1
|
Rothweiler U, Gundesø S, Mikalsen E, Svenning S, Singh M, Combes F, Pettersson F, Mangold A, Piotrowski Y, Schwab F, Lanes O, Striberny B. Using nucleolytic toxins as restriction enzymes enables new RNA applications. Nucleic Acids Res 2024; 52:e90. [PMID: 39271118 PMCID: PMC11472045 DOI: 10.1093/nar/gkae779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past five decades, DNA restriction enzymes have revolutionized biotechnology. While these enzymes are widely used in DNA research and DNA engineering, the emerging field of RNA and mRNA therapeutics requires sequence-specific RNA endoribonucleases. Here, we describe EcoToxN1, a member of the type III toxin-antitoxin family of sequence-specific RNA endoribonucleases, and its use in RNA and mRNA analysis. This enzyme recognizes a specific pentamer in a single-stranded RNA and cleaves the RNA within this sequence. The enzyme is neither dependent on annealing of guide RNA or DNA oligos to the template nor does it require magnesium. Furthermore, it performs over a wide range of temperatures. With its unique functions and characteristics, EcoToxN1 can be classified as an RNA restriction enzyme. EcoToxN1 enables new workflows in RNA analysis and biomanufacturing, meeting the demand for faster, cheaper, and more robust analysis methods.
Collapse
Affiliation(s)
- Ulli Rothweiler
- ArcticZymes Technologies ASA, Sykehusveien 23, 9019 Tromsø, Norway
| | | | - Emma Wu Mikalsen
- ArcticZymes Technologies ASA, Sykehusveien 23, 9019 Tromsø, Norway
- UiT – The Arctic University of Norway, Faculty of Biosciences, Fisheries & Economics, Muninbakken 21, 9019 Tromsø, Norway
| | | | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Francis Combes
- Department of Biotechnology and Nanomedicine, SINTEF AS, Richard Birkelands vei 3, N-7034 Trondheim, Norway
| | - Frida J Pettersson
- Department of Biotechnology and Nanomedicine, SINTEF AS, Richard Birkelands vei 3, N-7034 Trondheim, Norway
| | - Antonia Mangold
- ArcticZymes Technologies ASA, Sykehusveien 23, 9019 Tromsø, Norway
| | | | - Felix Schwab
- ArcticZymes Technologies ASA, Sykehusveien 23, 9019 Tromsø, Norway
| | - Olav Lanes
- ArcticZymes Technologies ASA, Sykehusveien 23, 9019 Tromsø, Norway
| | | |
Collapse
|
2
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
3
|
Dank A, Liu Y, Wen X, Lin F, Wiersma A, Boeren S, Smid EJ, Notebaart RA, Abee T. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Propionibacterium freudenreichii. Heliyon 2024; 10:e33444. [PMID: 39027605 PMCID: PMC11255663 DOI: 10.1016/j.heliyon.2024.e33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Xin Wen
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Fan Lin
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Wiersma
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Liu P, Zhang R, Song X, Tian X, Guan Y, Li L, He M, He C, Ding N. RTCB deficiency triggers colitis in mice by influencing the NF-κB and Wnt/β-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2024; 56:405-413. [PMID: 38425245 PMCID: PMC11292128 DOI: 10.3724/abbs.2023279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 03/02/2024] Open
Abstract
RNA terminal phosphorylase B (RTCB) has been shown to play a significant role in multiple physiological processes. However, the specific role of RTCB in the mouse colon remains unclear. In this study, we employ a conditional knockout mouse model to investigate the effects of RTCB depletion on the colon and the potential molecular mechanisms. We assess the efficiency and phenotype of Rtcb knockout using PCR, western blot analysis, histological staining, and immunohistochemistry. Compared with the control mice, the Rtcb-knockout mice exhibit compromised colonic barrier integrity and prominent inflammatory cell infiltration. In the colonic tissues of Rtcb-knockout mice, the protein levels of TNF-α, IL-8, and p-p65 are increased, whereas the levels of IKKβ and IκBα are decreased. Moreover, the level of GSK3β is increased, whereas the levels of Wnt3a, β-catenin, and LGR5 are decreased. Collectively, our findings unveil a close association between RTCB and colonic tissue homeostasis and demonstrate that RTCB deficiency can lead to dysregulation of both the NF-κB and Wnt/β-catenin signaling pathways in colonic cells.
Collapse
Affiliation(s)
- Peiyan Liu
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Ruitao Zhang
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Xiaotong Song
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Xiaohua Tian
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Yichao Guan
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Licheng Li
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Mei He
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Chengqiang He
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Naizheng Ding
- />College of Life ScienceShandong Normal UniversityJinan250014China
| |
Collapse
|
6
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. RNA (NEW YORK, N.Y.) 2024; 30:354-366. [PMID: 38307611 PMCID: PMC10946435 DOI: 10.1261/rna.079957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Gerber JL, Morales Guzmán SI, Worf L, Hubbe P, Kopp J, Peschek J. Structural and mechanistic insights into activation of the human RNA ligase RTCB by Archease. Nat Commun 2024; 15:2378. [PMID: 38493148 PMCID: PMC10944509 DOI: 10.1038/s41467-024-46568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
RNA ligases of the RTCB-type play an essential role in tRNA splicing, the unfolded protein response and RNA repair. RTCB is the catalytic subunit of the pentameric human tRNA ligase complex. RNA ligation by the tRNA ligase complex requires GTP-dependent activation of RTCB. This active site guanylylation reaction relies on the activation factor Archease. The mechanistic interplay between both proteins has remained unknown. Here, we report a biochemical and structural analysis of the human RTCB-Archease complex in the pre- and post-activation state. Archease reaches into the active site of RTCB and promotes the formation of a covalent RTCB-GMP intermediate through coordination of GTP and metal ions. During the activation reaction, Archease prevents futile RNA substrate binding to RTCB. Moreover, monomer structures of Archease and RTCB reveal additional states within the RNA ligation mechanism. Taken together, we present structural snapshots along the reaction cycle of the human tRNA ligase.
