1
|
Pan Y, Liu Z, Wu C. Pan-Cancer Characterization Identifies SLC19A1 as an Unfavorable Prognostic Marker and Associates It with Tumor Infiltration Features. Biomedicines 2025; 13:571. [PMID: 40149548 PMCID: PMC11940280 DOI: 10.3390/biomedicines13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Recent studies have identified solute carrier family 19 member 1 (SLC19A1) as a second messenger transporter that regulates massive immune-related signaling cascades, but current studies provide limited information. This study aims to evaluate its role and the potential mechanisms across various cancers. Methods: We analyzed multi-omics data from a pan-cancer cohort to evaluate SLC19A1 expression and its association with multiple features, including prognosis, tumor stemness, genome instability, and immune infiltration. Immunofluorescence staining was performed to validate SLC19A1 expression in tumor tissues and its relationship M2 macrophages. In addition, we used web tools such as ROCplotter to evaluate the association between SLC19A1 and response to chemotherapy and immunotherapy. Results: SLC19A1 was found to be overexpressed in multiple cancer types compared to normal tissues, correlating with poor prognosis. High SLC19A1 levels were associated with increased genomic instability and immune suppression. In addition, SLC19A1 was negatively correlated with CD8+ T-cell infiltration and positively correlated with M2 macrophage infiltration. The association of SLC19A1 with M2 macrophages was confirmed in multiple immunofluorescence staining. Finally, SLC19A1 was associated with the response to chemotherapy and immunotherapy in a variety of tumors. Conclusions: Our findings position SLC19A1 as a novel unfavorable prognostic marker in cancer, closely linked to immune suppression and genomic instability. This study highlights the need for further exploration of SLC19A1 as a therapeutic target and its implications in cancer treatment strategies.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
| | - Zhichen Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
| | - Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Baril SA, Gose T, Schuetz JD. How Cryo-EM Has Expanded Our Understanding of Membrane Transporters. Drug Metab Dispos 2023; 51:904-922. [PMID: 37438132 PMCID: PMC10353158 DOI: 10.1124/dmd.122.001004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 07/14/2023] Open
Abstract
Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.
Collapse
Affiliation(s)
- Stefanie A Baril
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
4
|
Gurler G, Belder N, Beker MC, Sever-Bahcekapili M, Uruk G, Kilic E, Yemisci M. Reduced folate carrier 1 is present in retinal microvessels and crucial for the inner blood retinal barrier integrity. Fluids Barriers CNS 2023; 20:47. [PMID: 37328777 DOI: 10.1186/s12987-023-00442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/18/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Reduced folate carrier 1 (RFC1; SLC19a1) is the main responsible transporter for the B9 family of vitamins named folates, which are essential for normal tissue growth and development. While folate deficiency resulted in retinal vasculopathy, the expression and the role of RFC1 in blood-retinal barrier (BRB) are not well known. METHODS We used whole mount retinas and trypsin digested microvessel samples of adult mice. To knockdown RFC1, we delivered RFC1-targeted short interfering RNA (RFC1-siRNA) intravitreally; while, to upregulate RFC1 we delivered lentiviral vector overexpressing RFC1. Retinal ischemia was induced 1-h by applying FeCl3 to central retinal artery. We used RT-qPCR and Western blotting to determine RFC1. Endothelium (CD31), pericytes (PDGFR-beta, CD13, NG2), tight-junctions (Occludin, Claudin-5 and ZO-1), main basal membrane protein (Collagen-4), endogenous IgG and RFC1 were determined immunohistochemically. RESULTS Our analyses on whole mount retinas and trypsin digested microvessel samples of adult mice revealed the presence of RFC1 in the inner BRB and colocalization with endothelial cells and pericytes. Knocking down RFC1 expression via siRNA delivery resulted in the disintegration of tight junction proteins and collagen-4 in twenty-four hours, which was accompanied by significant endogenous IgG extravasation. This indicated the impairment of BRB integrity after an abrupt RFC1 decrease. Furthermore, lentiviral vector-mediated RFC1 overexpression resulted in increased tight junction proteins and collagen-4, confirming the structural role of RFC1 in the inner BRB. Acute retinal ischemia decreased collagen-4 and occludin levels and led to an increase in RFC1. Besides, the pre-ischemic overexpression of RFC1 partially rescued collagen-4 and occludin levels which would be decreased after ischemia. CONCLUSION In conclusion, our study clarifies the presence of RFC1 protein in the inner BRB, which has recently been defined as hypoxia-immune-related gene in other tissues and offers a novel perspective of retinal RFC1. Hence, other than being a folate carrier, RFC1 is an acute regulator of the inner BRB in healthy and ischemic retinas.
