1
|
Zambre S, Bangar N, Mistry A, Katarmal P, Khan MS, Ahmed I, Tupe R, Roy B. Aldosterone, Methylglyoxal, and Glycated Albumin Interaction with Macrophage Cells Affects Their Viability, Activation, and Differentiation. ACS OMEGA 2024; 9:11848-11859. [PMID: 38497023 PMCID: PMC10938338 DOI: 10.1021/acsomega.3c09420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The inflammatory response in diabetes is strongly correlated with increasing amounts of advanced glycation end products (AGEs), methylglyoxal (MGO), aldosterone (Aldo), and activation of macrophages. Aldo is known to be associated with increased pro-inflammatory responses in general, but its significance in inflammatory responses under glycated circumstances has yet to be understood. In the current work, the aim of our study was to study the macrophage immune response in the presence of AGEs, MGO, and Aldo to comprehend their combined impact on diabetes-associated complications. METHODS AND RESULTS The viability of macrophages upon treatment with glycated HSA (Gly-HSA) promoted cell growth as the concentration increased from 100 to 500 μg/mL, whereas MGO at a high concentration (≥300 μM) significantly hampered cell growth. At lower concentrations (0.5-5 nM), Aldo strongly promoted cell growth, whereas at higher concentrations (50 nM), it was seen to inhibit growth when used for cell treatment for 24 h. Aldo had no effect on MGO-induced cell growth inhibition after 24 h of treatment. However, compared to MGO or Aldo treatment alone, an additional decrease in viability could be seen after 48 h of treatment with a combination of MGO and Aldo. Treatment with Aldo and MGO induced expression of TNF-α independently and when combined. However, when combined, Aldo and MGO significantly suppressed the expression of TGF-β. Aldo, Gly-HSA, and MGO strongly induced the transcription of NF-κB and RAGE mRNA and, as expected, also promoted the formation of reactive oxygen species. Also, by inducing iNOS and MHC-II and suppressing CD206 transcript expression, Gly-HSA strongly favored the differentiation of macrophages into M1 type (pro-inflammatory). On the other hand, the combination of Aldo and MGO strongly induced the expression of MHC-II, CD206, and ARG1 (M2 macrophage marker). These findings suggest that Gly-HSA, MGO, and Aldo differently influence macrophage survival, activation, and differentiation. CONCLUSIONS Overall, this study gives an insight into the effects of glycated protein and MGO in the presence of Aldo on macrophage survival, activation, differentiation, and inflammatory response.
Collapse
Affiliation(s)
- Saee Zambre
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Mistry
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Poonam Katarmal
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Irshad Ahmed
- Department
of Biochemistry and Structural Biology, School of Medicine, UT Health Science Center, San Antonio, Texas 78229, United States
| | - Rashmi Tupe
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Bishnudeo Roy
- Symbiosis
School of Biological Sciences (SSBS), Symbiosis
International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
2
|
Son L, Kost V, Maiorov V, Sukhov D, Arkhangelskaya P, Ivanov I, Kudryavtsev D, Siniavin A, Utkin Y, Kasheverov I. Efficient Expression in Leishmania tarentolae (LEXSY) of the Receptor-Binding Domain of the SARS-CoV-2 S-Protein and the Acetylcholine-Binding Protein from Lymnaea stagnalis. Molecules 2024; 29:943. [PMID: 38474455 DOI: 10.3390/molecules29050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Leishmania tarentolae (LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a full range of post-translational modifications (including uniform glycosylation), and the possibility of expressing multi-subunit proteins. In this paper, a LEXSY expression system has been employed for obtaining the receptor binding domain (RBD) of the spike-protein of the SARS-CoV-2 virus and the homopentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis. RBD is actively used to obtain antibodies against the virus and in various scientific studies on the molecular mechanisms of the interaction of the virus with host cell targets. AChBP represents an excellent structural model of the ligand-binding extracellular domain of all subtypes of nicotinic acetylcholine receptors (nAChRs). Both products were obtained in a soluble glycosylated form, and their structural and functional characteristics were compared with those previously described.
Collapse
Affiliation(s)
- Lina Son
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Kost
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Valery Maiorov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Sukhov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Polina Arkhangelskaya
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Ivanov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei Siniavin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Yuri Utkin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Kasheverov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Interactions of Nereistoxin and Its Analogs with Vertebrate Nicotinic Acetylcholine Receptors and Molluscan ACh Binding Proteins. Mar Drugs 2022; 20:md20010049. [PMID: 35049904 PMCID: PMC8777805 DOI: 10.3390/md20010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
Nereistoxin (NTX) is a marine toxin isolated from an annelid worm that lives along the coasts of Japan. Its insecticidal properties were discovered decades ago and this stimulated the development of a variety of insecticides such as Cartap that are readily transformed into NTX. One unusual feature of NTX is that it is a small cyclic molecule that contains a disulfide bond. In spite of its size, it acts as an antagonist at insect and mammalian nicotinic acetylcholine receptors (nAChRs). The functional importance of the disulfide bond was assessed by determining the effects of inserting a methylene group between the two sulfur atoms, creating dimethylaminodithiane (DMA-DT). We also assessed the effect of methylating the NTX and DMA-DT dimethylamino groups on binding to three vertebrate nAChRs. Radioligand receptor binding experiments were carried out using washed membranes from rat brain and fish (Torpedo) electric organ; [3H]-cytisine displacement was used to assess binding to the predominantly high affinity alpha4beta2 nAChRs and [125I]-alpha-bungarotoxin displacement was used to measure binding of NTX and analogs to the alpha7 and skeletal muscle type nAChRs. While the two quaternary nitrogen analogs, relative to their respective tertiary amines, displayed lower α4β2 nAChR binding affinities, both displayed much higher affinities for the Torpedo muscle nAChR and rat alpha7 brain receptors than their respective tertiary amine forms. The binding affinities of DMA-DT for the three nAChRs were lower than those of NTX and MeNTX. An AChBP mutant lacking the C loop disulfide bond that would potentially react with the NTX disulfide bond displayed an NTX affinity very similar to the parent AChBP. Inhibition of [3H]-epibatidine binding to the AChBPs was not affected by exposure to NTX or MeNTX for up to 24 hr prior to addition of the radioligand. Thus, the disulfide bond of NTX is not required to react with the vicinal disulfide in the AChBP C loop for inhibition of [3H]-epibatidine binding. However, a reversible disulfide interchange reaction of NTX with nAChRs might still occur, especially under reducing conditions. Labeled MeNTX, because it can be readily prepared with high specific radioactivity and possesses relatively high affinity for the nAChR-rich Torpedo nAChR, would be a useful probe to detect and identify any nereistoxin adducts.