Collapse
Affiliation(s)
- Janina Lara Gerber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | | | - Lorenz Worf
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Petra Hubbe
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jürgen Kopp
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany.
| |
Collapse
|
8
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Marotta NJ, Weinert EE. Insights into the metabolism, signaling, and physiological effects of 2',3'-cyclic nucleotide monophosphates in bacteria. Crit Rev Biochem Mol Biol 2023; 58:118-131. [PMID: 38064689 PMCID: PMC10877235 DOI: 10.1080/10409238.2023.2290473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) have been discovered within both prokaryotes and eukaryotes in the past decade and a half, raising questions about their conserved existence in cells. In plants and mammals, wounding has been found to cause increased levels of 2',3'-cNMPs. Roles for 2',3'-cNMPs in plant immunity suggest that their regulation may be valuable for both plant hosts and microbial pathogens. In support of this hypothesis, a plethora of microbial enzymes have been found with activities related to these molecules. Studies in bacteria suggest that 2',3'-cNMPs are also produced in response to cellular stress and modulate expression of numerous genes. 2',3'-cNMP levels affect bacterial phenotypes, including biofilm formation, motility, and growth. Within E. coli and Salmonella enterica, 2',3'-cNMPs are produced by RNA degradation by RNase I, highlighting potential roles for Type 2 RNases producing 2',3'-cNMPs in a range of organisms. Development of cellular tools to modulate 2',3'-cNMP levels in bacteria has allowed for interrogation of the effects of 2',3'-cNMP concentration on bacterial transcriptomes and physiology. Pull-downs of cellular 2',3'-cNMP binding proteins have identified the ribosome and in vitro studies demonstrated that 2',3'-cNMPs decrease translation, suggesting a direct mechanism for 2',3-cNMP-dependent control of bacterial phenotypes. Future studies dissecting the cellular roles of 2',3'-cNMPs will highlight novel signaling pathways within prokaryotes and which can potentially be engineered to control bacterial physiology.
Collapse
Affiliation(s)
- Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative
Biosciences, Penn State University, University Park, PA, 16803, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn
State University, University Park, PA, 16803, USA
- Department of Chemistry, Penn State University, University
Park, PA, 16803, USA
| |
Collapse
|
10
|
Shuman S. RNA Repair: Hiding in Plain Sight. Annu Rev Genet 2023; 57:461-489. [PMID: 37722686 DOI: 10.1146/annurev-genet-071719-021856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
11
|
Ahammed KS, van Hoof A. Fungi of the order Mucorales express a "sealing-only" tRNA ligase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567474. [PMID: 38014270 PMCID: PMC10680797 DOI: 10.1101/2023.11.16.567474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease (TSEN), followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins each can functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, contain an atypical Trl1 that contains the sealing domain, but lack both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified non-orthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.
Collapse
Affiliation(s)
- Khondakar Sayef Ahammed
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics. UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences. University of Texas Health Science Center at Houston
| |
Collapse
|
12
|
Akiyama Y, Ivanov P. tRNA-derived RNAs: Biogenesis and roles in translational control. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1805. [PMID: 37406666 PMCID: PMC10766869 DOI: 10.1002/wrna.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Nemudryi A, Nemudraia A, Nichols JE, Scherffius AM, Zahl T, Wiedenheft B. CRISPR-based engineering of RNA viruses. SCIENCE ADVANCES 2023; 9:eadj8277. [PMID: 37703376 PMCID: PMC10499312 DOI: 10.1126/sciadv.adj8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a recombinant RNA technology with immediate applications for the facile engineering of RNA viruses.
Collapse
Affiliation(s)
| | | | | | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
14
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
15
|
Kolberg T, von Löhneysen S, Ozerova I, Wellner K, Hartmann R, Stadler P, Mörl M. Led-Seq: ligation-enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Res 2023; 51:e63. [PMID: 37114986 PMCID: PMC10287922 DOI: 10.1093/nar/gkad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals. However, these methods address only one side of the RT stop or misincorporation position. Here, we describe Led-Seq, a new approach based on lead-induced cleavage of unpaired RNA positions, where both resulting cleavage products are investigated. The RNA fragments carrying 2', 3'-cyclic phosphate or 5'-OH ends are selectively ligated to oligonucleotide adapters by specific RNA ligases. In a deep sequencing analysis, the cleavage sites are identified as ligation positions, avoiding possible false positive signals based on premature RT stops. With a benchmark set of transcripts in Escherichia coli, we show that Led-Seq is an improved and reliable approach based on metal ion-induced phosphodiester hydrolysis to investigate RNA structures in vivo.
Collapse
Affiliation(s)
- Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Sarah von Löhneysen
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Roland K Hartmann
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- Institute AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Nemudryi A, Nemudraia A, Nichols JE, Scherffius AM, Zahl T, Wiedenheft B. CRISPR-based engineering of RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541219. [PMID: 37292641 PMCID: PMC10245796 DOI: 10.1101/2023.05.19.541219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a new recombinant RNA technology with immediate applications for the facile engineering of RNA viruses. One-Sentence Summary Programmable CRISPR RNA-guided ribonucleases enable recombinant RNA technology.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| |
Collapse
|
18
|
Chen X, Wolin SL. Transfer RNA halves are found as nicked tRNAs in cells: evidence that nicked tRNAs regulate expression of an RNA repair operon. RNA (NEW YORK, N.Y.) 2023; 29:620-629. [PMID: 36781286 PMCID: PMC10159003 DOI: 10.1261/rna.079575.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/01/2023] [Indexed: 05/06/2023]
Abstract
Transfer RNA fragments are proposed to regulate numerous processes in eukaryotes, including translation inhibition, epigenetic inheritance, and cancer. In the bacterium Salmonella enterica serovar Typhimurium, 5' tRNA halves ending in 2',3' cyclic phosphate are proposed to bind the RtcR transcriptional activator, resulting in transcription of an RNA repair operon. However, since 5' and 3' tRNA halves can remain base paired after cleavage, the 5' tRNA halves could potentially bind RtcR as nicked tRNAs. Here we report that nicked tRNAs are ligands for RtcR. By isolating RNA from bacteria under conditions that preserve base pairing, we show that many tRNA halves are in the form of nicked tRNAs. Using a circularly permuted tRNA that mimics a nicked tRNA, we show that nicked tRNA ending in 2',3' cyclic phosphate is a better ligand for RtcR than the corresponding 5' tRNA half. In human cells, we show that some tRNA halves similarly remain base paired as nicked tRNAs following cleavage by anticodon nucleases. Our work supports a role for the RNA repair operon in repairing nicked tRNAs and has implications for the functions proposed for tRNA fragments in eukaryotes.
