1
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Zhang Z, Chow SY, De Guzman R, Joh NH, Joubert MK, Richardson J, Shah B, Wikström M, Zhou ZS, Wypych J. A Mass Spectrometric Characterization of Light-Induced Modifications in Therapeutic Proteins. J Pharm Sci 2022; 111:1556-1564. [DOI: 10.1016/j.xphs.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
4
|
Kristensen LG, Holton JM, Rad B, Chen Y, Petzold CJ, Gupta S, Ralston CY. Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1333-1342. [PMID: 34475282 PMCID: PMC8415330 DOI: 10.1107/s1600577521004744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid. Biochem J 2021; 478:1795-1808. [PMID: 33821889 PMCID: PMC10071548 DOI: 10.1042/bcj20210091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = -260 mV) and mutant Mb (E° = -300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.
Collapse
|
6
|
Methane generation via intraprotein C–S bond cleavage in cytochrome b562 reconstituted with nickel didehydrocorrin. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Oxidative modification of methionine80 in cytochrome c by reaction with peroxides. J Inorg Biochem 2018; 182:200-207. [DOI: 10.1016/j.jinorgbio.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
8
|
|
9
|
Ghattas W, Cotchico-Alonso L, Maréchal JD, Urvoas A, Rousseau M, Mahy JP, Ricoux R. Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels-Alder Reaction. Chembiochem 2016; 17:433-40. [DOI: 10.1002/cbic.201500445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Wadih Ghattas
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Lur Cotchico-Alonso
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC); UMR 9198, CEA, CNRS, Université Paris-Sud; Bât. 430, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Maëva Rousseau
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Jean-Pierre Mahy
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Rémy Ricoux
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| |
Collapse
|
10
|
Mahy JP, Maréchal JD, Ricoux R. Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"? J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424614500813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions using clean oxidants such as O 2 or H 2 O 2 under ecocompatible conditions constitutes a really promising challenge for a wide range of industrial applications. In vivo, such reactions are performed by heme-thiolate proteins, cytochromes P450, that catalyze the oxidation of drugs by dioxygen in the presence of electrons delivered from NADPH by cytochrome P450 reductase. Several strategies were used to design new artificial hemoproteins to mimic these enzymes, that associate synthetic metalloporphyrin derivatives to a protein that is supposed to induce a selectivity in the catalyzed reaction. A first generation of artificial hemoproteins or "hemoabzymes" was obtained by the non-covalent association of synthetic hemes such as N-methyl-mesoporphyrin IX, Fe(III) -α3β-tetra-o-carboxyphenylporphyrin or microperoxidase 8 with monoclonal antibodies raised against these cofactors. The obtained antibody-metalloporphyrin complexes displayed a peroxidase activity and some of them catalyzed the regio-selective nitration of phenols by H 2 O 2/ NO 2 and the stereo-selective oxidation of sulphides by H 2 O 2. A second generation of artificial hemoproteins or "hemozymes", was obtained by the non-covalent association of non-relevant proteins with metalloporphyrin derivatives. Several strategies were used, the most successful of which, named "host-guest" strategy involved the non-covalent incorporation of metalloporphyrin derivatives into easily affordable proteins. The artificial hemoproteins obtained were found to be able to perform efficiently the stereoselective oxidation of organic compounds such as sulphides and alkenes by H 2 O 2 and KHSO 5.
Collapse
Affiliation(s)
- Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola del Vallès, Barcelona, Spain
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie, Bioorganique et Bioinorganique, Bât. 420, Université Paris-sud, 91405 Orsay Cedex, France
| |
Collapse
|
11
|
Mahy JP, Maréchal JD, Ricoux R. From “hemoabzymes” to “hemozymes”: towards new biocatalysts for selective oxidations. Chem Commun (Camb) 2015; 51:2476-94. [DOI: 10.1039/c4cc08169b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two generations of artificial hemoproteins have been obtained: “hemoabzymes”, by non-covalent association of synthetic hemes with monoclonal antibodies raised against these cofactors and “hemozymes”, by non-covalent association of non-relevant proteins with metalloporphyrin derivatives. A review of the different strategies employed as well as their structural and catalytic properties is presented here.