Collapse
|
4
|
Kasheverov IE, Kuzmenkov AI, Kudryavtsev DS, Chudetskiy IS, Shelukhina IV, Barykin EP, Ivanov IA, Siniavin AE, Ziganshin RH, Baranov MS, Tsetlin VI, Vassilevski AA, Utkin YN. Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Front Mol Biosci 2021; 8:753283. [PMID: 34926576 PMCID: PMC8671107 DOI: 10.3389/fmolb.2021.753283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Chudetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Molecular cloning and biochemical characterization of the phospholipid scramblase SCRM-1 from Caenorhabditis elegans. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:163-173. [DOI: 10.1007/s00249-020-01423-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
7
|
Bao H, Meng X, Liu Z. Spider acetylcholine binding proteins: An alternative model to study the interaction between insect nAChRs and neonicotinoids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:82-89. [PMID: 28993249 DOI: 10.1016/j.ibmb.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Acetylcholine binding proteins (AChBPs) are homologs of extracellular domains of nicotinic acetylcholine receptors (nAChRs) and serve as models for studies on nAChRs. Particularly, studies on invertebrate nAChRs that are limited due to difficulties in their heterologous expression have benefitted from the discovery of AChBPs. Thus far, AChBPs have been characterized only in aquatic mollusks, which have shown low sensitivity to neonicotinoids, the insecticides targeting insect nAChRs. However, AChBPs were also found in spiders based on the sequence and tissue expression analysis. Here, we report five AChBP subunits in Pardosa pseudoannulata, a predator enemy against rice insect pests. Spider AChBP subunits shared higher sequence similarities with nAChR subunits of both insects and mammals compared with mollusk AChBP subunits. The AChBP1 subunit of P. pseudoannulata (Pp-AChBP) was then expressed in Sf9 cells. The Ls-AChBP from Lymnaea stagnalis was also expressed for comparison. In both AChBPs, one ligand site per subunit was present at each interface between two adjacent subunits. Neonicotinoids had higher affinities (7.9-18.4 times based on Kd or Ki values) for Pp-AChBP than for Ls-AChBP, although epibatidine and α-bungarotoxin showed higher affinities for Ls-AChBP. These results indicate that spider AChBP could be used as an alternative model to study the interaction between insect nAChRs and neonicotinoids.
Collapse
Affiliation(s)
- Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
8
|
Bhattacharya A, Bhowmik S, Singh AK, Kodgire P, Das AK, Mukherjee TK. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10606-10615. [PMID: 28930631 DOI: 10.1021/acs.langmuir.7b02463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Soumitra Bhowmik
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Amit K Singh
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Centre of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Apurba K Das
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
9
|
Kaczanowska K, Camacho Hernandez GA, Bendiks L, Kohs L, Cornejo-Bravo JM, Harel M, Finn MG, Taylor P. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. J Am Chem Soc 2017; 139:3676-3684. [DOI: 10.1021/jacs.6b10746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Gisela Andrea Camacho Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Larissa Bendiks
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Larissa Kohs
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - Jose Manuel Cornejo-Bravo
- Facultad
de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana, Baja California 22390, Mexico
| | - Michal Harel
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| | - M. G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, United States,
| |
Collapse
|
10
|
Rodriguez I, Fraga M, Alfonso A, Guillebault D, Medlin L, Baudart J, Jacob P, Helmi K, Meyer T, Breitenbach U, Holden NM, Boots B, Spurio R, Cimarelli L, Mancini L, Marcheggiani S, Albay M, Akcaalan R, Köker L, Botana LM. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:645-654. [PMID: 27505279 DOI: 10.1002/etc.3577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Monitoring the quality of freshwater is an important issue for public health. In the context of the European project μAqua, 150 samples were collected from several waters in France, Germany, Ireland, Italy, and Turkey for 2 yr. These samples were analyzed using 2 multitoxin detection methods previously developed: a microsphere-based method coupled to flow-cytometry, and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The presence of microcystins, nodularin, domoic acid, cylindrospermopsin, and several analogues of anatoxin-a (ATX-a) was monitored. No traces of cylindrospermopsin or domoic acid were found in any of the environmental samples. Microcystin-LR and microcystin-RR were detected in 2 samples from Turkey and Germany. In the case of ATX-a derivatives, 75% of samples contained mainly H2 -ATX-a and small amounts of H2 -homoanatoxin-a, whereas ATX-a and homoanatoxin-a were found in only 1 sample. These results confirm the presence and wide distribution of dihydro derivatives of ATX-a toxins in European freshwaters. Environ Toxicol Chem 2017;36:645-654. © 2016 SETAC.