Collapse
Affiliation(s)
- Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
19
|
Kurasz JE, Crawford MC, Porwollik S, Gregory O, Tadlock KR, Balding EC, Weinert EE, McClelland M, Karls AC. Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium. J Bacteriol 2023; 205:e0026222. [PMID: 36622230 PMCID: PMC9879122 DOI: 10.1128/jb.00262-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.
Collapse
Affiliation(s)
| | | | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Oliver Gregory
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eve C. Balding
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A 2023; 120:e2216330120. [PMID: 36652478 PMCID: PMC9942843 DOI: 10.1073/pnas.2216330120] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Collapse
|
21
|
Sudakov A, Knezic B, Hengesbach M, Fürtig B, Stirnal E, Schwalbe H. Site-Specific Labeling of RNAs with Modified and 19 F-Labeled Nucleotides by Chemo-Enzymatic Synthesis. Chemistry 2023; 29:e202203368. [PMID: 36594705 DOI: 10.1002/chem.202203368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
More than 170 post-transcriptional modifications of RNAs have currently been identified. Detailed biophysical investigations of these modifications have been limited since large RNAs containing these post-transcriptional modifications are difficult to produce. Further, adequate readout of spectroscopic fingerprints are important, necessitating additional labeling procedures beyond the naturally occurring RNA modifications. Here, we report the chemo-enzymatic synthesis of RNA modifications and several structurally similar fluorine-modified analogs further optimizing a recently developed methodology.[1] This chemo-enzymatic method allows synthesis of also large RNAs. We were able to incorporate 16 modified nucleotides and 6 19 F-labeled nucleotides. To showcase the applicability of such modified large RNAs, we incorporated a 19 F-labeled cytidine into the aptamer domain of the 2'dG sensing riboswitch (2'dG-sw) from Mesoplasma florum, enabling characterizing RNA fold, ligand binding and kinetics. Thanks to the large chemical shift dispersion of 19 F, we can detect conformational heterogeneity in the apo state of the riboswitch.
Collapse
Affiliation(s)
- Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7+9, 60438, Frankfurt, Germany
| |
Collapse
|
22
|
Gao L, Ma X. Transcriptome Analysis of Acinetobacter baumannii in Rapid Response to Subinhibitory Concentration of Minocycline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16095. [PMID: 36498165 PMCID: PMC9741440 DOI: 10.3390/ijerph192316095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii brings great threats to public health. Minocycline is a kind of semisynthetic derivative of the antibacterial drug tetracycline and is often used to treat infections caused by multidrug-resistant A. baumannii with other antibiotics. However, minocycline-resistant A. baumannii appears constantly. To rapidly explore the response of A. baumannii to minocycline stress, RNA-seq was carried out to compare the difference in the transcriptome of A. baumannii ATCC19606 in the presence or absence of minocycline. The results showed that 25 genes were differentially expressed, including 10 downregulated genes and 15 upregulated genes, and 24 sRNA were upregulated and 24 were downregulated based on the filter criteria (Log2FC > 1 or <−1 and FDR < 0.05). RtcB family protein and ABC transporter ATP-binding protein were upregulated by 2.6- and 11.3-fold, and molecular chaperone GroES, chaperonin GroL, class C beta-lactamase ADC-158, amino acid ABC transporter permease, and APC family permease were downregulated by at least two-fold in the presence of half-MIC minocycline. The differentially expressed genes are mainly involved in the stress response, the GroES/GroEL chaperonin system, and transport metabolic pathways. sRNA 1248 was significantly upregulated, and sRNA 1767, 5182, and 6984 were downregulated in a rapid response to minocycline. These results provide insights into the adaptive mechanism of A. baumannii to minocycline.
