wedrén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Radiumhemmet, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Herein we focus on recent studies of knock out mice that demonstrate a function for the clustered homeobox (Hox) genes in normal hematopoiesis, on papers that point to their general involvement in human leukemia, and discuss the advances in the understanding of the mechanisms underlying their role in these processes. RECENT FINDINGS Expression analysis and gain- or loss- of function studies have shown that Hox play an important role in the regulation of early stages of hematopoiesis, including the self-renewal of hematopoietic stem cells (HSCs)/early progenitors. In the area of leukemia, numerous models of murine leukemia have demonstrated a role for Hox in the pathobiology of the disease. Moreover, the identification of multiple Hox genes as partners of chromosomal translocations and the observed global deregulation of Hox genes and cofactors demonstrated by gene profiling of cells from leukemic patients, have unequivocally shown a major function for Hox genes and cofactors in a wide spectrum of human leukemia. SUMMARY The identification of Hox genes as HSC regulators has been exploited to develop strategies to efficiently expand HSCs ex vivo, a key step to the success of therapies based on HSC transplantation and the understanding of mechanisms underlying HSC regulation. As leukemia is the result of deregulation of normal HSC development, the elucidation of the role of Hox in the pathobiology of the disease is helping to understand how HSCs self-renew and differentiate, and moreover, should facilitate the development of strategies for the management of leukemia.
Collapse
Affiliation(s)
- Carolina Abramovich
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Chen H, Rubin E, Zhang H, Chung S, Jie CC, Garrett E, Biswal S, Sukumar S. Identification of transcriptional targets of HOXA5. J Biol Chem 2005; 280:19373-80. [PMID: 15757903 DOI: 10.1074/jbc.m413528200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The homeobox gene HOXA5 encodes a transcription factor that has been shown to play important roles in embryogenesis, hematopoiesis, and tumorigenesis. In order to decipher downstream signaling pathways of HOXA5, we utilized oligonucleotide microarray analysis to identify genes that are differentially expressed in HOXA5-induced cells compared with uninduced cells. Comparative analysis of gene expression changes after 9 h of HOXA5 induction in Hs578T breast cancer cells identified 306 genes whose expression was modulated at least 2-fold. Ten of these 306 genes were also up-regulated by at least 2-fold at 6 h post-induction. The expression of all of these 10 genes was confirmed by semiquantitative reverse transcription-PCR. Among these 10 genes, which are most likely to be direct targets of HOXA5, we initiated an investigation into the pleiotrophin gene by first cloning its promoter. Transient transfection assays indicated that HOXA5 can specifically activate the pleiotrophin promoter. Promoter deletion, chromatin immunoprecipitation assay, and gel-shift assays were performed to show that HOXA5 can directly bind to one binding site on the pleiotrophin promoter. These data strongly suggest that microarray analysis can successfully identify many potential direct downstream genes of HOXA5. Further functional analysis of these targets will allow us to better understand the diverse functions of HOXA5 in embryonic development and tumorigenesis.
Collapse
Affiliation(s)
- Hexin Chen
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 2005; 64:9185-92. [PMID: 15604291 DOI: 10.1158/0008-5472.can-04-1330] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of HOXB13 was limited to AR-expressing prostate cells. Reporter transcription assay demonstrated that HOXB13 significantly suppressed hormone-mediated AR activity in a dose-responsive manner, and suppression was specific to AR with which HOXB13 physically interacts. Overexpression of HOXB13 further down-regulated the androgen-stimulated expression of prostate-specific antigen, and suppression of endogenous HOXB13 stimulated transactivation of AR. Functionally, HOXB13 suppressed growth of LNCaP prostate cancer cells, which could be counteracted by additional hormone-activated AR. On the other hand, the growth-suppressive function of HOXB13 in AR-negative CV-1 cells was not affected by AR. These results suggest that HOXB13 functions as an AR repressor to modulate the complex AR signaling and subsequent growth regulation of prostate cancer cells. In addition to the loss of HOXB13 expression, maintaining AR may be an important step for prostate cancer cells to tolerate the suppressor function of HOXB13. Altogether, our data present a novel mechanism for the HOXB13-mediated repression of AR signaling, which can be interpreted to a growth-suppressive event.