Collapse
Affiliation(s)
- Ines Rodriguez
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Maria Fraga
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Linda Medlin
- Microbia Environnement, Observatoire Océanologique, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Pauline Jacob
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Karim Helmi
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Thomas Meyer
- MariLim Aquatic Research, Schoenkirchen, Germany
| | | | - Nicholas M Holden
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Bas Boots
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucia Cimarelli
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Mancini
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Marcheggiani
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Meric Albay
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | | | - Latife Köker
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
11
|
Abraham N, Paul B, Ragnarsson L, Lewis RJ. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). PLoS One 2016; 11:e0157363. [PMID: 27304486 PMCID: PMC4909209 DOI: 10.1371/journal.pone.0157363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/27/2016] [Indexed: 01/22/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.
Collapse
Affiliation(s)
- Nikita Abraham
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Blessy Paul
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lotten Ragnarsson
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
12
|
Shahsavar A, Gajhede M, Kastrup JS, Balle T. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate. Basic Clin Pharmacol Toxicol 2016; 118:399-407. [DOI: 10.1111/bcpt.12528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azadeh Shahsavar
- Department of Molecular Biology and Genetics; Danish Research Institute of Translational Neuroscience - DANDRITE; Aarhus University; Aarhus Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Thomas Balle
- Faculty of Pharmacy; The University of Sydney; Sydney NSW Australia
| |
Collapse
|
13
|
Yu R, Tabassum N, Jiang T. Investigation of α-conotoxin unbinding using umbrella sampling. Bioorg Med Chem Lett 2016; 26:1296-300. [PMID: 26796065 DOI: 10.1016/j.bmcl.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/15/2022]
Abstract
α-Conotoxins, a class of short and disulfide rich peptide toxins, specifically and potently block nicotinic acetylcholine receptors (nAChRs). In this study umbrella sampling was performed to study the unbinding pathways and potential of mean force (PMF) of α-conotoxin ImI and PNIA(A10L,D14K). Our results suggest that (i) the unbinding pathways of ImI and PNIA(A10L,D14K) are similar despite of their different disulfide framework and structure, and (ii) α-conotoxin unbinding requires large conformation perturbation of the C-loop and the backbone flexibility of the C-loop can affect the binding or unbinding kinetics of the α-conotoxins. In addition, (iii) umbrella sampling gave correct ranking of the binding affinities of ImI and PNIA(A10L,D14K) indicating its efficacy on prediction of the binding affinities of α-conotoxins and implicating its potential application in design of more potent α-conotoxin analogs.
Collapse
Affiliation(s)
- Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Nargis Tabassum
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
14
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
15
|
Bourne Y, Sulzenbacher G, Radić Z, Aráoz R, Reynaud M, Benoit E, Zakarian A, Servent D, Molgó J, Taylor P, Marchot P. Marine Macrocyclic Imines, Pinnatoxins A and G: Structural Determinants and Functional Properties to Distinguish Neuronal α7 from Muscle α1(2)βγδ nAChRs. Structure 2015; 23:1106-15. [PMID: 26004441 DOI: 10.1016/j.str.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 10/23/2022]
Abstract
Pinnatoxins are macrocyclic imine phycotoxins associated with algal blooms and shellfish toxicity. Functional analysis of pinnatoxin A and pinnatoxin G by binding and voltage-clamp electrophysiology on membrane-embedded neuronal α7, α4β2, α3β2, and muscle-type α12βγδ nicotinic acetylcholine receptors (nAChRs) reveals high-affinity binding and potent antagonism for the α7 and α12βγδ subtypes. The toxins also bind to the nAChR surrogate, acetylcholine-binding protein (AChBP), with low Kd values reflecting slow dissociation. Crystal structures of pinnatoxin-AChBP complexes (1.9-2.2 Å resolution) show the multiple anchoring points of the hydrophobic portion, the cyclic imine, and the substituted bis-spiroketal and cyclohexene ring systems of the pinnatoxins that dictate tight binding between the opposing loops C and F at the receptor subunit interface, as observed for the 13-desmethyl-spirolide C and gymnodimine A congeners. Uniquely, however, the bulky bridged EF-ketal ring specific to the pinnatoxins extends radially from the interfacial-binding pocket to interact with the sequence-variable loop F and govern nAChR subtype selectivity and central neurotoxicity.
Collapse
Affiliation(s)
- Yves Bourne
- Aix-Marseille Université, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France; Centre National de la Recherche Scientifique, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France.
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France; Centre National de la Recherche Scientifique, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0650, USA
| | - Rómulo Aráoz
- Institut des Neurosciences Paris-Saclay, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Morgane Reynaud
- Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Evelyne Benoit
- Institut des Neurosciences Paris-Saclay, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA 93106-9510, USA
| | - Denis Servent
- Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Jordi Molgó
- Institut des Neurosciences Paris-Saclay, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0650, USA
| | - Pascale Marchot
- Aix-Marseille Université, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France; Centre National de la Recherche Scientifique, Laboratoire Architecture et Fonction des Macromolécules Biologiques, Campus Luminy, 13288 Marseille cedex 9, France.
| |
Collapse
|
16
|
Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer’s disease. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function.