Collapse
Affiliation(s)
- J.-P. Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| | - J.-D. Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - R. Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- UMR 8182 CNRS
- Laboratoire de Chimie Bioorganique et Bioinorganique
- 91435 Orsay Cedex
- France
| |
Collapse
|
12
|
Lin Y, Wang J, Lu Y. Functional tuning and expanding of myoglobin by rational protein design. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5063-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 2013; 43:1734-87. [PMID: 24365792 DOI: 10.1039/c3cs60037h] [Citation(s) in RCA: 673] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of artificial catalysts able to compete with the catalytic proficiency of enzymes is an intense subject of research. Non-covalent interactions are thought to be involved in several properties of enzymatic catalysis, notably (i) the confinement of the substrates and the active site within a catalytic pocket, (ii) the creation of a hydrophobic pocket in water, (iii) self-replication properties and (iv) allosteric properties. The origins of the enhanced rates and high catalytic selectivities associated with these properties are still a matter of debate. Stabilisation of the transition state and favourable conformations of the active site and the product(s) are probably part of the answer. We present here artificial catalysts and biomacromolecule hybrid catalysts which constitute good models towards the development of truly competitive artificial enzymes.
Collapse
Affiliation(s)
- Matthieu Raynal
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
14
|
Oohora K, Kihira Y, Mizohata E, Inoue T, Hayashi T. C(sp3)–H Bond Hydroxylation Catalyzed by Myoglobin Reconstituted with Manganese Porphycene. J Am Chem Soc 2013; 135:17282-5. [DOI: 10.1021/ja409404k] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yushi Kihira
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
15
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
16
|
Ueno T, Ohki T, Watanabe Y. Molecular engineering of cytochrome P450 and myoglobin for selective oxygenations. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842460400026x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspects of protein engineering of cytochrome P450 (P450) and myoglobin ( Mb ) to construct selective oxygenation catalysts have been described. Heme enzymes are known as biocatalysts for various oxidations but the design of substrate specificity has still remained one of the significant challenges because of dynamic nature of enzyme-substrate interactions. In particular, P450s are the most interesting targets among the heme enzymes because they are able to catalyze many types of monooxygenations such as hydroxylation, epoxidation, and sulfoxidation with high selectivity. Thus, many researchers have made efforts to convert the selectivity for natural substrates into that for unnatural substrates by several protein engineering approaches. On the other hand, we have reported a rational design of Mb to convert its oxygen carrier function into that of peroxidase or peroxygenase. The Mb mutants prepared in our work afford oxo-ferryl porphyrin radical cation (compound I) as observable species in Mb for the first time. Furthermore, some of the mutants we have constructed are useful for enantioselective oxygenations by oxygen transfer from the Mb -compound I to substrates.
Collapse
Affiliation(s)
- Takafumi Ueno
- Research Center for Materials Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takahiro Ohki
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
17
|
Shoji O, Watanabe Y. Design of H2O2-dependent oxidation catalyzed by hemoproteins. Metallomics 2011; 3:379-88. [DOI: 10.1039/c0mt00090f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Grosvenor AJ, Morton JD, Dyer JM. Profiling of residue-level photo-oxidative damage in peptides. Amino Acids 2009; 39:285-96. [PMID: 20091070 DOI: 10.1007/s00726-009-0440-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 12/01/2009] [Indexed: 12/14/2022]
Abstract
Protein and peptide oxidation is a key feature in the progression of a variety of disease states and in the poor performance of protein-based products. The present work demonstrates a mass spectrometry-based approach to profiling degradation at the amino acid residue level. Synthetic peptides containing the photosensitive residues, tryptophan and tyrosine, were used as models for protein-bound residue photodegradation. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was utilised to characterise and provide relative quantitative information on the formation of photoproducts localised to specific residues, including the characterisation of low abundance photomodifications not previously reported, including W + 4O modification, hydroxy-bis-tryptophandione and topaquinone. Other photoproducts observed were consistent with the formation of tyrosine-derived dihydroxyphenylalanine (dopa), trihydroxyphenylalanine, dopa-quinone and nitrotyrosine, and tryptophan-derived hydroxytryptophan, dihydroxytryptophan/N-formylkynurenine, kynurenine, hydroxyformylkynurenine, tryptophandiones, tetrahydro-beta-carboline and nitrotryptophan. This approach combined product identification and abundance tracking to generate a photodegradation profile of the model system. The profile of products formed yields information on formative mechanisms. Profiling of product formation offers new routes to identify damage markers for use in tracking and controlling oxidative damage to polypeptides.