Collapse
Affiliation(s)
- Gokce Gurler
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Nevin Belder
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | | | - Gokhan Uruk
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Ertugrul Kilic
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
- Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Muge Yemisci
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
- Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.
| |
Collapse
|
5
|
Blest HTW, Chauveau L. cGAMP the travelling messenger. Front Immunol 2023; 14:1150705. [PMID: 37287967 PMCID: PMC10242147 DOI: 10.3389/fimmu.2023.1150705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Gök V, Erdem Ş, Haliloğlu Y, Bişgin A, Belkaya S, Başaran KE, Canatan MF, Özcan A, Yılmaz E, Acıpayam C, Karakükcü M, Canatan H, Per H, Patıroğlu T, Eken A, Ünal E. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun 2023; 24:12-20. [PMID: 36517554 DOI: 10.1038/s41435-022-00191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Collapse
Affiliation(s)
- Veysel Gök
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Şerife Erdem
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeşim Haliloğlu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Atıl Bişgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Türkiye
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Alper Özcan
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ebru Yılmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Can Acıpayam
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Musa Karakükcü
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.,Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
8
|
Matherly LH, Schneider M, Gangjee A, Hou Z. Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol 2022; 18:695-706. [PMID: 36239195 PMCID: PMC9637735 DOI: 10.1080/17425255.2022.2136071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.
Collapse
Affiliation(s)
- Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
9
|
Wright NJ, Fedor JG, Zhang H, Jeong P, Suo Y, Yoo J, Hong J, Im W, Lee SY. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature 2022; 609:1056-1062. [PMID: 36071163 DOI: 10.1038/s41586-022-05168-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Han Zhang
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jiho Yoo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.,College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
10
|
Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J Dev Biol 2022; 10:jdb10020022. [PMID: 35735913 PMCID: PMC9224552 DOI: 10.3390/jdb10020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.
Collapse
|
11
|
Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 2022; 140:171-183. [PMID: 35443048 DOI: 10.1182/blood.2021014614] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
The extravasation of leukocytes is a critical step during inflammation which requires the localized opening of the endothelial barrier. This process is initiated by the close interaction of leukocytes with various adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) on the surface of endothelial cells. Here we reveal that mechanical forces generated by leukocyte-induced clustering of ICAM-1 synergistically with fluid shear stress exerted by the flowing blood increase endothelial plasma membrane tension to activate the mechanosensitive cation channel PIEZO1. This leads to increases in [Ca2+]i and activation of downstream signaling events including phosphorylation of SRC, PYK2 and myosin light chain resulting in opening of the endothelial barrier. Mice with endothelium-specific Piezo1 deficiency show decreased leukocyte extravasation in different inflammation models. Thus, leukocytes and the hemodynamic microenvironment synergize to mechanically activate endothelial PIEZO1 and subsequent downstream signaling to initiate leukocyte diapedesis.
Collapse
|
12
|
Ramalingam R, Kaur H, Scott JX, Sneha LM, Arunkumar G, Srinivasan A, Paul SFD. Evaluation of cytogenetic and molecular markers with MTX-mediated toxicity in pediatric acute lymphoblastic leukemia patients. Cancer Chemother Pharmacol 2022; 89:393-400. [PMID: 35157101 DOI: 10.1007/s00280-022-04405-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Pediatric acute lymphoblastic leukemia (pALL) patients have better overall survival and methotrexate (MTX) is an effective drug used in their treatment. However, the treatment-related adverse effects (TRAEs) have a bigger impact on the therapy. In this study, we have evaluated the association of polymorphisms in genes encoding proteins engaged in MTX metabolism, and the cytogenetic aberrations with TRAEs. METHODS A total of 115 patients between the age of 1 and 18 years (average: 6.6) under maintenance therapy were selected for the study. SLC19A1 (c.80G > A), MTHFR (c.677C > T; c.1298A > C), and TYMS (c.*450_*455del) genotypes were determined using PCR techniques and Sanger sequencing. Cytogenetic and SNP findings were analyzed for any association with the reported toxicities using odds ratio, chi-square test, multifactor dimensionality reduction (MDR) analysis for synergistic effect and, multinomial logistic regression analysis for the likelihood of adverse events. RESULTS Among the evaluated genetic variations, SLC19A1 (c.80G > A) was significantly associated with TRAEs (OR = 5.71, p = 0.002). Multinomial logistic regression analysis (chi-sq = 16.64, p < 0.001) and MDR analysis (chi-sq = 10.51 p < 0.001) confirmed the finding. On the other hand, no significant association was observed between adverse events and any specific cytogenetic aberration. CONCLUSION SLC19A1 facilitates the import of cyclic dinucleotides and reduced folates, evaluating genotypes in this gene can help in better management of patients on methotrexate treatment. Assessing a broader gene panel can help in finding more associated markers and delivering personalized medicine to the patients.