Collapse
Affiliation(s)
- Lili Gao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaochun Ma
- Experimental Animal Center, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
23
|
Kotta-Loizou I, Giuliano MG, Jovanovic M, Schaefer J, Ye F, Zhang N, Irakleidi DA, Liu X, Zhang X, Buck M, Engl C. The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain. iScience 2022; 25:105425. [PMID: 36388977 PMCID: PMC9650030 DOI: 10.1016/j.isci.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/21/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription activation and directly bind to RtcR CARF. RtcAB catalytic activity is not required for complex formation with CARF, but is essential yet not sufficient for RtcRAB-dependent transcription activation, implying the need for an additional RNA repair-dependent activating signal. This signal differs from oligoadenylates, a known ligand of CARF domains, and instead appears to originate from the translation apparatus: RtcB repairs a tmRNA that rescues stalled ribosomes and increases translation elongation speed. Taken together, our data provide evidence for an expanded range for CARF domain signaling, including the first evidence of its control via in trans protein-protein interactions, and a feed-forward mechanism to regulate RNA repair required for a functioning translation apparatus.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Maria Grazia Giuliano
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Milija Jovanovic
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jorrit Schaefer
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Fuzhou Ye
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Nan Zhang
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Danai Athina Irakleidi
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaojiao Liu
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Christoph Engl
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
24
|
Jacewicz A, Dantuluri S, Shuman S. Structures of RNA ligase RtcB in complexes with divalent cations and GTP. RNA (NEW YORK, N.Y.) 2022; 28:1509-1518. [PMID: 36130078 PMCID: PMC9745838 DOI: 10.1261/rna.079327.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pyrococcus horikoshii (Pho) RtcB exemplifies a family of binuclear transition metal- and GTP-dependent RNA ligases that join 3'-phosphate and 5'-OH ends via RtcB-(histidinyl-N)-GMP and RNA3'pp5'G intermediates. We find that guanylylation of PhoRtcB is optimal with manganese and less effective with cobalt and nickel. Zinc and copper are inactive and potently inhibit manganese-dependent guanylylation. We report crystal structures of PhoRtcB in complexes with GTP and permissive (Mn, Co, Ni) or inhibitory (Zn, Cu) metals. Zinc and copper occupy the M1 and M2 sites adjacent to the GTP phosphates, as do manganese, cobalt, and nickel. The identity/positions of enzymic ligands for M1 (His234, His329, Cys98) and M2 (Cys98, Asp95, His203) are the same for permissive and inhibitory metals. The differences pertain to: (i) the coordination geometries and phosphate contacts of the metals; and (ii) the orientation of the His404 nucleophile with respect to the GTP α-phosphate and pyrophosphate leaving group. M2 metal coordination geometry correlates with metal cofactor activity, whereby inhibitory Zn2 and Cu2 assume a tetrahedral configuration and contact only the GTP γ-phosphate, whereas Mn2, Co2, and Ni2 coordination complexes are pentahedral and contact the β- and γ-phosphates. The His404-Nε-Pα-O(α-β) angle is closer to apical in Mn (179°), Co (171°), and Ni (169°) structures than in Zn (160°) and Cu (155°) structures. The octahedral Mn1 geometry in our RtcB•GTP•Mn2+ structure, in which Mn1 contacts α-, β-, and γ-phosphates, transitions to a tetrahedral configuration after formation of RtcB•(His404)-GMP•Mn2+ and departure of pyrophosphate.
Collapse
Affiliation(s)
- Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
25
|
Hocher A, Borrel G, Fadhlaoui K, Brugère JF, Gribaldo S, Warnecke T. Growth temperature and chromatinization in archaea. Nat Microbiol 2022; 7:1932-1942. [PMID: 36266339 PMCID: PMC7613761 DOI: 10.1038/s41564-022-01245-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
DNA in cells is associated with proteins that constrain its structure and affect DNA-templated processes including transcription and replication. HU and histones are the main constituents of chromatin in bacteria and eukaryotes, respectively, with few exceptions. Archaea, in contrast, have diverse repertoires of nucleoid-associated proteins (NAPs). To analyse the evolutionary and ecological drivers of this diversity, we combined a phylogenomic survey of known and predicted NAPs with quantitative proteomic data. We identify the Diaforarchaea as a hotbed of NAP gain and loss, and experimentally validate candidate NAPs in two members of this clade, Thermoplasma volcanium and Methanomassiliicoccus luminyensis. Proteomic analysis across a diverse sample of 19 archaea revealed that NAP investment varies from <0.03% to >5% of total protein. This variation is predicted by growth temperature. We propose that high levels of chromatinization have evolved as a mechanism to prevent uncontrolled helix denaturation at higher temperatures, with implications for the origin of chromatin in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Antoine Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Khaled Fadhlaoui
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Jean-François Brugère
- Université Clermont Auvergne, CNRS, Lab Microorganismes: Génome et Environnement LMGE, Clermont-Ferrand, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS6047, Evolutionary Biology of the Microbial Cell, Paris, France
| | - Tobias Warnecke
- Medical Research Council London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
26
|
Akiyama Y, Takenaka Y, Kasahara T, Abe T, Tomioka Y, Ivanov P. RTCB Complex Regulates Stress-Induced tRNA Cleavage. Int J Mol Sci 2022; 23:ijms232113100. [PMID: 36361884 PMCID: PMC9655011 DOI: 10.3390/ijms232113100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
- Correspondence: (Y.A.); (P.I.)
| | - Yoshika Takenaka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (Y.A.); (P.I.)
| |
Collapse
|
27
|
Distribution and Genomic Variation of Thermophilic Cyanobacteria in Diverse Microbial Mats at the Upper Temperature Limits of Photosynthesis. mSystems 2022; 7:e0031722. [PMID: 35980085 PMCID: PMC9600594 DOI: 10.1128/msystems.00317-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic cyanobacteria have been extensively studied in Yellowstone National Park (YNP) hot springs, particularly during decades of work on the thick laminated mats of Octopus and Mushroom springs. However, focused studies of cyanobacteria outside these two hot springs have been lacking, especially regarding how physical and chemical parameters along with community morphology influence the genomic makeup of these organisms. Here, we used a metagenomic approach to examine cyanobacteria existing at the upper temperature limit of photosynthesis. We examined 15 alkaline hot spring samples across six geographic areas of YNP, all with various physical and chemical parameters and community morphology. We recovered 22 metagenome-assembled genomes (MAGs) belonging to thermophilic cyanobacteria, notably an uncultured Synechococcus-like taxon recovered from a setting at the upper temperature limit of photosynthesis, 73°C, in addition to thermophilic Gloeomargarita. Furthermore, we found that three distinct groups of Synechococcus-like MAGs recovered from different temperature ranges vary in their genomic makeup. MAGs from the uncultured very-high-temperature (up to 73°C) Synechococcus-like taxon lack key nitrogen metabolism genes and have genes implicated in cellular stress responses that diverge from other Synechococcus-like MAGs. Across all parameters measured, temperature was the primary determinant of taxonomic makeup of recovered cyanobacterial MAGs. However, total Fe, community morphology, and biogeography played an additional role in the distribution and abundance of upper-temperature-limit-adapted Synechococcus-like MAGs. These findings expand our understanding of cyanobacterial diversity in YNP and provide a basis for interrogation of understudied thermophilic cyanobacteria. IMPORTANCE Oxygenic photosynthesis arose early in microbial evolution-approximately 2.5 to 3.5 billion years ago-and entirely reshaped the biological makeup of Earth. However, despite the span of time in which photosynthesis has been refined, it is strictly limited to temperatures below 73°C, a barrier that many other biological processes have been able to overcome. Furthermore, photosynthesis at temperatures above 56°C is limited to circumneutral and alkaline pH. Hot springs in Yellowstone National Park (YNP), which have a large diversity in temperatures, pH, and geochemistry, provide a natural laboratory to study thermophilic microbial mats and the cyanobacteria within. While cyanobacteria in YNP microbial mats have been studied for decades, a vast majority of the work has focused on two springs within the same geyser basin, both containing similar community morphologies. Thus, the drivers of cyanobacterial adaptations to the upper limits of photosynthesis across a variety of environmental parameters have been understudied. Our findings provide new insights into the influence of these parameters on both taxonomic diversity and genomic content of cyanobacteria across a range of hot spring samples.