Collapse
|
18
|
Wang W, Su X, Wang X, Yang J, Zhang T, Wang M, Wan R, Tan G, Lu J. Iron inhibits Escherichia coli topoisomerase I activity by targeting the first two zinc-binding sites in the C-terminal domain. Protein Sci 2014; 23:1619-28. [PMID: 25176012 DOI: 10.1002/pro.2542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022]
Abstract
Escherichia coli DNA topoisomerase I (TopA) contains a 67 kDa N-terminal catalytic domain and a 30 kDa C-terminal zinc-binding region (ZD domain) which has three adjacent tetra-cysteine zinc-binding motifs. Previous studies have shown that E. coli TopA can bind both iron and zinc, and that iron binding in TopA results in failure to unwind the negatively supercoiled DNA. Here, we report that each E. coli TopA monomer binds one atom of iron via the first two zinc-binding motifs in ZD domain and both the first and second zinc-binding motifs are required for iron binding in TopA. The site-directed mutagenesis studies further reveal that while the mutation of the third zinc-binding motif has very little effect on TopA's activity, mutation of the first two zinc-binding motifs in TopA greatly diminishes the topoisomerase activity in vitro and in vivo, indicating that the first two zinc-binding motifs in TopA are crucial for its function. The DNA-binding activity assay and intrinsic tryptophan fluorescence measurements show that iron binding in TopA may decrease the single-stranded (ss) DNA-binding activity of ZD domain and also change the protein structure of TopA, which subsequently modulate topoisomerase activity.
Collapse
Affiliation(s)
- Wu Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fraga M, Vilariño N, Louzao MC, Rodríguez LP, Alfonso A, Campbell K, Elliott CT, Taylor P, Ramos V, Vasconcelos V, Botana LM. Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Anal Chim Acta 2014; 850:57-64. [PMID: 25441160 DOI: 10.1016/j.aca.2014.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 02/02/2023]
Abstract
Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9±0.1μg L(-1) MC-LR, 1.3±0.1μg L(-1) CYN, 61±4μg L(-1) ANA-a, 5.4±0.4μg L(-1) STX and 4.9±0.9μg L(-1) DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC-IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC-IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.
Collapse
Affiliation(s)
- María Fraga
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura P Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Katrina Campbell
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Christopher T Elliott
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0657, United States
| | - Vítor Ramos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Vítor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, and Faculty of Sciences, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
20
|
Efficient expression of acetylcholine-binding protein from Aplysia californica in Bac-to-Bac system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:691480. [PMID: 25136612 PMCID: PMC4127255 DOI: 10.1155/2014/691480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/19/2014] [Accepted: 07/03/2014] [Indexed: 02/01/2023]
Abstract
The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP) and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.
Collapse
|
21
|
Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proc Natl Acad Sci U S A 2014; 111:10749-54. [PMID: 25006260 DOI: 10.1073/pnas.1410992111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP) are pentameric oligomers in which binding sites for nicotinic agonists and competitive antagonists are found at selected subunit interfaces. The nAChR spontaneously exists in multiple conformations associated with its activation and desensitization steps, and conformations are selectively stabilized by binding of agonists and antagonists. In the nAChR, agonist binding and the associated conformational changes accompanying activation and desensitization are cooperative. AChBP, which lacks the transmembrane spanning and cytoplasmic domains, serves as a homology model of the extracellular domain of the nAChRs. We identified unique cooperative binding behavior of a number of 4,6-disubstituted 2-aminopyrimidines to Lymnaea AChBP, with different molecular variants exhibiting positive, nH > 1.0, and negative cooperativity, nH < 1.0. Therefore, for a distinctive set of ligands, the extracellular domain of a nAChR surrogate suffices to accommodate cooperative interactions. X-ray crystal structures of AChBP complexes with examples of each allowed the identification of structural features in the ligands that confer differences in cooperative behavior. Both sets of molecules bind at the agonist-antagonist site, as expected from their competition with epibatidine. An analysis of AChBP quaternary structure shows that cooperative ligand binding is associated with a blooming or flare conformation, a structural change not observed with the classical, noncooperative, nicotinic ligands. Positively and negatively cooperative ligands exhibited unique features in the detailed binding determinants and poses of the complexes.
Collapse
|
22
|
Olsen JA, Balle T, Gajhede M, Ahring PK, Kastrup JS. Molecular recognition of the neurotransmitter acetylcholine by an acetylcholine binding protein reveals determinants of binding to nicotinic acetylcholine receptors. PLoS One 2014; 9:e91232. [PMID: 24637639 PMCID: PMC3956608 DOI: 10.1371/journal.pone.0091232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+)β2(−) and α4(+)α4(−). Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.
Collapse
Affiliation(s)
- Jeppe A. Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NeuroSearch A/S, Ballerup, Denmark
| | - Thomas Balle
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip K. Ahring
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Aniona ApS, Ballerup, Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
23
|
daCosta CJB, Baenziger JE. Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. Structure 2014; 21:1271-83. [PMID: 23931140 DOI: 10.1016/j.str.2013.06.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/31/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic communication by converting chemical signals into an electrical response. Recently solved agonist-bound and agonist-free structures greatly extend our understanding of these complex molecular machines. A key challenge to a full description of function, however, is the ability to unequivocally relate determined structures to the canonical resting, open, and desensitized states. Here, we review current understanding of pLGIC structure, with a focus on the conformational changes underlying channel gating. We compare available structural information and review the evidence supporting the assignment of each structure to a particular conformational state. We discuss multiple factors that may complicate the interpretation of crystal structures, highlighting the potential influence of lipids and detergents. We contend that further advances in the structural biology of pLGICs will require deeper insight into the nature of pLGIC-lipid interactions.