Collapse
Affiliation(s)
- Ravi Ramalingam
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Harpreet Kaur
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Julius Xavier Scott
- Department of Pediatric Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Latha M Sneha
- Department of Pediatric Oncology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Arathi Srinivasan
- Department of Pediatric Oncology, Kanchi Kamakoti Child Trust Hospital, Chennai, Tamil Nadu, India
| | - Solomon F D Paul
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
13
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
14
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC, Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules 2021; 26:molecules26123731. [PMID: 34207319 PMCID: PMC8235569 DOI: 10.3390/molecules26123731] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Vladimir Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Svetlana Kardasheva
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Alla Sedova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Anastasia Kurbatova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Elena Bueverova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Arthur Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
| | - Kristina Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-764-9878
| | | | - Vladimir Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| |
Collapse
|
15
|
A homozygous deletion in the SLC19A1 gene as a cause of folate-dependent recurrent megaloblastic anemia. Blood 2021; 135:2427-2431. [PMID: 32276275 DOI: 10.1182/blood.2019003178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
16
|
Seelan RS, Mukhopadhyay P, Philipose J, Greene RM, Pisano MM. Gestational folate deficiency alters embryonic gene expression and cell function. Differentiation 2020; 117:1-15. [PMID: 33302058 DOI: 10.1016/j.diff.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Folic acid is a nutrient essential for embryonic development. Folate deficiency can cause embryonic lethality or neural tube defects and orofacial anomalies. Folate receptor 1 (Folr1) is a folate binding protein that facilitates the cellular uptake of dietary folate. To better understand the biological processes affected by folate deficiency, gene expression profiles of gestational day 9.5 (gd9.5) Folr1-/- embryos were compared to those of gd9.5 Folr1+/+ embryos. The expression of 837 genes/ESTs was found to be differentially altered in Folr1-/- embryos, relative to those observed in wild-type embryos. The 837 differentially expressed genes were subjected to Ingenuity Pathway Analysis. Among the major biological functions affected in Folr1-/- mice were those related to 'digestive system development/function', 'cardiovascular system development/function', 'tissue development', 'cellular development', and 'cell growth and differentiation', while the major canonical pathways affected were those associated with blood coagulation, embryonic stem cell transcription and cardiomyocyte differentiation (via BMP receptors). Cellular proliferation, apoptosis and migration were all significantly affected in the Folr1-/- embryos. Cranial neural crest cells (NCCs) and neural tube explants, grown under folate-deficient conditions, exhibited marked reduction in directed migration that can be attributed, in part, to an altered cytoskeleton caused by perturbations in F-actin formation and/or assembly. The present study revealed that several developmentally relevant biological processes were compromised in Folr1-/- embryos.
Collapse
Affiliation(s)
- R S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - P Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - J Philipose
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - R M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA.
| | - M M Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| |
Collapse
|
17
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
18
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
19
|
Radziejewska A, Chmurzynska A. Folate and choline absorption and uptake: Their role in fetal development. Biochimie 2018; 158:10-19. [PMID: 30529042 DOI: 10.1016/j.biochi.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022]
Abstract
SCOPE In this review, we attempt to assess how choline and folate transporters affect fetal development. We focus on how the expression of these transporters in response to choline and folate intake affects transport effectiveness. We additionally describe allelic variants of the genes encoding these transporters and their phenotypic effects. METHODS AND RESULTS We made an extensive review of recent articles describing role of choline and folate - with particularly emphasize on their transporters - in fetal development. Folate and choline are necessary for the proper functioning of the cell and body. During pregnancy, the requirements of these nutrients increase because of elevated maternal demand and the rapid division of fetal cells. The concentrations of folate and choline in cells depend on food intake, the absorption of nutrients, and the cellular transport system, which is tissue-specific and developmentally regulated. Relatively few studies have investigated the role of choline transporters in fetal development. CONCLUSIONS In this review we show relations between functioning of folate and choline transporters and fetal development.
Collapse
Affiliation(s)
- Anna Radziejewska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland.
| |
Collapse
|
20
|
Padmanabhan N, Menelaou K, Gao J, Anderson A, Blake GET, Li T, Daw BN, Watson ED. Abnormal folate metabolism causes age-, sex- and parent-of-origin-specific haematological defects in mice. J Physiol 2018; 596:4341-4360. [PMID: 30024025 PMCID: PMC6138292 DOI: 10.1113/jp276419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Folate (folic acid) deficiency and mutations in folate-related genes in humans result in megaloblastic anaemia. Folate metabolism, which requires the enzyme methionine synthase reductase (MTRR), is necessary for DNA synthesis and the transmission of one-carbon methyl groups for cellular methylation. In this study, we show that the hypomorphic Mtrrgt/gt mutation in mice results in late-onset and sex-specific blood defects, including macrocytic anaemia, extramedullary haematopoiesis and lymphopenia. Notably, when either parent carries an Mtrrgt allele, blood phenotypes result in their genetically wildtype adult daughters, the effects of which are parent specific. Our data establish a new model for studying the mechanism of folate metabolism in macrocytic anaemia aetiology and suggest that assessing parental folate status might be important when diagnosing adult patients with unexplained anaemia. ABSTRACT The importance of the vitamin folate (also known as folic acid) in erythrocyte formation, maturation and/or longevity is apparent since folate deficiency in humans causes megaloblastic anaemia. Megaloblastic anaemia is a type of macrocytic anaemia whereby erythrocytes are enlarged and fewer in number. Folate metabolism is required for thymidine synthesis and one-carbon metabolism, though its specific role in erythropoiesis is not well understood. Methionine synthase reductase (MTRR) is a key enzyme necessary for the progression of folate metabolism since knocking down the Mtrr gene in mice results in hyperhomocysteinaemia and global DNA hypomethylation. We demonstrate here that abnormal folate metabolism in mice caused by Mtrrgt/gt homozygosity leads to haematopoietic phenotypes that are sex and age dependent. Specifically, Mtrrgt/gt female mice displayed macrocytic anaemia, which might be due to defective erythroid differentiation at the exclusion of haemolysis. This was associated with increased renal Epo mRNA expression, hypercellular bone marrow, and splenic extramedullary haematopoiesis. In contrast, the male response differed since Mtrrgt/gt male mice were not anaemic but did display erythrocytic macrocytosis and lymphopenia. Regardless of sex, these phenotypes were late onset. Remarkably, we also show that when either parent carries an Mtrrgt allele, a haematological defect results in their adult wildtype daughters. However, the specific phenotype was dependent upon the sex of the parent. For instance, wildtype daughters of Mtrr+/gt females displayed normocytic anaemia. In contrast, wildtype daughters of Mtrr+/gt males exhibited erythrocytic microcytosis not associated with anaemia. Therefore, abnormal folate metabolism affects adult haematopoiesis in an age-, sex- and parent-specific manner.