Collapse
|
28
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
29
|
Weixler L, Feijs KLH, Zaja R. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Nucleic Acids Res 2022; 50:9426-9441. [PMID: 36018800 PMCID: PMC9458441 DOI: 10.1093/nar/gkac711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
RNA function relies heavily on posttranscriptional modifications. Recently, it was shown that certain PARPs and TRPT1 can ADP-ribosylate RNA in vitro. Traditionally, intracellular ADP-ribosylation has been considered mainly as a protein posttranslational modification. To date, it is not clear whether RNA ADP-ribosylation occurs in cells. Here we present evidence that different RNA species are ADP-ribosylated in human cells. The modification of cellular RNA is mediated by several transferases such as TRPT1, PARP10, PARP11, PARP12 and PARP15 and is counteracted by different hydrolases including TARG1, PARG and ARH3. In addition, diverse cellular stressors can modulate the content of ADP-ribosylated RNA in cells. We next investigated potential consequences of ADP-ribosylation for RNA and found that ADPr-capped mRNA is protected against XRN1 mediated degradation but is not translated. T4 RNA ligase 1 can ligate ADPr-RNA in absence of ATP, resulting in the incorporation of an abasic site. We thus provide the first evidence of RNA ADP-ribosylation in mammalian cells and postulate potential functions of this novel RNA modification.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Karla L H Feijs
- Correspondence may also be addressed to Karla L.H. Feijs. Tel: +49 2418080692; Fax: +49 2418082427;
| | - Roko Zaja
- To whom correspondence should be addressed. Tel: +49 2418037944; Fax: +49 2418082427;
| |
Collapse
|
30
|
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A 2022; 119:e2202464119. [PMID: 35858322 PMCID: PMC9304027 DOI: 10.1073/pnas.2202464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023] Open
Abstract
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.
Collapse
Affiliation(s)
- Yannan Tian
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fuxing Zeng
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Adrika Raybarman
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Shirin Fatma
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Amy Carruthers
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Qingrong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
31
|
Maviza TP, Zarechenskaia AS, Burmistrova NR, Tchoub AS, Dontsova OA, Sergiev PV, Osterman IA. RtcB2-PrfH Operon Protects E. coli ATCC25922 Strain from Colicin E3 Toxin. Int J Mol Sci 2022; 23:6453. [PMID: 35742896 PMCID: PMC9223846 DOI: 10.3390/ijms23126453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.
Collapse
Affiliation(s)
- Tinashe P. Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
| | - Anastasiia S. Zarechenskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Nadezhda R. Burmistrova
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Andrey S. Tchoub
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119992, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; (T.P.M.); (A.S.Z.); (O.A.D.); (P.V.S.)
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (N.R.B.); (A.S.T.)
- Genetics and Life Sciences Research Center, Sirius University of Science and Technology, 1 Olympic Ave., Sochi 354340, Russia
| |
Collapse
|
32
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
33
|
Olzog VJ, Freist LI, Goldmann R, Fallmann J, Weinberg CE. Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq. Biol Chem 2022; 403:705-715. [PMID: 35025187 DOI: 10.1515/hsz-2021-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others. Here, we develop an alternative strategy in which 5' OH RNAs are specifically ligated by RtcB ligase, which first guanylates the 3' phosphate of the adapter and then ligates it directly to RNAs with 5' OH ends. Our results demonstrate that adapter ligation to highly structured ribozyme fragments is much more efficient using the thermostable RtcB ligase from Pyrococcus horikoshii than the broadly applied Escherichia coli enzyme. Moreover, we investigated DNA, RNA and modified RNA adapters for their suitability in RtcB ligation reactions. We used the optimized RtcB-mediated ligation to produce RNA-seq libraries and captured a spiked 3' twister ribozyme fragment from E. coli total RNA. This RNA-seq-based method is applicable to detect ribozyme fragments as well as other cellular RNAs with 5' OH termini from total RNA.
Collapse
Affiliation(s)
- V Janett Olzog
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Lena I Freist
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Goldmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christina E Weinberg
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
34
|
Peng R, Yoshinari S, Kawano-Sugaya T, Jeelani G, Nozaki T. Identification and Functional Characterization of Divergent 3'-Phosphate tRNA Ligase From Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:746261. [PMID: 34976851 PMCID: PMC8718801 DOI: 10.3389/fcimb.2021.746261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
HSPC117/RtcB, 3'-phosphate tRNA ligase, is a critical enzyme involved in tRNA splicing and maturation. HSPC117/RtcB is also involved in mRNA splicing of some protein-coding genes including XBP-1. Entamoeba histolytica, a protozoan parasite responsible for human amebiasis, possesses two RtcB proteins (EhRtcB1 and 2), but their biological functions remain unknown. Both RtcBs show kinship with mammalian/archaeal type, and all amino acid residues present in the active sites are highly conserved, as suggested by protein alignment and phylogenetic analyses. EhRtcB1 was demonstrated to be localized to the nucleus, while EhRtcB2 was in the cytosol. EhRtcB1, but not EhRtcB2, was required for optimal growth of E. histolytica trophozoites. Both EhRtcB1 (in cooperation with EhArchease) and EhRtcB2 showed RNA ligation activity in vitro. The predominant role of EhRtcB1 in tRNAIle(UAU) processing in vivo was demonstrated in EhRtcB1- and 2-gene silenced strains. Taken together, we have demonstrated the conservation of tRNA splicing and functional diversification of RtcBs in this amoebozoan lineage.