Collapse
Affiliation(s)
- Anita J Grosvenor
- Growth and Development Section, Lincoln Research Centre, AgResearch, Lincoln, New Zealand
| | | | | |
Collapse
|
19
|
Ricoux R, Allard M, Dubuc R, Dupont C, Maréchal JD, Mahy JP. Selective oxidation of aromatic sulfide catalyzed by an artificial metalloenzyme: new activity of hemozymes. Org Biomol Chem 2009; 7:3208-11. [PMID: 19641774 DOI: 10.1039/b907534h] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two new artificial hemoproteins or "hemozymes", obtained by non covalent insertion of Fe(III)-meso-tetra-p-carboxy- and -p-sulfonato-phenylporphyrin into xylanase A from Streptomyces lividans, were characterized by UV-visible spectroscopy and molecular modeling studies, and were found to catalyze the chemo- and stereoselective oxidation of thioanisole into the S sulfoxide, the best yield (85 +/- 4%) and enantiomeric excess (40% +/- 3%) being obtained with Fe(III)-meso-tetra-p-carboxyphenylporphyrin-Xln10A as catalyst in the presence of imidazole as co-catalyst.
Collapse
Affiliation(s)
- Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris 11, 91405, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Ricoux R, Dubuc R, Dupont C, Marechal JD, Martin A, Sellier M, Mahy JP. Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From the Streptomyces lividans Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins. Bioconjug Chem 2008; 19:899-910. [DOI: 10.1021/bc700435a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Roger Dubuc
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Claude Dupont
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Jean-Didier Marechal
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Aurore Martin
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Marion Sellier
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris XI, 91405 Orsay Cedex, France, Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada, and Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdonyola (Barcelona), Spain
| |
Collapse
|
21
|
|
22
|
Watanabe Y, Nakajima H, Ueno T. Reactivities of oxo and peroxo intermediates studied by hemoprotein mutants. Acc Chem Res 2007; 40:554-62. [PMID: 17567089 DOI: 10.1021/ar600046a] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of myoglobin mutants, in which distal sites are modified by site-directed mutagenesis, are able to catalyze peroxidase, catalase, and P450 reactions even though their proximal histidine ligands are intact. More importantly, reactions of P450, catalase, and peroxidase substrates and compound I of myoglobin mutants can be observed spectroscopically. Thus, detailed oxidation mechanisms were examined. On the basis of these results, we suggest that the different reactivities of P450, catalase, and peroxidase are mainly caused by their active site structures, but not the axial ligand. We have also prepared compound 0 under physiological conditions by employing a mutant of cytochrome c 552. Compound 0 is not able to oxidize ascorbic acid.
Collapse
Affiliation(s)
- Yoshihito Watanabe
- Research Center for Materials Science and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
23
|
Ouellet H, Ranguelova K, Labarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, Guertin M. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. J Biol Chem 2007; 282:7491-503. [PMID: 17218317 DOI: 10.1074/jbc.m609155200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we investigated the reaction of ferric Mycobacterium tuberculosis truncated hemoglobin O (trHbO) with hydrogen peroxide. Stopped-flow spectrophotometric experiments under single turnover conditions showed that trHbO reacts with H(2)O(2) to give transient intermediate(s), among which is an oxyferryl heme, different from a typical peroxidase Compound I (oxyferryl heme pi-cation radical). EPR spectroscopy indicated evidence for both tryptophanyl and tyrosyl radicals, whereas redox titrations demonstrated that the peroxide-treated protein product retains 2 oxidizing eq. We propose that Compound I formed transiently is reduced with concomitant oxidation of Trp(G8) to give the detected oxoferryl heme and a radical on Trp(G8) (detected by EPR of the trHbO Tyr(CD1)Phe mutant). In the wild-type protein, the Trp(G8) radical is in turn reduced rapidly by Tyr(CD1). In a second cycle, Trp(G8) may be reoxidized by the ferryl heme to yield ferric heme and two protein radicals. In turn, these migrate to form tyrosyl radicals on Tyr(55) and Tyr(115), which lead, in the absence of a reducing substrate, to oligomerization of the protein. Steady-state kinetics in the presence of H(2)O(2) and the one-electron donor 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) indicated that trHbO has peroxidase activity, in accord with the presence of typical peroxidase intermediates. These findings suggest an oxidation/reduction function for trHbO and, by analogy, for other Group II trHbs.