Collapse
Affiliation(s)
- Nisha Padmanabhan
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Katerina Menelaou
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Jiali Gao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Alexander Anderson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Georgina E. T. Blake
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Tanya Li
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - B. Nuala Daw
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Erica D. Watson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Bonnefond-Ortega M, Goudable J, Chambrier C, Bétry C. L’absorption intestinale des vitamines hydrosolubles et liposolubles en pratique clinique. NUTR CLIN METAB 2018. [DOI: 10.1016/j.nupar.2017.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Yamaguchi Y, Miyazawa H, Miura M. Neural tube closure and embryonic metabolism. Congenit Anom (Kyoto) 2017; 57:134-137. [PMID: 28295633 DOI: 10.1111/cga.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
Neural tube closure (NTC) is an embryonic process during formation of the mammalian central nervous system. Disruption of the dynamic, sequential events of NTC can cause neural tube defects (NTD) leading to spina bifida and anencephaly in the newborn. NTC is affected by inherent factors such as genetic mutation or if the mother is exposed to certain environmental factors such as intake of harmful chemicals, maternal infection, irradiation, malnutrition, and inadequate or excessive intake of specific nutrients. Although effects of these stress factors on NTC have been intensively studied, the metabolic state of a normally developing embryo remains unclear. State-of-the art mass spectrometry techniques have enabled detailed study of embryonic metabolite profiles and their distribution within tissues. This approach has demonstrated that glucose metabolism is altered during NTC stages involving chorioallantoic branching. An understanding of embryonic metabolic rewiring would help reveal the etiology of NTD caused by environmental factors.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hidenobu Miyazawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
23
|
Silva E, Rosario FJ, Powell TL, Jansson T. Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function. J Nutr 2017; 147:1237-1242. [PMID: 28592519 DOI: 10.3945/jn.117.248823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022] Open
Abstract
Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we propose that the underlying mechanisms involve trophoblast mTOR folate sensing resulting in inhibition of mTORC1 and mTORC2 and downregulation of placental amino acid transporters.
Collapse
Affiliation(s)
- Elena Silva
- Departments of Obstetrics and Gynecology and
| | | | - Theresa L Powell
- Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
24
|
Xu J, Sinclair KD. One-carbon metabolism and epigenetic regulation of embryo development. Reprod Fertil Dev 2017; 27:667-76. [PMID: 25710200 DOI: 10.1071/rd14377] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
One-carbon (1C) metabolism consists of an integrated series of metabolic pathways that include the folate cycle and methionine remethylation and trans-sulfuration pathways. Most, but not all, 1C metabolic enzymes are expressed in somatic cells of the ovary, mammalian oocytes and in preimplantation embryos. The metabolic implications of this, with regard to the provision of methyl donors (e.g. betaine) and 1C cofactors (e.g. vitamin B12), together with consequences of polymorphic variances in genes encoding 1C enzymes, are not fully understood but are the subject of ongoing investigations at the authors' laboratory. However, deficiencies in 1C-related substrates and/or cofactors during the periconception period are known to lead to epigenetic alterations in DNA and histone methylation in genes that regulate key developmental processes in the embryo. Such epigenetic modifications have been demonstrated to negatively impact on the subsequent health and metabolism of offspring. For this reason, parental nutrition around the time of conception has become a focal point of investigation in many laboratories with the aim of providing improved nutritional advice to couples. These issues are considered in detail in this article, which offers a contemporary overview of the effects of 1C metabolism on epigenetic programming in mammalian gametes and the early embryo.