Collapse
Affiliation(s)
- Ruofan Peng
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Yoshinari
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Kawano-Sugaya
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Le Vay KK, Mutschler H. Generation of RNA with 2', 3'-Cyclic Phosphates by Deoxyribozyme Cleavage in Frozen Solutions. Methods Mol Biol 2022; 2439:301-309. [PMID: 35226329 DOI: 10.1007/978-1-0716-2047-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The generation of terminal 2', 3'-cyclic phosphates on RNA oligomers is an important process in the study of tRNA splicing and repair, ribozyme catalysis, and RNA circularization. Here, we describe a simple method for producing 2', 3'-cyclic phosphate functionalized RNA by the deoxyribozyme-catalyzed cleavage of a short 3'-RNA overhang in frozen solution. This method avoids the nonspecific modification and degradation of RNA and attached functional groups (e.g., fluorophores) inherent in other methods, and the use of frozen conditions enables cleavage at very low divalent metal ion concentrations, limiting RNA hydrolysis.
Collapse
Affiliation(s)
- Kristian K Le Vay
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hannes Mutschler
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
36
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
37
|
Dadashi M, Chen L, Nasimian A, Ghavami S, Duan K. Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:12561. [PMID: 34830443 PMCID: PMC8619066 DOI: 10.3390/ijms222212561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.
Collapse
Affiliation(s)
- Maryam Dadashi
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Lin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Medical Microbiology and Infectious Disease, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
38
|
Olzog VJ, Gärtner C, Stadler PF, Fallmann J, Weinberg CE. cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with 2',3' cyclic phosphates and 5' hydroxyl ends. RNA Biol 2021; 18:818-831. [PMID: 34906034 PMCID: PMC8782182 DOI: 10.1080/15476286.2021.1999105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Self-cleaving ribozymes are catalytically active RNAs that cleave themselves into a 5′-fragment with a 2′,3′-cyclic phosphate and a 3′-fragment with a 5′-hydroxyl. They are widely applied for the construction of synthetic RNA devices and RNA-based therapeutics. However, the targeted discovery of self-cleaving ribozymes remains a major challenge. We developed a transcriptome-wide method, called cyPhyRNA-seq, to screen for ribozyme cleavage fragments in total RNA extract. This approach employs the specific ligation-based capture of ribozyme 5′-fragments using a variant of the Arabidopsis thaliana tRNA ligase we engineered. To capture ribozyme 3′-fragments, they are enriched from total RNA by enzymatic treatments. We optimized and enhanced the individual steps of cyPhyRNA-seq in vitro and in spike-in experiments. Then, we applied cyPhyRNA-seq to total RNA isolated from the bacterium Desulfovibrio vulgaris and detected self-cleavage of the three predicted type II hammerhead ribozymes, whose activity had not been examined to date. cyPhyRNA-seq can be used for the global analysis of active self-cleaving ribozymes with the advantage to capture both ribozyme cleavage fragments from total RNA. Especially in organisms harbouring many self-cleaving RNAs, cyPhyRNA-seq facilitates the investigation of cleavage activity. Moreover, this method has the potential to be used to discover novel self-cleaving ribozymes in different organisms.
![]()
Collapse
Affiliation(s)
- V Janett Olzog
- Department of Life Science, Institute for Biochemistry, Leipzig, Germany
| | - Christiane Gärtner
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, University of Vienna, Santa Fe, New Mexico, USA
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
39
|
Gu H, Lian B, Yuan Y, Kong C, Li Y, Liu C, Qi Y. A 5' tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. SCIENCE CHINA-LIFE SCIENCES 2021; 65:1-15. [PMID: 34705222 DOI: 10.1007/s11427-021-2017-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
Apart from their primordial role in protein synthesis, tRNAs can be cleaved to produce tRNA-derived small RNAs (tsRNAs). The biological functions of tsRNAs in plants remain largely unknown. In this study, we developed RtcB ligation-based small RNA (sRNA) sequencing, a method that captures and distinguishes between 3'-2',3'-cyclic-phosphate (cP)/phosphate (P)-terminated sRNAs and 3'-OH-terminated sRNAs, and profiled 5' tsRNAs and 5' tRNA halves in Arabidopsis thaliana. We found that Arabidopsis 5' tsRNAs and 5' tRNA halves predominantly contain a cP at the 3' end and require S-like RNase 1 (RNS1) and RNS3 for their production. One of the most abundant 5' tsRNAs, 5' tsR-Ala, by associating with AGO1, negatively regulates Cytochrome P450 71A13 (CYP71A13) expression and camalexin biosynthesis to repress anti-fungal defense. Interestingly, 5' tsR-Ala is downregulated upon fungal infection. Our study provides a global view of 5' tsRNAs and 5' tRNA halves in Arabidopsis and unravels an important role of a 5' tsRNA in regulating anti-fungal defense.
Collapse
Affiliation(s)
- Hanqing Gu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bi Lian
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ci Kong
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Santamaría-Gómez J, Rubio MÁ, López-Igual R, Romero-Losada AB, Delgado-Chaves FM, Bru-Martínez R, Romero-Campero FJ, Herrero A, Ibba M, Ochoa de Alda JAG, Luque I. Role of a cryptic tRNA gene operon in survival under translational stress. Nucleic Acids Res 2021; 49:8757-8776. [PMID: 34379789 PMCID: PMC8421152 DOI: 10.1093/nar/gkab661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.