Collapse
Affiliation(s)
- Corrie J B daCosta
- Receptor Biology Laboratory, Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
24
|
New SY, Aung KMM, Lim GL, Hong S, Tan SK, Lu Y, Cheung E, Su X. Fast Screening of Ligand-Protein Interactions based on Ligand-Induced Protein Stabilization of Gold Nanoparticles. Anal Chem 2014; 86:2361-70. [DOI: 10.1021/ac404241y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siu Yee New
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| | - Khin Moh Moh Aung
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| | - Gek Liang Lim
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Shuzhen Hong
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Si Kee Tan
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Yi Lu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Edwin Cheung
- Cancer
Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, 138672 Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore
| |
Collapse
|
25
|
Stornaiuolo M, De Kloe GE, Rucktooa P, Fish A, van Elk R, Edink ES, Bertrand D, Smit AB, de Esch IJP, Sixma TK. Assembly of a π-π stack of ligands in the binding site of an acetylcholine-binding protein. Nat Commun 2013; 4:1875. [PMID: 23695669 PMCID: PMC3674282 DOI: 10.1038/ncomms2900] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/17/2013] [Indexed: 12/11/2022] Open
Abstract
Acetylcholine-binding protein is a water-soluble homologue of the extracellular ligand-binding domain of cys-loop receptors. It is used as a structurally accessible prototype for studying ligand binding to these pharmaceutically important pentameric ion channels, in particular to nicotinic acetylcholine receptors, due to conserved binding site residues present at the interface between two subunits. Here we report that an aromatic conjugated small molecule binds acetylcholine-binding protein in an ordered π-π stack of three identical molecules per binding site, two parallel and one antiparallel. Acetylcholine-binding protein stabilizes the assembly of the stack by aromatic contacts. Thanks to the plasticity of its ligand-binding site, acetylcholine-binding protein can accommodate the formation of aromatic stacks of different size by simple loop repositioning and minimal adjustment of the interactions. This type of supramolecular binding provides a novel paradigm in drug design.
Collapse
Affiliation(s)
- Mariano Stornaiuolo
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez LP, Vilariño N, Molgó J, Aráoz R, Louzao MC, Taylor P, Talley T, Botana LM. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system. Anal Chem 2013; 85:2340-7. [PMID: 23343192 PMCID: PMC3597463 DOI: 10.1021/ac3033432] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a "fast-acting" toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing a receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay, two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin, and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however, the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops, and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10-6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive, and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins.
Collapse
Affiliation(s)
- Laura P. Rodríguez
- Universidad de Santiago de Compostela, Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - Natalia Vilariño
- Universidad de Santiago de Compostela, Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard FRC2118, Laboratoire de Neurobiologie et Développement UPR3294, 91198 Gif-sur-Yvette Cedex, France
| | - Rómulo Aráoz
- CNRS, Institut de Neurobiologie Alfred Fessard FRC2118, Laboratoire de Neurobiologie et Développement UPR3294, 91198 Gif-sur-Yvette Cedex, France
| | - M. Carmen Louzao
- Universidad de Santiago de Compostela, Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Todd Talley
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Luis M. Botana
- Universidad de Santiago de Compostela, Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| |
Collapse
|
27
|
Heus F, Vonk F, Otvos RA, Bruyneel B, Smit AB, Lingeman H, Richardson M, Niessen WM, Kool J. An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity. Toxicon 2013; 61:112-24. [DOI: 10.1016/j.toxicon.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/06/2012] [Accepted: 11/01/2012] [Indexed: 11/26/2022]
|
28
|
Xiao Y, Hammond PS, Mazurov AA, Yohannes D. Multiple Interaction Regions in the Orthosteric Ligand Binding Domain of the α7 Neuronal Nicotinic Acetylcholine Receptor. J Chem Inf Model 2012; 52:3064-73. [DOI: 10.1021/ci3001953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunde Xiao
- Targacept, Inc., 200 East
First Street, Suite 300, Winston-Salem, North Carolina 27101, United
States
| | - Philip S. Hammond
- Targacept, Inc., 200 East
First Street, Suite 300, Winston-Salem, North Carolina 27101, United
States
| | - Anatoly A. Mazurov
- Targacept, Inc., 200 East
First Street, Suite 300, Winston-Salem, North Carolina 27101, United
States
| | - Daniel Yohannes
- Targacept, Inc., 200 East
First Street, Suite 300, Winston-Salem, North Carolina 27101, United
States
| |
Collapse
|
29
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
30
|
Velisetty P, Chakrapani S. Desensitization mechanism in prokaryotic ligand-gated ion channel. J Biol Chem 2012; 287:18467-77. [PMID: 22474322 DOI: 10.1074/jbc.m112.348045] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Crystal structures of Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated prokaryotic homologue of pentameric ligand-gated ion channel (LGIC) from G. violaceus, have provided high-resolution models of the channel architecture and its role in selective ion conduction and drug binding. However, it is still unclear which functional states of the LGIC gating scheme these crystal structures represent. Much of this uncertainty arises from a lack of thorough understanding of the functional properties of these prokaryotic channels. To elucidate the molecular events that constitute gating, we have carried out an extensive characterization of GLIC function and dynamics in reconstituted proteoliposomes by patch clamp measurements and EPR spectroscopy. We find that GLIC channels show rapid activation upon jumps to acidic pH followed by a time-dependent loss of conductance because of desensitization. GLIC desensitization is strongly coupled to activation and is modulated by voltage, permeant ions, pore-blocking drugs, and membrane cholesterol. Many of these properties are parallel to functions observed in members of eukaryotic LGIC. Conformational changes in loop C, measured by site-directed spin labeling and EPR spectroscopy, reveal immobilization during desensitization analogous to changes in LGIC and acetylcholine binding protein. Together, our studies suggest conservation of mechanistic aspects of desensitization among LGICs of prokaryotic and eukaryotic origin.