Collapse
Affiliation(s)
- Juan Xu
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Kevin D Sinclair
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
25
|
Abstract
Human genetic variation is a determinant of nutrient efficacy and of tolerances and intolerances and has the potential to influence nutrient intake values (NIVs). Knowledge derived from the comprehensive identification of human genetic variation offers the potential to predict the physiological and pathological consequences of individual genetic differences and prevent and/or manage adverse outcomes through diet. Nutrients and genomes interact reciprocally; genomes confer differences in nutrient utilization, whereas nutrients effectively modify genome expression, stability, and viability. Understanding the interactions that occur among human genes, including all genetic variants thereof, and environmental exposures is enabling the development of genotype-specific nutritional regimens that prevent disease and promote wellness for individuals and populations throughout the life cycle. Genomic technologies may provide new criteria for establishing NIVs. The impact of a gene variant on NIVs will be dependent on its penetrance and prevalence within a population. Recent experiences indicate that few gene variants are anticipated to be sufficiently penetrant to affect average requirement (AR) values to a greater degree than environmental factors. If highly penetrant gene variants are identified that affect nutrient requirements, the prevalence of the variant in that country or region will determine the feasibility and necessity of deriving more than one AR or upper limit (UL) for affected genetic subgroups.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell Uniersity, 315 Savage Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Peng L, Dreumont N, Coelho D, Guéant JL, Arnold C. Genetic animal models to decipher the pathogenic effects of vitamin B12 and folate deficiency. Biochimie 2016; 126:43-51. [DOI: 10.1016/j.biochi.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
|
27
|
Montalvão-de-Azevedo R, Vasconcelos GM, Vargas FR, Thuler LC, Pombo-de-Oliveira MS, de Camargo B. RFC-1 80G>A polymorphism in case-mother/control-mother dyads is associated with risk of nephroblastoma and neuroblastoma. Genet Test Mol Biomarkers 2014; 19:75-81. [PMID: 25536437 DOI: 10.1089/gtmb.2014.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Embryonic tumors are associated with an interruption during normal organ development; they may be related to disturbances in the folate pathway involved in DNA synthesis, methylation, and repair. Prenatal supplementation with folic acid is associated with a decreased risk of neuroblastoma, brain tumors, retinoblastoma, and nephroblastoma. The aim of this study was to investigate the association between MTHFR rs1801133 (C677T) and RFC-1 rs1051266 (G80A) genotypes with the risk of developing nephroblastoma and neuroblastoma. MATERIALS AND METHODS Case-mother/control-mother dyad study. Samples from Brazilian children with nephroblastoma (n=80), neuroblastoma (n=66), healthy controls (n=453), and their mothers (case n=93; control n=75) were analyzed. Genomic DNA was isolated from peripheral blood cells and/or buccal cells and genotyped to identify MTHFR C677T and RFC-1 G80A polymorphisms. Differences in genotype distribution between patients and controls were tested by multiple logistic regression analysis. RESULTS Risk for nephroblastoma and neuroblastoma was two- to fourfold increased among children with RFC-1 polymorphisms. An increased four- to eightfold risk for neuroblastoma and nephroblastoma was seen when the child and maternal genotypes were combined. CONCLUSION Our results suggest that mother and child RFC-1 G80A genotypes play a role on the risk of neuroblastoma and nephroblastoma since this polymorphism may impair the intracellular levels of folate, through carrying fewer folate molecules to the cell interior, and thus, the intracellular concentration is not enough to maintain regular DNA synthesis and methylation pathways.
Collapse
|
28
|
Momb J, Appling DR. Mitochondrial one-carbon metabolism and neural tube defects. ACTA ACUST UNITED AC 2014; 100:576-83. [PMID: 24985542 DOI: 10.1002/bdra.23268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/19/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are one of the most common birth defects in humans. Maternal intake of folic acid was linked to prevention of NTDs in the 1970s. This realization led to the establishment of mandatory and/or voluntary food folic acid fortification programs in many countries that have reduced the incidence of NTDs by up to 70% in humans. Despite 40 years of intensive research, the biochemical mechanisms underlying the protective effects of folic acid remain unknown. RESULTS Recent research reveals a role for mitochondrial folate-dependent one-carbon metabolism in neural tube closure. CONCLUSION In this article, we review the evidence linking NTDs to aberrant mitochondrial one-carbon metabolism in humans and mouse models. The potential of formate, a product of mitochondrial one-carbon metabolism, to prevent NTDs is also discussed.
Collapse
Affiliation(s)
- Jessica Momb
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
29
|
Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos 2014; 42:632-49. [PMID: 24396145 PMCID: PMC3965896 DOI: 10.1124/dmd.113.055723] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Larry H Matherly
- Department of Oncology (L.H.M., M.R.W., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (L.H.M., Z.H.)
| | | | | |
Collapse
|
30
|
Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A. LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 2014; 127:2261-8. [PMID: 24639464 DOI: 10.1242/jcs.140145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.