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Biochemistry and Microbiology, Laval University, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Dyer JM, Bringans SD, Bryson WG. Determination of Photo-oxidation Products Within Photoyellowed Bleached Wool Proteins. Photochem Photobiol 2006; 82:551-7. [PMID: 16613512 DOI: 10.1562/2005-08-29-ra-663] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo-oxidative processes occurring in wool can lead to significant photoyellowing of the fiber. In particular, wool that has been chemically bleached photoyellows more rapidly and to a greater degree than untreated wool. Direct identification of the chromophores responsible for such yellow discoloration in irradiated wool has proven to be elusive for many years. This article describes the characterization and location of yellow photo-oxidation products within the proteins of photoyellowed bleached wool fabric, using advanced protein chemistry techniques. The discolored fabric was enzymatically digested and chromatographed by high-pressure liquid chromatography, with monitoring at 400 nm, to select out fractions containing yellow chromophoric species. Thorough tandem mass spectrometric analysis was then used to sequence peptides and, in turn, to characterize modifications to key amino acid residues that had resulted in yellow chromophore formation. In total, 11 separate yellow chromophoric species were identified, ten derived from tryptophan residues and one from tyrosine. The tryptophan-derived modifications characterized included hydroxytryptophan, N-formylkynurenine, hydroxyformylkynurenine, kynurenine, hydroxykynurenine, carbolines, tryptophandiones and nitrotryptophan. The tyrosine-derived modification of tyrosine to dopa was also identified. The range of photomodifications we observed provides insight into the photo-oxidation pathways occurring within irradiated fibrous proteins leading to the formation of yellow chromophores.
Collapse
Affiliation(s)
- Jolon M Dyer
- Canesis Network Limited, Private Bag 4749, Christchurch, New Zealand.
| | | | | |
Collapse
|
25
|
Choe YK, Nagase S. Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): A theoretical study. J Comput Chem 2005; 26:1600-11. [PMID: 16155883 DOI: 10.1002/jcc.20302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of axial ligands on the reactivity of high-valent iron(IV) oxo-porphyrins (Compound I) was investigated using the B3LYP hybrid density functional method. We studied alkane hydroxylation using four models: Compound I with thiolate, imidazole, phenolate, and chloride anions as axial ligands. The first three ligands were employed as models for cysteinate, histidine, and tyrosinate, respectively. Our calculations show that anionic ligands and neutral ligands favor different electronic states for stationary points in the reaction coordinate, and the calculated energy barrier and energy of several reaction intermediates show similar values. A remarkable effect of axial ligands was found in the final product release step. Our calculations show that the thiolate ligand weakens a bond between heme and an alcohol. In contrast, the imidazole ligand significantly increases the interaction between heme and an alcohol, which causes the catalytic cycle to be less efficient.
Collapse
Affiliation(s)
- Yoong-Kee Choe
- Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, Center-2, Umezono 1-1-1, Tsukuba 305-8578, Japan.
| | | |
Collapse
|
26
|
Pfister TD, Ohki T, Ueno T, Hara I, Adachi S, Makino Y, Ueyama N, Lu Y, Watanabe Y. Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide. Myoglobin mutants as a model for P450 hydroxylation chemistry. J Biol Chem 2005; 280:12858-66. [PMID: 15664991 DOI: 10.1074/jbc.m410853200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myoglobin (Mb) is used as a model system for other heme proteins and the reactions they catalyze. The latest novel function to be proposed for myoglobin is a P450 type hydroxylation activity of aromatic carbons (Watanabe, Y., and Ueno, T. (2003) Bull. Chem. Soc. Jpn. 76, 1309-1322). Because Mb does not contain a specific substrate binding site for aromatic compounds near the heme, an engineered tryptophan in the heme pocket was used to model P450 hydroxylation of aromatic compounds. The monooxygenation product was not previously isolated because of rapid subsequent oxidation steps (Hara, I., Ueno, T., Ozaki, S., Itoh, S., Lee, K., Ueyama, N., and Watanabe, Y. (2001) J. Biol. Chem. 276, 36067-36070). In this work, a Mb variant (F43W/H64D/V68I) is used to characterize the monooxygenated intermediate. A modified (+16 Da) species forms upon the addition of 1 eq of H2O2. This product was digested with chymotrypsin, and the modified peptide fragments were isolated and characterized as 6-hydroxytryptophan using matrix-assisted laser desorption ionization time-of-flight tandem mass spectroscopy and 1H NMR. This engineered Mb variant represents the first enzyme to preferentially hydroxylate the indole side chain of Trp at the C6 position. Finally, heme extraction was used to demonstrate that both the formation of the 6-hydroxytryptophan intermediate (+16 Da) and subsequent oxidation to form the +30 Da final product are catalyzed by the heme cofactor, most probably via the compound I intermediate. These results provide insight into the mechanism of hydroxylation of aromatic carbons by heme proteins, demonstrating that non-thiolate-ligated heme enzymes can perform this function. This establishes Mb compound I as a model for P450 type aromatic hydroxylation chemistry.