Collapse
Affiliation(s)
- Chaeyong Jung
- Department of Urology, Walther Oncology Center, Indiana University, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
47
|
Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C. HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem 2004; 279:39895-904. [PMID: 15269212 DOI: 10.1074/jbc.m404132200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although HOXB6 and other HOX genes have previously been associated with hematopoiesis and leukemias, the precise mechanism of action of their protein products remains unclear. Here we use a biological model in which HOXB6 represses alpha- and gamma-globin mRNA levels to perform a structure/function analysis for this homeodomain protein. HOXB6 protein represses globin transcript levels in stably transfected K562 cells in a DNA-binding dependent fashion. However, the capacity to form cooperative DNA-binding complexes with the PBX co-factor protein is not required for HOXB6 biological activity. Neither the conserved extreme N-terminal region, a polyglutamic acid region at the protein C terminus, nor the Ser(214) CKII phosphorylation site was required for DNA binding or activity in this model. We have previously reported that HOX proteins can inhibit CREB-binding protein (CBP)-histone acetyltransferase-mediated potentiation of reporter gene transcription. We now show that endogenous CBP is co-precipitated with exogenous HOXB6 from nuclear and cytoplasmic compartments of transfected K562 cells. Furthermore, endogenous CBP co-precipitates with endogenous HOXB6 in day 14.5 murine fetal liver cells during active globin gene expression in this tissue. The CBP interaction motif was localized to the homeodomain but does not require the highly conserved helix 3. Our data suggest that the homeodomain contains most or all of the important structures required for HOXB6 activity in blood cells.
Collapse
Affiliation(s)
- Weifang Shen
- Department of Medicine, University of California Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | |
Collapse
|
48
|
Furman C, Rundlöf AK, Larigauderie G, Jaye M, Bricca G, Copin C, Kandoussi AM, Fruchart JC, Arnér ESJ, Rouis M. Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins. Free Radic Biol Med 2004; 37:71-85. [PMID: 15183196 DOI: 10.1016/j.freeradbiomed.2004.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 03/01/2004] [Accepted: 04/16/2004] [Indexed: 12/17/2022]
Abstract
Uptake of modified low-density lipoproteins (LDLs) by macrophages in the arterial wall is an important event in atherogenesis. Indeed, oxidatively modified LDLs (oxLDLs) are known to affect various cellular processes by modulating oxidation-sensitive signaling pathways. Here we found that the ubiquitous 55 kDa selenoprotein thioredoxin reductase 1 (TrxR1), which is a key enzyme for cellular redox control and antioxidant defense, was upregulated in human atherosclerotic plaques and expressed in foam cells. Using reverse transcription polymerase chain reaction analysis, we also found that oxLDLs, but not native LDLs (nLDLs), dose-dependently increased TrxR1 mRNA in human monocyte-derived macrophages (HMDMs). This stimulating effect was specific for oxLDLs, as pro-inflammatory factors, such as lipopolysaccharides (LPSs), interleukin-1beta (IL-1beta), interleukin-6 (Il-6), and tumor necrosis factor alpha (TNFalpha), under the same conditions, failed to induce TrxR1 mRNA levels to the same extent. Moreover, phorbol ester-differentiated THP-1 cells or HMDMs transiently transfected with TrxR1 promoter fragments linked to a luciferase reporter gene allowed identification of a defined promoter region as specifically responding to the phospholipid component of oxLDLs (p <.05 vs. phospholipid component of nLDLs). Gel mobility shift analyses identified a short 40-nucleotide stretch of the promoter carrying AP-1 and HoxA5 consensus motifs that responded with an altered shift pattern in THP-1 cells treated with oxLDLs, however, without evident involvement of either the Fos, Jun, Nrf2 or HoxA5 transcription factors.