Collapse
Affiliation(s)
- Esther Kur
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Nora Mecklenburg
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Robert M Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Annette Hammes
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
31
|
Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. CURRENT TOPICS IN MEMBRANES 2014; 73:175-204. [PMID: 24745983 DOI: 10.1016/b978-0-12-800223-0.00004-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
32
|
Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet 2013; 29:12-9. [PMID: 24284432 DOI: 10.2133/dmpk.dmpk-13-rv-119] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methotrexate (MTX) is a derivative of folic acid (folate) and commonly used as an anchor drug for the treatment of rheumatoid arthritis (RA). The pharmacokinetics (PK) and pharmacodynamics (PD) of MTX entirely depends on the function of specific transporters that belong to the two major superfamilies, solute carrier transporters and ATP-binding cassette transporters. Several transporters have been identified as being able to mediate the transport of MTX, and suggested to be involved in the disposition in the body and in the regulation of intracellular metabolism in target cells, together with several enzymes involved in folate metabolism. Thus, drug-drug interactions through the transporters and their genetic polymorphisms may alter the PK and PD of MTX, resulting in an interpatient variability of efficacy. This review summarizes the PK and PD of MTX, particularly in relation to RA therapy and focuses on the roles of transporters involved in PK and PD with the aim of facilitating an understanding of the molecular basis of the mechanism of MTX action to achieve its effective use in RA therapy.
Collapse
Affiliation(s)
- Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
33
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
34
|
Imbard A, Benoist JF, Blom HJ. Neural tube defects, folic acid and methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4352-89. [PMID: 24048206 PMCID: PMC3799525 DOI: 10.3390/ijerph10094352] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
Abstract
Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.
Collapse
Affiliation(s)
- Apolline Imbard
- Biochemistry-Hormonology Laboratory, Robert Debré Hospital, APHP, 48 bd Serrurier, Paris 75019, France; E-Mail:
- Metabolic Unit, Department of Clinical Chemistry, VU Free University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| | - Jean-François Benoist
- Biochemistry-Hormonology Laboratory, Robert Debré Hospital, APHP, 48 bd Serrurier, Paris 75019, France; E-Mail:
| | - Henk J. Blom
- Metabolic Unit, Department of Clinical Chemistry, VU Free University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; E-Mail:
| |
Collapse
|
35
|
Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med 2013; 34:373-85. [PMID: 23506878 DOI: 10.1016/j.mam.2012.07.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023]
Abstract
The reduced folate carrier (RFC, SLC19A1), thiamine transporter-1 (ThTr1, SLC19A2) and thiamine transporter-2 (ThTr2, SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT, SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease).
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
36
|
Leung KY, De Castro SCP, Cabreiro F, Gustavsson P, Copp AJ, Greene NDE. Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Mol Cell Biochem 2013; 378:229-36. [PMID: 23483428 PMCID: PMC3634978 DOI: 10.1007/s11010-013-1613-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/02/2013] [Indexed: 12/01/2022]
Abstract
Folates act as co-factors for transfer of one-carbon units for nucleotide production, methylation and other biosynthetic reactions. Comprehensive profiling of multiple folates can be achieved using liquid chromatography tandem mass spectrometry, enabling determination of their relative abundance that may provide an indication of metabolic differences between cell types. For example, cell lines exposed to methotrexate showed a dose-dependent elevation of dihydrofolate, consistent with inhibition of dihydrofolate reductase. We analysed the folate profile of E. coli sub-types as well as cell lines and embryonic tissue from both human and mouse. The folate profile of bacteria differed markedly from those of all the mammalian samples, most notably in the greater abundance of formyl tetrahydrofolate. The overall profiles of mouse and human fibroblasts and mid-gestation mouse embryos were broadly similar, with specific differences. The major folate species in these cell types was 5-methyl tetrahydrofolate, in contrast to lymphoblastoid cell lines in which the predominant form was tetrahydrofolate. Analysis of embryonic human brain revealed a shift in folate profile with increasing developmental stage, with a decline in relative abundance of dihydrofolate and increase in 5-methyl tetrahydrofolate. These cell type-specific and developmental changes in folate profile may indicate differential requirements for the various outputs of folate metabolism.
Collapse
Affiliation(s)
- Kit-Yi Leung
- Neural Development Unit and Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
38
|
Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther 2012; 13:1355-73. [PMID: 22954694 PMCID: PMC3542225 DOI: 10.4161/cbt.22020] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Cancer Biology Graduate Program in Cancer Biology, Department of Oncology, Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | |
Collapse
|
39
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
40
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
41
|
Salbaum JM, Kappen C. Genetic and epigenomic footprints of folate. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:129-58. [PMID: 22656376 DOI: 10.1016/b978-0-12-398397-8.00006-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dietary micronutrient composition has long been recognized as a determining factor for human health. Historically, biochemical research has successfully unraveled how vitamins serve as essential cofactors for enzymatic reactions in the biochemical machinery of the cell. Folate, also known as vitamin B9, follows this paradigm as well. Folate deficiency is linked to adverse health conditions, and dietary supplementation with folate has proven highly beneficial in the prevention of neural tube defects. With its function in single-carbon metabolism, folate levels affect nucleotide synthesis, with implications for cell proliferation, DNA repair, and genomic stability. Furthermore, by providing the single-carbon moiety in the synthesis pathway for S-adenosylmethionine, the main methyl donor in the cell, folate also impacts methylation reactions. It is this capacity that extends the reach of folate functions into the realm of epigenetics and gene regulation. Methylation reactions play a major role for several modalities of the epigenome. The specific methylation status of histones, noncoding RNAs, transcription factors, or DNA represents a significant determinant for the transcriptional output of a cell. Proper folate status is therefore necessary for a broad range of biological functions that go beyond the biochemistry of folate. In this review, we examine evolutionary, genetic, and epigenomic footprints of folate and the implications for human health.