Collapse
Affiliation(s)
- Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando M Delgado-Chaves
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante E- 03690, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain.,Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville E-41012, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Jesús A G Ochoa de Alda
- Didáctica de las Ciencias Experimentales, Facultad de Formación del Profesorado, Universidad de Extremadura, Cáceres E-10003, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Seville E-41092, Spain
| |
Collapse
|
41
|
Litke JL, Jaffrey SR. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods 2021; 196:104-112. [PMID: 33992775 DOI: 10.1016/j.ymeth.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs are useful entities for various biotechnology applications, such as templating translation and binding or sequestering miRNA and RNA binding proteins. Circular RNA as highly resistant to degradation in cells and are more long-lived than linear RNAs. Here, we describe a method for intracellular trans ligation of RNA transcripts that can generate hybrid circular RNAs. These hybrid circular RNAs comprise two separate RNA that are covalently linked by ligation to form a circular RNA. By incorporating self-cleaving ribozymes at each site of ligation, trans ligation of the transcripts occurs in mammalian cells with no additional material. We provide a protocol for designing and testing trans ligation of transcripts and demonstrate detection of hybrid circular RNAs using fluorescence microscopy.
Collapse
Affiliation(s)
- Jacob L Litke
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Banerjee A, Goldgur Y, Shuman S. Structure of 3'-PO 4/5'-OH RNA ligase RtcB in complex with a 5'-OH oligonucleotide. RNA (NEW YORK, N.Y.) 2021; 27:rna.078692.121. [PMID: 33619169 PMCID: PMC8051266 DOI: 10.1261/rna.078692.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
RtcB enzymes comprise a widely distributed family of manganese- and GTP-dependent RNA repair enzymes that join 2',3'-cyclic phosphate ends to 5'-OH ends via RtcB-(histidinyl-N)-GMP, RNA 3'-phosphate, and RNA3'pp5'G intermediates. RtcB can ligate either 5'-OH RNA or 5'-OH DNA strands in vitro. The nucleic acid contacts of RtcB are uncharted. Here we report a 2.7 Å crystal structure of Pyrococcus horikoshii RtcB in complex with a 6-mer 5'-OH DNA oligonucleotide HOA1pT2pG3pT4pC5pC6, which reveals enzymic contacts of Asn202 to the terminal 5'-OH nucleophile; Arg238 to the A1pT2 and T2pG3 phosphates; Arg190 and Gln194 to the T2pG3 phosphate; and an Arg190 π-cation interaction with the G3 nucleobase. The structural insights affirm functional studies of E. coli RtcB that implicated the conserved counterpart of Arg238 in engagement of the 5'-OH strand for ligation. The essential active site Cys98 that coordinates two manganese ions is oxidized to cysteine sulfonic acid in our structure, raising the prospect that RtcB activity might be sensitive to modulation during oxidative stress.
Collapse
|
43
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
44
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
45
|
An RNA Repair Operon Regulated by Damaged tRNAs. Cell Rep 2020; 33:108527. [PMID: 33357439 PMCID: PMC7790460 DOI: 10.1016/j.celrep.2020.108527] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2′, 3′-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5′ tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair. Hughes et al. demonstrate that a bacterial RNA repair operon, containing the RtcB RNA ligase and the RtcA RNA cyclase, is regulated by binding of 5′ tRNA halves ending in 2′, 3′-cyclic phosphate to the RtcR transcriptional activator. These studies show how tRNA fragments can regulate bacterial gene expression.
Collapse
|
46
|
Berk C, Wang Y, Laski A, Tsagkris S, Hall J. Ligation of 2', 3'-cyclic phosphate RNAs for the identification of microRNA binding sites. FEBS Lett 2020; 595:230-240. [PMID: 33113149 PMCID: PMC7894349 DOI: 10.1002/1873-3468.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022]
Abstract
Identifying the targetome of a microRNA is key for understanding its functions. Cross‐linking and immunoprecipitation (CLIP) methods capture native miRNA‐mRNA interactions in cells. Some of these methods yield small amounts of chimeric miRNA‐mRNA sequences via ligation of 5′‐phosphorylated RNAs produced during the protocol. Here, we introduce chemically synthesized microRNAs (miRNAs) bearing 2′‐, 3′‐cyclic phosphate groups, as part of a new CLIP method that does not require 5′‐phosphorylation for ligation. We show in a system that models miRNAs bound to their targets, that addition of recombinant bacterial ligase RtcB increases ligation efficiency, and that the transformation proceeds via a 3′‐phosphate intermediate. By optimizing the chemistry underlying ligation, we provide the basis for an improved method to identify miRNA targetomes.
Collapse
Affiliation(s)
- Christian Berk
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Yuluan Wang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Artur Laski
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Stylianos Tsagkris
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| |
Collapse
|
47
|
Li L, Hassan KA, Tetu SG, Naidu V, Pokhrel A, Cain AK, Paulsen IT. The Transcriptomic Signature of Tigecycline in Acinetobacter baumannii. Front Microbiol 2020; 11:565438. [PMID: 33193153 PMCID: PMC7652931 DOI: 10.3389/fmicb.2020.565438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
Tigecycline, a protein translation inhibitor, is a treatment of last resort for infections caused by the opportunistic multidrug resistance human pathogen Acinetobacter baumannii. However, strains resistant to tigecycline were reported not long after its clinical introduction. Translation inhibitor antibiotics perturb ribosome function and induce the reduction of (p)ppGpp, an alarmone involved in the stringent response that negatively modulates ribosome production. Through RNA sequencing, this study revealed a significant reduction in the transcription of genes in citric acid cycle and cell respiration, suggesting tigecycline inhibits or slows down bacterial growth. Our results indicated that the drug-induced reduction of (p)ppGpp level promoted the production but diminished the degradation of ribosomes, which mitigates the translational inhibition effect by tigecycline. The reduction of (p)ppGpp also led to a decrease of transcription coupled nucleotide excision repair which likely increases the chances of development of tigecycline resistant mutants. Increased expression of genes linked to horizontal gene transfer were also observed. The most upregulated gene, rtcB, involving in RNA repair, is either a direct tigecycline stress response or is in response to the transcription de-repression of a toxin-antitoxin system. The most down-regulated genes encode two β-lactamases, which is a possible by-product of tigecycline-induced reduction in transcription of genes associated with peptidoglycan biogenesis. This transcriptomics study provides a global genetic view of why A. baumannii is able to rapidly develop tigecycline resistance.