Collapse
Affiliation(s)
- Phanindra Velisetty
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
31
|
Rohde LAH, Ahring PK, Jensen ML, Nielsen EØ, Peters D, Helgstrand C, Krintel C, Harpsøe K, Gajhede M, Kastrup JS, Balle T. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. J Biol Chem 2011; 287:4248-59. [PMID: 22170047 DOI: 10.1074/jbc.m111.292243] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α4β2 subtype of the nicotinic acetylcholine receptor has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of α4β2 agonists is lacking. Using binding experiments, electrophysiology and x-ray crystallography we have investigated a consecutive series of five prototypical pyridine-containing agonists derived from 1-(pyridin-3-yl)-1,4-diazepane. A correlation between binding affinities at α4β2 and the acetylcholine-binding protein from Lymnaea stagnalis (Ls-AChBP) confirms Ls-AChBP as structural surrogate for α4β2 receptors. Crystal structures of five agonists with efficacies at α4β2 from 21-76% were determined in complex with Ls-AChBP. No variation in closure of loop C is observed despite large efficacy variations. Instead, the efficacy of a compound appears tightly coupled to its ability to form a strong intersubunit bridge linking the primary and complementary binding interfaces. For the tested agonists, a specific halogen bond was observed to play a large role in establishing such strong intersubunit anchoring.
Collapse
Affiliation(s)
- Line Aagot Hede Rohde
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sandolo C, Péchiné S, Le Monnier A, Hoys S, Janoir C, Coviello T, Alhaique F, Collignon A, Fattal E, Tsapis N. Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur J Pharm Biopharm 2011; 79:566-73. [DOI: 10.1016/j.ejpb.2011.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022]
|
33
|
Nemecz Á, Taylor P. Creating an α7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses. J Biol Chem 2011; 286:42555-42565. [PMID: 22009746 DOI: 10.1074/jbc.m111.286583] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Determining the structure of the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) has been a long standing goal in the design of selective drugs useful in implicated diseases for this prevalent receptor family. Acetylcholine-binding proteins have proven to be valuable surrogates with structural similarity and sequence identity to the extracellular domain of the nicotinic receptor, yet these soluble proteins have their unique features and do not serve as exact replicates of the nAChRs of interest. Here we systematically modify the sequence of these proteins toward the homomeric human α7 nAChR. These chimeric proteins exhibit a shift in affinities to reflect α7 binding characteristics yet maintain expression levels and stability conducive for crystallization. We also present a pentameric humanoid nAChR extracellular domain with the structural determination of the α7 nAChR glycosylation site.
Collapse
Affiliation(s)
- Ákos Nemecz
- Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0650; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650.
| |
Collapse
|
34
|
Liu S, Babcock MS, Bode J, Chang JS, Fischer HD, Garlick RL, Gill GS, Lund ET, Margolis BJ, Mathews WR, Rogers BN, Wolfe M, Groppi V, Baldwin ET. Affinity purification of a chimeric nicotinic acetylcholine receptor in the agonist and antagonist bound states. Protein Expr Purif 2011; 79:102-10. [DOI: 10.1016/j.pep.2011.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Affiliation(s)
- Shenping Liu
- Pfizer Inc., Pfizer Global Research and Development, Groton, CT 06340, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kool J, Heus F, de Kloe G, Lingeman H, Smit AB, Leurs R, Edink E, De Esch IJP, Irth H, Niessen WMA. High-Resolution Bioactivity Profiling of Mixtures toward the Acetylcholine Binding Protein Using a Nanofractionation Spotter Technology. ACTA ACUST UNITED AC 2011; 16:917-24. [DOI: 10.1177/1087057111413921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study describes the evaluation, validation, and use of contactless postcolumn fractionation of bioactive mixtures with acetylcholine binding protein (AChBP) affinity analysis with help of a spotter technology. The high-resolution fractionation tailors the fractionation frequency to the chromatographic peaks. Postcolumn reagents for AChBP bioaffinity profiling are mixed prior to droplet ejection into 1536-well plates. After an incubation step, microplate reader analysis is used to determine bioactive compounds in a mixture. For ligands tested, a good correlation was found for IC50s determined in flow injection analysis mode when compared with traditional radioligand binding assays. After the evaluation and validation, bioaffinity profiling of actual mixtures was performed. The advantage of this “atline” technology using postcolumn bioaffinity analysis when compared to continuous flow online postcolumn bioaffinity profiling is the possibility to choose postcolumn incubation times freely without compromising resolution due to diffusion effects.
Collapse
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Ferry Heus
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Gerdien de Kloe
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Henk Lingeman
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rob Leurs
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Ewald Edink
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Iwan J. P. De Esch
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Hubertus Irth
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Wilfried M. A. Niessen
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Piscitelli CL, Krishnamurthy H, Gouaux E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 2011; 468:1129-32. [PMID: 21179170 PMCID: PMC3079577 DOI: 10.1038/nature09581] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions1–3, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders4, and are the targets of therapeutic and illicit drugs5. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters6–13. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site14,15. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule16. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site16. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.