Collapse
Affiliation(s)
- J Michael Salbaum
- Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
42
|
Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011; 31:177-201. [PMID: 21568705 DOI: 10.1146/annurev-nutr-072610-145133] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Keep RF, Smith DE. Choroid plexus transport: gene deletion studies. Fluids Barriers CNS 2011; 8:26. [PMID: 22053861 PMCID: PMC3231976 DOI: 10.1186/2045-8118-8-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/26/2022] Open
Abstract
This review examines the use of transporter knockout (KO) animals to evaluate transporter function at the choroid plexus (the blood-CSF barrier; BCSFB). Compared to the blood-brain barrier, there have been few such studies on choroid plexus (CP) function. These have primarily focused on Pept2 (an oligopeptide transporter), ATP-binding cassette (ABC) transporters, Oat3 (an organic anion transporter), Svct2 (an ascorbic acid transporter), transthyretin, ion transporters, and ion and water channels. This review focuses on the knowledge gained from such studies, both with respect to specific transporters and in general to the role of the CP and its impact on brain parenchyma. It also discusses the pros and cons of using KO animals in such studies and the technical approaches that can be used.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, R5018 BSRB, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
45
|
A mouse model of hereditary folate malabsorption: deletion of the PCFT gene leads to systemic folate deficiency. Blood 2011; 117:4895-904. [PMID: 21346251 DOI: 10.1182/blood-2010-04-279653] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The human proton coupled folate transporter (PCFT) is involved in low pH-dependent intestinal folate transport. In this report, we describe a new murine model of the hereditary folate malabsorption syndrome that we developed through targeted disruption of the first 3 coding exons of the murine homolog of the PCFT gene. By 4 weeks of age, PCFT-deficient (PCFT(-/-)) mice developed severe macrocytic normochromic anemia and pancytopenia. Immature erythroblasts accumulated in the bone marrow and spleen of PCFT(-/-) mice and failed to differentiate further, showing an increased rate of apoptosis in intermediate erythroblasts and reduced release of reticulocytes. In response to the inefficient hematologic development, the serum of the PCFT(-/-) animals contained elevated concentrations of erythropoietin, soluble transferrin receptor (sCD71), and thrombopoietin. In vivo folate uptake experiments demonstrated a systemic folate deficiency caused by disruption of PCFT-mediated intestinal folate uptake, thus confirming in vivo a critical and nonredundant role of the PCFT protein in intestinal folate transport and erythropoiesis. The PCFT-deficient mouse serves as a model for the hereditary folate malabsorption syndrome and is the most accurate animal model of folate deficiency anemia described to date that closely captures the spectrum of pathology typical of this disease.
Collapse
|
46
|
Obican SG, Finnell RH, Mills JL, Shaw GM, Scialli AR. Folic acid in early pregnancy: a public health success story. FASEB J 2010; 24:4167-74. [PMID: 20631328 DOI: 10.1096/fj.10-165084] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Folate is a water-soluble B vitamin that must be obtained in the diet or through supplementation. For >50 yr, it has been known that folate plays an integral role in embryonic development. In mice, inactivation of genes in the folate pathway results in malformations of the neural tube, heart, and craniofacial structures. It has been shown that diets and blood levels of women who had a fetus with a neural tube defect are low for several micronutrients, particularly folate. Periconceptional use of folic acid containing supplements decreased recurrent neural tube defects in the offspring of women with a previously affected child and the occurrence of a neural tube defect and possibly other birth defects in the offspring of women with no prior history. Based on these findings, the U.S. Public Health Service recommended that all women at risk take folic acid supplements, but many did not. Mandatory food fortification programs were introduced in numerous countries, including the United States, to improve folate nutritional status and have resulted in a major decrease in neural tube defect prevalence. The success story of folate represents the cooperation of embryologists, experimentalists, epidemiologists, public health scientists, and policymakers.