Collapse
Affiliation(s)
- Thomas D Pfister
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61820, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, Colombo R, Rossi R, Milzani A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. MASS SPECTROMETRY REVIEWS 2005; 24:55-99. [PMID: 15389864 DOI: 10.1002/mas.20006] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenesis and/or progression of several human diseases. Proteins are important molecular signposts of oxidative/nitrosative damage. However, it is generally unresolved whether the presence of oxidatively/nitrosatively modified proteins has a causal role or simply reflects secondary epiphenomena. Only direct identification and characterization of the modified protein(s) in a given pathophysiological condition can decipher the potential roles played by ROS/RNS-induced protein modifications. During the last few years, mass spectrometry (MS)-based technologies have contributed in a significant way to foster a better understanding of disease processes. The study of oxidative/nitrosative modifications, investigated by redox proteomics, is contributing to establish a relationship between pathological hallmarks of disease and protein structural and functional abnormalities. MS-based technologies promise a contribution in a new era of molecular medicine, especially in the discovery of diagnostic biomarkers of oxidative/nitrosative stress, enabling early detection of diseases. Indeed, identification and characterization of oxidatively/nitrosatively modified proteins in human diseases has just begun.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kato S, Ueno T, Fukuzumi S, Watanabe Y. Catalase Reaction by Myoglobin Mutants and Native Catalase. J Biol Chem 2004; 279:52376-81. [PMID: 15347658 DOI: 10.1074/jbc.m403532200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalase reaction has been studied in detail by using myoglobin (Mb) mutants. Compound I of Mb mutants (Mb-I), a ferryl species (Fe(IV)=O) paired with a porphyrin radical cation, is readily prepared by the reaction with a nearly stoichiometric amount of m-chloroperbenzoic acid. Upon the addition of H2O2 to an Mb-I solution, Mb-I is reduced back to the ferric state without forming any intermediates. This indicates that Mb-I is capable of performing two-electron oxidation of H2O2 (catalatic reaction). Gas chromatography-mass spectroscopy analysis of the evolved O2 from a 50:50 mixture of H2(18)O2/H2(16)O2 solution containing H64D or F43H/H64L Mb showed the formation of 18O2 (m/e = 36) and 16O2 (m/e = 32) but not 16O18O (m/e = 34). This implies that O2 is formed by two-electron oxidation of H2O2 without breaking the O-O bond. Deuterium isotope effects on the catalatic reactions of Mb mutants and catalase suggest that the catalatic reactions of Micrococcus lysodeikticus catalase and F43H/H64L Mb proceed via an ionic mechanism with a small isotope effect of less than 4.0, since the distal histidine residue is located at a proper position to act as a general acid-base catalyst for the ionic reaction. In contrast, other Mb mutants such as H64X (X is Ala, Ser, and Asp) and L29H/H64L Mb oxidize H2O2 via a radical mechanism in which a hydrogen atom is abstracted by Mb-I with a large isotope effect in a range of 10-29, due to a lack of the general acid-base catalyst.
Collapse
Affiliation(s)
- Shigeru Kato
- Department of Structural Molecule Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
29
|
Watanabe Y, Ueno T. Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2003. [DOI: 10.1246/bcsj.76.1309] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Abstract
Construction of enzymes that catalyze either desired reactions or exhibit desired substrate specificity is one of the goals of enzymatic study. Rational design of enzymes is an important approach in this field. Another, extremely different, methodology from rational design, directed evolution, has been rapidly developed over the past two years.
Collapse
Affiliation(s)
- Yoshihito Watanabe
- Center for Integrative Bioscience and Institute for Molecular Science, Okazaki National Research Institutes, 444-8585, Okazaki, Japan.
| |
Collapse
|