Collapse
Affiliation(s)
- Chayne L Piscitelli
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
37
|
Sander T, Bruun AT, Balle T. Docking to flexible nicotinic acetylcholine receptors: A validation study using the acetylcholine binding protein. J Mol Graph Model 2010; 29:415-24. [DOI: 10.1016/j.jmgm.2010.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/28/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
|
38
|
de Kloe GE, Retra K, Geitmann M, Källblad P, Nahar T, van Elk R, Smit AB, van Muijlwijk-Koezen JE, Leurs R, Irth H, Danielson UH, de Esch IJP. Surface Plasmon Resonance Biosensor Based Fragment Screening Using Acetylcholine Binding Protein Identifies Ligand Efficiency Hot Spots (LE Hot Spots) by Deconstruction of Nicotinic Acetylcholine Receptor α7 Ligands. J Med Chem 2010; 53:7192-201. [DOI: 10.1021/jm100834y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerdien E. de Kloe
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Kim Retra
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of BioMolecular Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | - Tariq Nahar
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - René van Elk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jacqueline E. van Muijlwijk-Koezen
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Rob Leurs
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Hubertus Irth
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of BioMolecular Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - U. Helena Danielson
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23, Uppsala, Sweden
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Geitmann M, Retra K, de Kloe GE, Homan E, Smit AB, de Esch IJP, Danielson UH. Interaction Kinetic and Structural Dynamic Analysis of Ligand Binding to Acetylcholine-Binding Protein. Biochemistry 2010; 49:8143-54. [DOI: 10.1021/bi1006354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kim Retra
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - Evert Homan
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, Amsterdam, The Netherlands
| | - U. Helena Danielson
- Beactica AB, Box 567, SE-751 22 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
40
|
|
41
|
Kool J, de Kloe GE, Bruyneel B, de Vlieger JS, Retra K, Wijtmans M, van Elk R, Smit AB, Leurs R, Lingeman H, de Esch IJ, Irth H. Online Fluorescence Enhancement Assay for the Acetylcholine Binding Protein with Parallel Mass Spectrometric Identification. J Med Chem 2010; 53:4720-30. [DOI: 10.1021/jm100230k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeroen Kool
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Gerdien E. de Kloe
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Ben Bruyneel
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Jon S. de Vlieger
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Kim Retra
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rene van Elk
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - August B. Smit
- Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Rob Leurs
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Henk Lingeman
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Hubertus Irth
- BioMolecular Analysis, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Armishaw CJ. Synthetic α-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Toxins (Basel) 2010; 2:1471-99. [PMID: 22069647 PMCID: PMC3153239 DOI: 10.3390/toxins2061471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/27/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022] Open
Abstract
α-Conotoxins are peptide neurotoxins isolated from venomous marine cone snails that are potent and selective antagonists for different subtypes of nicotinic acetylcholine receptors (nAChRs). As such, they are valuable probes for dissecting the role that nAChRs play in nervous system function. In recent years, extensive insight into the binding mechanisms of α-conotoxins with nAChRs at the molecular level has aided in the design of synthetic analogs with improved pharmacological properties. This review examines the structure-activity relationship studies involving α-conotoxins as research tools for studying nAChRs in the central and peripheral nervous systems and their use towards the development of novel therapeutics.
Collapse
Affiliation(s)
- Christopher J Armishaw
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St Lucie, FL 34987, USA.
| |
Collapse
|
43
|
Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proc Natl Acad Sci U S A 2010; 107:6076-81. [PMID: 20224036 DOI: 10.1073/pnas.0912372107] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type alpha1(2)betagammadelta and neuronal alpha3beta2 and alpha4beta2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP ( approximately 2.4A) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity.
Collapse
|
44
|
Sgrignani J, Bonaccini C, Grazioso G, Chioccioli M, Cavalli A, Gratteri P. Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations. J Comput Chem 2009; 30:2443-54. [PMID: 19360794 DOI: 10.1002/jcc.21251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A combined quantum mechanical (QM)-polarized docking and molecular dynamics approach to study the binding mode and to predict the binding affinity of ligands acting at the alpha4beta2-nAChR is presented. The results obtained in this study indicate that the quantum mechanical/molecular mechanics docking protocol well describes the charge-driven interactions occurring in the binding of nicotinic agonists, and it is able to represent the polarization effects on the ligand exerted by the surrounding atoms of the receptor at the binding site. This makes it possible to properly score agonists of alpha4beta2-nAChR and to reproduce the experimental binding affinity data with good accuracy, within a mean error of 2.2 kcal/mol. Moreover, applying the QM-polarized docking to an ensemble of nAChR conformations obtained from MD simulations enabled us to accurately capture nAChR-ligand induced-fit effects.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
45
|
Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 2009; 29:13898-908. [PMID: 19890000 DOI: 10.1523/jneurosci.2833-09.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The main immunogenic region (MIR) is a conformation-dependent region at the extracellular apex of alpha1 subunits of muscle nicotinic acetylcholine receptor (AChR) that is the target of half or more of the autoantibodies to muscle AChRs in human myasthenia gravis and rat experimental autoimmune myasthenia gravis. By making chimeras of human alpha1 subunits with alpha7 subunits, both MIR epitopes recognized by rat mAbs and by the patient-derived human mAb 637 to the MIR were determined to consist of two discontiguous sequences, which are adjacent only in the native conformation. The MIR, including loop alpha1 67-76 in combination with the N-terminal alpha helix alpha1 1-14, conferred high-affinity binding for most rat mAbs to the MIR. However, an additional sequence corresponding to alpha1 15-32 was required for high-affinity binding of human mAb 637. A water soluble chimera of Aplysia acetylcholine binding protein with the same alpha1 MIR sequences substituted was recognized by a majority of human, feline, and canine myasthenia gravis sera. The presence of the alpha1 MIR sequences in alpha1/alpha7 chimeras greatly promoted AChR expression and significantly altered the sensitivity to activation. This reveals a structural and functional, as well as antigenic, significance of the MIR.