Collapse
Affiliation(s)
- C Furman
- INSERM U-545, and Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim JJ, Fazleabas AT. Uterine receptivity and implantation: the regulation and action of insulin-like growth factor binding protein-1 (IGFBP-1), HOXA10 and forkhead transcription factor-1 (FOXO-1) in the baboon endometrium. Reprod Biol Endocrinol 2004; 2:34. [PMID: 15200677 PMCID: PMC446211 DOI: 10.1186/1477-7827-2-34] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/16/2004] [Indexed: 01/08/2023] Open
Abstract
In primates, the phase of the menstrual cycle when the uterus becomes receptive is initially dependent on estrogen and progesterone. Further morphological and biochemical changes are induced as a result of biochemical signals between the embryo and the maternal endometrium. Blastocyst implantation in the baboon usually occurs between 8 and 10 days post ovulation and is similar to that described for the rhesus macaque. In the baboon, when chorionic gonadotropin is infused in a manner that mimics blastocyst transit, this has physiological effects on the three major cell types in the uterine endometrium. The luminal epithelium undergoes endoreplication and distinct epithelial plaques are evident. The glandular epithelium responds by inducing transcriptional and post-translational modifications in the major secretory product, glycodelin. The stromal fibroblasts initiate their differentiation process into a decidual phenotype and are characterized by the expression of actin filaments. Decidualization, is the major change that occurs in the primate endometrium after conception. During this process the fibroblast-like stromal cells change morphologically into polygonal cells and express specific decidual proteins. Studies in the baboon demonstrated that insulin-like growth factor binding protein-1 (IGFBP-1) gene expression is a conceptus-mediated response. Subsequent studies in vitro established that IGFBP-1 is transcriptionally regulated by FOXO1 and HOXA10 which together upregulate the IGFBP-1 promoter activity. A baboon endometriosis model was utilized to determine if the changes observed during uterine receptivity in normally cycling animals were compromised. The data suggests that in animals with disease, markers of uterine receptivity are not appropriately expressed in the eutopic endometrium. It is possible that these differences influence the fertility of the animals with disease and the baboon could be used as a primate model to study the causes of infertility as a result of endometriosis.
Collapse
Affiliation(s)
- J J Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Kwon Y, Ko JH, Byung-Gyu K, Kim MH, Kim B. Analysis of plausible downstream target genes of Hoxc8 in F9 teratocarcinoma cells. Putative downstream target genes of Hoxc8. Mol Biol Rep 2003; 30:141-8. [PMID: 12974468 DOI: 10.1023/a:1024920418148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although Hox genes are known to mediate developmental decisions involved in pattern formation during embryogenesis, it is still not well understood what Hox regulates. In order to analyze Hoxc8 downstream target genes, a stable cell line overexpressing Hoxc8 was established using F9 murine teratocarcinoma cells, proteom samples were analyzed by 2-DE, and compared with controls. The protein spots having differences more than 4 fold in intensity were selected, analyzed by MALDI-TOF, and grouped in terms of putative function; cytoskeleton and motility (vimentin, gamma-actin, tropomyosin, and tubulin beta-5 chain); folding, modification and degradation of protein (GRP78, proteasome subunit alpha type 5, 26S proteasome regulatory subunit p27 protein, and PDIR); metabolism (ATP synthase beta subunit, Pgam1, and CAII); transcription/translation factors and general nucleic acid binding proteins (RbAp46, PCNA, eEF-1-beta, and nucleophosmin). Although it may not be significant, 50% of the genes were located on chromosomes 2 and 3, suggesting the possibility of a non-random distribution of Hox downstream genes. Almost 50% of the genes analyzed showed some relation with Hox protein directly or indirectly; i.e., tubulin beta 5, EF-1 beta and PCNA have been reported to contain putative Hox binding regulatory sites and genes like vimentin, pgam1 and nucleophosmin to be regulated by RA, a potent modulator of Hox expression. These results altogether imply that proteom analysis could be a possible tool for the analysis of the potent Hox realizator genes, which provides a new insight into the function of Hox on pattern formation during embryogenesis.
Collapse
Affiliation(s)
- Yunjeong Kwon
- Department of Anatomy and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, C.P.O. Box 8044, Seoul, 120-752, Korea
| | | | | | | | | |
Collapse
|