Collapse
Affiliation(s)
- Liping Li
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Varsha Naidu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alaska Pokhrel
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amy K Cain
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
48
|
A Functional Non-coding RNA Is Produced from xbp-1 mRNA. Neuron 2020; 107:854-863.e6. [PMID: 32640191 DOI: 10.1016/j.neuron.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The xbp-1 mRNA encodes the XBP-1 transcription factor, a critical part of the unfolded protein response. Here we report that an RNA fragment produced from xbp-1 mRNA cleavage is a biologically active non-coding RNA (ncRNA) essential for axon regeneration in Caenorhabditis elegans. We show that the xbp-1 ncRNA acts independently of the protein-coding function of the xbp-1 transcript as part of a dual output xbp-1 mRNA stress response axis. Structural analysis indicates that the function of the xbp-1 ncRNA depends on a single RNA stem; this stem forms only in the cleaved xbp-1 ncRNA fragment. Disruption of this stem abolishes the non-coding, but not the coding, function of the endogenous xbp-1 transcript. Thus, cleavage of the xbp-1 mRNA bifurcates it into a coding and a non-coding pathway; modulation of the two pathways may allow neurons to fine-tune their response to injury and other stresses.
Collapse
|
49
|
Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, Blumer LS, Bollivar DW, Bonilla JA, Butela KA, Coomans RJ, Cresawn SG, D'Elia T, Diaz A, Divens AM, Edgington NP, Frederick GD, Gainey MD, Garlena RA, Grant KW, Gurney SMR, Hendrickson HL, Hughes LE, Kenna MA, Klyczek KK, Kotturi H, Mavrich TN, McKinney AL, Merkhofer EC, Moberg Parker J, Molloy SD, Monti DL, Pape-Zambito DA, Pollenz RS, Pope WH, Reyna NS, Rinehart CA, Russell DA, Shaffer CD, Sivanathan V, Stoner TH, Stukey J, Sunnen CN, Tolsma SS, Tsourkas PK, Wallen JR, Ware VC, Warner MH, Washington JM, Westover KM, Whitefleet-Smith JL, Wiersma-Koch HI, Williams DC, Zack KM, Hatfull GF. Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS One 2020; 15:e0234636. [PMID: 32555720 PMCID: PMC7302621 DOI: 10.1371/journal.pone.0234636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics.
Collapse
Affiliation(s)
- Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lawrence A. Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Richard M. Alvey
- Department of Biology, Illinois Wesleyan University, Bloomington, Illinois, United States of America
| | - Kirk R. Anders
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Haley G. Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Suparna S. Bhalla
- Department of Natural Sciences, Mount Saint Mary College, Newburgh, New York, United States of America
| | - Lawrence S. Blumer
- Department of Biology, Morehouse College, Atlanta, Georgia, United States of America
| | - David W. Bollivar
- Department of Biology, Illinois Wesleyan University, Bloomington, Illinois, United States of America
| | - J. Alfred Bonilla
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, United States of America
| | - Kristen A. Butela
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Roy J. Coomans
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Tom D'Elia
- Department of Biological Sciences, Indian River State College, Fort Pierce, Florida, United States of America
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, California, United States of America
| | - Ashley M. Divens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas P. Edgington
- Department of Biology, Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Gregory D. Frederick
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | - Maria D. Gainey
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kenneth W. Grant
- Department of Pathology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Susan M. R. Gurney
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | | | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Margaret A. Kenna
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Karen K. Klyczek
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, United States of America
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Travis N. Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Angela L. McKinney
- Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska, United States of America
| | - Evan C. Merkhofer
- Department of Natural Sciences, Mount Saint Mary College, Newburgh, New York, United States of America
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Denise L. Monti
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dana A. Pape-Zambito
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Richard S. Pollenz
- Department Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan S. Reyna
- Department of Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States of America
| | - Claire A. Rinehart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christopher D. Shaffer
- Department of Biology, University of Washington in St. Louis, St. Louis, Missouri, United States of America
| | - Viknesh Sivanathan
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Ty H. Stoner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph Stukey
- Biology Department, Hope College, Holland, Michigan, United States of America
| | - C. Nicole Sunnen
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Sara S. Tolsma
- Biology Department, Northwestern College, Orange City, Iowa, United States of America
| | - Philippos K. Tsourkas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
| | - Jamie R. Wallen
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Vassie C. Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Marcie H. Warner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Kristi M. Westover
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
| | - JoAnn L. Whitefleet-Smith
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Helen I. Wiersma-Koch
- Department of Biological Sciences, Indian River State College, Fort Pierce, Florida, United States of America
| | - Daniel C. Williams
- Department of Biology, Coastal Carolina University, Conway, South Carolina, United States of America
| | - Kira M. Zack
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Banerjee A, Goldgur Y, Schwer B, Shuman S. Atomic structures of the RNA end-healing 5'-OH kinase and 2',3'-cyclic phosphodiesterase domains of fungal tRNA ligase: conformational switches in the kinase upon binding of the GTP phosphate donor. Nucleic Acids Res 2020; 47:11826-11838. [PMID: 31722405 PMCID: PMC7145591 DOI: 10.1093/nar/gkz1049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution—as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4—that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|