Collapse
Affiliation(s)
- Sarah G Obican
- Department of Obstetrics and Gynecology, George Washington University School of Medicine, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
47
|
Austin MU, Liau WS, Balamurugan K, Ashokkumar B, Said HM, LaMunyon CW. Knockout of the folate transporter folt-1 causes germline and somatic defects in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:46. [PMID: 20441590 PMCID: PMC2874772 DOI: 10.1186/1471-213x-10-46] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND The C. elegans gene folt-1 is an ortholog of the human reduced folate carrier gene. The FOLT-1 protein has been shown to transport folate and to be involved in uptake of exogenous folate by worms. A knockout mutation of the gene, folt-1(ok1460), was shown to cause sterility, and here we investigate the source of the sterility and the effect of the folt-1 knockout on somatic function. RESULTS Our results show that folt-1(ok1460) knockout hermaphrodites have a substantially reduced germline, generate a small number of functional sperm, and only rarely produce a functional oocyte. We found no evidence of increased apoptosis in the germline of folt-1 knockout mutants, suggesting that germline proliferation is defective. While folt-1 knockout males are fertile, their rate of spermatogenesis was severely diminished, and the males were very poor maters. The mating defect is likely due to compromised metabolism and/or other somatic functions, as folt-1 knockout hermaphrodites displayed a shortened lifespan and elongated defecation intervals. CONCLUSIONS The FOLT-1 protein function affects both the soma and the germline. folt-1(ok1460) hermaphrodites suffer severely diminished lifespan and germline defects that result in sterility. Germline defects associated with folate deficiency appear widespread in animals, being found in humans, mice, fruit flies, and here, nematodes.
Collapse
Affiliation(s)
- Misa U Austin
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
| | - Wei-Siang Liau
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
- Current Address: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Krishnaswamy Balamurugan
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
- Current Address: Department of Biotechnology, Alagappa University, Karaikudi 630 003, India
| | - Balasubramaniem Ashokkumar
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
| | - Hamid M Said
- Veterans Affairs Medical Center, Long Beach, CA 90822, USA
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, USA
| | - Craig W LaMunyon
- Department of Biological Sciences, California State University Pomona, CA 91768, USA
| |
Collapse
|
48
|
Pei L, Liu J, Zhang Y, Zhu H, Ren A. Association of reduced folate carrier gene polymorphism and maternal folic acid use with neural tube defects. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:874-8. [PMID: 19105199 DOI: 10.1002/ajmg.b.30911] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was designed to investigate whether the risk for neural tube defects (NTDs) was associated with reduced folate carrier gene (RFC1 A80G) polymorphism and/or with the interaction between the RFC1 gene and maternal periconceptional use of folic acid. One hundred four nuclear families with NTDs and 100 non-malformed control families were sampled to investigate the potential interaction between maternal or the offspring's RFC1 (A80G) genotypes and the maternal periconceptional use of folic acid through a population-based case-control study. RFC1 (A80G) genotypes were detected using PCR-restricted fragment length polymorphism (PCR-RFLP). Mother who had the GG genotype and did not take folic acid had an elevated risk for NTDs (OR = 5.43, 95% CI = 1.68-18.28) as compared to the mother who had AA or GA genotype and took maternal periconceptional folic acid. The interactive coefficient was 1.12 between maternal GG genotype and the periconceptional folic acid non-use. The risk for having an infant with NTDs was 8.80 (95% CI = 2.83-28.69) for offspring with the GG genotype, as compared to the offspring with AA or GA genotype among the mothers who did not take folic acid supplements. The interactive coefficient was 1.45 for offspring with the GG genotype and without maternal periconceptional supplementation of folic acid. Our findings suggest that there is a potential gene-environment interaction on the risk of NTDs between maternal or offspring RFC1 GG genotype and maternal periconceptional intake of folic acid. The RFC1 is likely to be an important candidate gene in folate transportation and RFC1 GG genotype (A80G) may be associated with an increased risk for NTDs in this Chinese population.
Collapse
Affiliation(s)
- Lijun Pei
- Institute of Population Research, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Harris MJ. Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. ACTA ACUST UNITED AC 2009; 85:331-9. [PMID: 19117321 DOI: 10.1002/bdra.20552] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD mutants and strains that do not respond to folate, and mutants involving folate-pathway genes. Of the 200 mouse NTD mutants, only a few have been tested with folate; half respond and half do not. Among responsive mutants, folic acid supplementation reduces exencephaly and/or spina bifida aperta frequency in the Sp(2H), Sp, Cd, Cited2, Cart1, and Gcn5 mutants. Prevention ranges from 35 to 85%. The responsive Sp(2H) (Pax3) mutant has abnormal folate metabolism, but the responsive Cited2 mutant does not. Neither folic nor folinic acid reduces NTD frequency in Axd, Grhl3, Fkbp8, Map3k4, or Nog mutants or in the curly tail or SELH/Bc strains. Spina bifida frequency is reduced in Axd by methionine and in curly tail by inositol. Exencephaly frequency is reduced in SELH/Bc by an alternative commercial ration. Mutations in folate-pathway genes do not cause NTDs, except for 30% exencephaly in folate-treated Folr1. Among folate-pathway mutants, neural tube closure is normal in Cbs, Folr2, Mthfd1, Mthfd2, Mthfr, and Shmt1 mutants. Embryos die by midgestation in Folr1, Mtr, Mtrr, and RFC1 mutants. The mouse models point to genetic heterogeneity in the ability to respond to folic acid and also to heterogeneity in genetic cause of NTDs that can be prevented by folic acid.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Coloumbia, Canada.
| |
Collapse
|