Collapse
|
46
|
Rucktooa P, Smit AB, Sixma TK. Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol 2009; 78:777-87. [DOI: 10.1016/j.bcp.2009.06.098] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
47
|
Hibbs RE, Sulzenbacher G, Shi J, Talley TT, Conrod S, Kem WR, Taylor P, Marchot P, Bourne Y. Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal alpha7 nicotinic acetylcholine receptor. EMBO J 2009; 28:3040-51. [PMID: 19696737 DOI: 10.1038/emboj.2009.227] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/14/2009] [Indexed: 11/09/2022] Open
Abstract
The pentameric acetylcholine-binding protein (AChBP) is a soluble surrogate of the ligand binding domain of nicotinic acetylcholine receptors. Agonists bind within a nest of aromatic side chains contributed by loops C and F on opposing faces of each subunit interface. Crystal structures of Aplysia AChBP bound with the agonist anabaseine, two partial agonists selectively activating the alpha7 receptor, 3-(2,4-dimethoxybenzylidene)-anabaseine and its 4-hydroxy metabolite, and an indole-containing partial agonist, tropisetron, were solved at 2.7-1.75 A resolution. All structures identify the Trp 147 carbonyl oxygen as the hydrogen bond acceptor for the agonist-protonated nitrogen. In the partial agonist complexes, the benzylidene and indole substituent positions, dictated by tight interactions with loop F, preclude loop C from adopting the closed conformation seen for full agonists. Fluctuation in loop C position and duality in ligand binding orientations suggest molecular bases for partial agonism at full-length receptors. This study, while pointing to loop F as a major determinant of receptor subtype selectivity, also identifies a new template region for designing alpha7-selective partial agonists to treat cognitive deficits in mental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ryan E Hibbs
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sahu SK, Aradhyam GK, Gummadi SN. Calcium binding studies of peptides of human phospholipid scramblases 1 to 4 suggest that scramblases are new class of calcium binding proteins in the cell. Biochim Biophys Acta Gen Subj 2009; 1790:1274-81. [PMID: 19540310 DOI: 10.1016/j.bbagen.2009.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/04/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown. METHODS In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1-4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry. RESULTS The results in this study show that (i) affinities of the peptides are in the order hPLSCR1>hPLSCR3>hPLSCR2>hPLSCR4 for Ca2+ and in the order hPLSCR1>hPLSCR2>hPLSCR3>hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families. CONCLUSIONS Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif. GENERAL SIGNIFICANCE Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.
Collapse
Affiliation(s)
- Santosh Kumar Sahu
- Department of Biotechnology, Indian Institute of Technology--Madras, Chennai 600 036, India
| | | | | |
Collapse
|
49
|
Armishaw C, Jensen AA, Balle T, Clark RJ, Harpsøe K, Skonberg C, Liljefors T, Strømgaard K. Rational design of alpha-conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: improved antagonistic activity by incorporation of proline derivatives. J Biol Chem 2009; 284:9498-512. [PMID: 19131337 PMCID: PMC2666602 DOI: 10.1074/jbc.m806136200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/07/2009] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that belong to the superfamily of Cys loop receptors. Valuable insight into the orthosteric ligand binding to nAChRs in recent years has been obtained from the crystal structures of acetylcholine-binding proteins (AChBPs) that share significant sequence homology with the amino-terminal domains of the nAChRs. alpha-Conotoxins, which are isolated from the venom of carnivorous marine snails, selectively inhibit the signaling of neuronal nAChR subtypes. Co-crystal structures of alpha-conotoxins in complex with AChBP show that the side chain of a highly conserved proline residue in these toxins is oriented toward the hydrophobic binding pocket in the AChBP but does not have direct interactions with this pocket. In this study, we have designed and synthesized analogues of alpha-conotoxins ImI and PnIA[A10L], by introducing a range of substituents on the Pro(6) residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the alpha(7) nAChR shows that although polar and charged groups on Pro(6) result in analogues with significantly reduced antagonistic activities, analogues with aromatic and hydrophobic substituents in the Pro(6) position exhibit moderate activity at the receptor. Interestingly, introduction of a 5-(R)-phenyl substituent at Pro(6) in alpha-conotoxin ImI gives rise to a conotoxin analogue with a significantly higher binding affinity and antagonistic activity at the alpha(7) nAChR than those exhibited by the native conotoxin.
Collapse
Affiliation(s)
- Christopher Armishaw
- Department of Medicinal Chemistry and Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø DK-2100, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang J, Xue F, Chang Y. Agonist- and antagonist-induced conformational changes of loop F and their contributions to the rho1 GABA receptor function. J Physiol 2009; 587:139-53. [PMID: 19015197 PMCID: PMC2670029 DOI: 10.1113/jphysiol.2008.160093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/10/2008] [Indexed: 11/08/2022] Open
Abstract
Binding of gamma-aminobutyric acid (GABA) to its receptor initiates a conformational change to open the channel, but the mechanism of the channel activation is not well understood. To this end, we scanned loop F (K210-F227) in the N-terminal domain of the rho1 GABA receptor expressed in Xenopus oocytes using a site-specific fluorescence technique. We detected GABA-induced fluorescence changes at six positions (K210, K211, L216, K217, T218 and I222). At these positions the fluorescence changes were dose dependent and highly correlated to the current dose-response, but with lower Hill coefficients. The competitive antagonist 3-aminopropyl(methyl)phosphinic acid (3-APMPA) induced fluorescence changes in the same direction at the four middle or lower positions. The non-competitive antagonist picrotoxin blocked nearly 50% of GABA-induced fluorescence changes at T218 and I222, but only <20% at K210 and K217 and 0% at K211 and L216 positions. Interestingly, the picrotoxin-blocked fraction of the GABA-induced fluorescence changes was highly correlated to the Hill coefficient of the GABA-induced dose-dependent fluorescence change. The PTX-insensitive mutant L216C exhibited the lowest Hill coefficient, similar to that in binding. Thus, the PTX-sensitive fraction reflects the conformational change related to channel gating, whereas the PTX-insensitive fraction represents a binding effect. The binding effect is further supported by the picrotoxin resistance of a competitive antagonist-induced fluorescence change. A cysteine accessibility test further confirmed that L216C and K217C partially line the binding pocket, and I222C became more exposed by GABA. Our results are consistent with a mechanism that an outward movement of the lower part of loop F is coupled to the channel activation.
Collapse
Affiliation(s)
- Jianliang Zhang
- Division of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|