1
|
Cerruti F, Borrelli A, Degiovanni A, Mengozzi G, Borella F, Cascio P. Detection and biochemical characterization of circulating proteasomes in dog plasma. Res Vet Sci 2023; 162:104950. [PMID: 37453228 DOI: 10.1016/j.rvsc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A growing body of evidence convincingly indicates that proteasomes are not located exclusively within cells but also in different extracellular compartments. In humans, in fact, this large multimeric protease has been identified in many body fluids and secretions such as blood, urine, tears, sweat, saliva, milk, and cerebrospinal and pericardial fluid. Intriguingly, the exact origins of these extracellular proteasomes as well as the specific biological functions they perform are largely unknown. As no data on this important subject is yet available in domestic animals, the present study was undertaken to investigate the presence of extracellular proteasomes in canine blood. As a result, for the first time, circulating proteasomes could be clearly detected in the plasma of a cohort of 20 healthy dogs. Furthermore, all three main proteasomal peptidase activities were measured and characterized using fluorogenic peptides and highly specific inhibitors. Finally, the effect of ATP and PA28 family activators on this circulating proteasome was investigated. Collectively, our data indicate that at least a part of the proteasome present in dog plasma consists of a particle that in vitro displays the enzymatic properties of the 20S proteasome.
Collapse
Affiliation(s)
- F Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Borrelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Degiovanni
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - G Mengozzi
- Department of Public Health and Pediatric Sciences, University of Turin, C.so Bramante, 88/90, 10100 Turin, Italy
| | - F Borella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - P Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
2
|
Sahu I, Bajorek M, Tan X, Srividya M, Krutauz D, Reis N, Osmulski PA, Gaczynska ME, Glickman MH. A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing. Biomolecules 2023; 13:480. [PMID: 36979414 PMCID: PMC10046698 DOI: 10.3390/biom13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Bajorek
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Xiaolin Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Madabhushi Srividya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daria Krutauz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Noa Reis
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria E. Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael H. Glickman
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
3
|
Cascio P. PA28γ: New Insights on an Ancient Proteasome Activator. Biomolecules 2021; 11:228. [PMID: 33562807 PMCID: PMC7915322 DOI: 10.3390/biom11020228] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
PA28 (also known as 11S, REG or PSME) is a family of proteasome regulators whose members are widely present in many of the eukaryotic supergroups. In jawed vertebrates they are represented by three paralogs, PA28α, PA28β, and PA28γ, which assemble as heptameric hetero (PA28αβ) or homo (PA28γ) rings on one or both extremities of the 20S proteasome cylindrical structure. While they share high sequence and structural similarities, the three isoforms significantly differ in terms of their biochemical and biological properties. In fact, PA28α and PA28β seem to have appeared more recently and to have evolved very rapidly to perform new functions that are specifically aimed at optimizing the process of MHC class I antigen presentation. In line with this, PA28αβ favors release of peptide products by proteasomes and is particularly suited to support adaptive immune responses without, however, affecting hydrolysis rates of protein substrates. On the contrary, PA28γ seems to be a slow-evolving gene that is most similar to the common ancestor of the PA28 activators family, and very likely retains its original functions. Notably, PA28γ has a prevalent nuclear localization and is involved in the regulation of several essential cellular processes including cell growth and proliferation, apoptosis, chromatin structure and organization, and response to DNA damage. In striking contrast with the activity of PA28αβ, most of these diverse biological functions of PA28γ seem to depend on its ability to markedly enhance degradation rates of regulatory protein by 20S proteasome. The present review will focus on the molecular mechanisms and biochemical properties of PA28γ, which are likely to account for its various and complex biological functions and highlight the common features with the PA28αβ paralog.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
4
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
5
|
Coleman RA, Trader DJ. Methods to Discover and Evaluate Proteasome Small Molecule Stimulators. Molecules 2019; 24:molecules24122341. [PMID: 31242677 PMCID: PMC6630500 DOI: 10.3390/molecules24122341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 11/25/2022] Open
Abstract
Protein accumulation has been identified as a characteristic of many degenerative conditions, such as neurodegenerative diseases and aging. In most cases, these conditions also present with diminished protein degradation. The ubiquitin-proteasome system (UPS) is responsible for the degradation of the majority of proteins in cells; however, the activity of the proteasome is reduced in these disease states, contributing to the accumulation of toxic protein. It has been hypothesized that proteasome activity, both ubiquitin-dependent and -independent, can be chemically stimulated to reduce the load of protein in diseased cells. Several methods exist to identify and characterize stimulators of proteasome activity. In this review, we detail the ways in which protease activity can be enhanced and analyze the biochemical and cellular methods of identifying stimulators of both the ubiquitin-dependent and -independent proteasome activities.
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Giżyńska M, Witkowska J, Karpowicz P, Rostankowski R, Chocron ES, Pickering AM, Osmulski P, Gaczynska M, Jankowska E. Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity. J Med Chem 2018; 62:359-370. [PMID: 30452262 PMCID: PMC6796967 DOI: 10.1021/acs.jmedchem.8b01025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Proline-
and arginine-rich peptide PR11 is an allosteric inhibitor
of 20S proteasome. We modified its sequence inter alia by introducing
HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety;
R, arginine; Y, tyrosine; X, any residue). Consequently, we were able
to improve inhibitory potency or to convert inhibitors into strong
activators: the former with an aromatic penultimate Hb residue and
the latter with the HbYX motif. The PR peptide activator stimulated
20S proteasome in vitro to efficiently degrade protein substrates,
such as α-synuclein and enolase, but also activated proteasome
in cultured fibroblasts. The positive and negative PR modulators differently
influenced the proteasome conformational dynamics and affected opening
of the substrate entry pore. The resolved crystal structure showed
PR inhibitor bound far from the active sites, at the proteasome outer
face, in the pocket used by natural activators. Our studies indicate
the opportunity to tune proteasome activity by allosteric regulators
based on PR peptide scaffold.
Collapse
Affiliation(s)
- Małgorzata Giżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Rafał Rostankowski
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Estrella S Chocron
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Andrew M Pickering
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Pawel Osmulski
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| |
Collapse
|
7
|
Gaczynska M, Osmulski PA. Targeting Protein-Protein Interactions in the Ubiquitin-Proteasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:123-165. [PMID: 29412995 DOI: 10.1016/bs.apcsb.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major venue for controlled intracellular protein degradation in Eukaryota. The machinery of several hundred proteins is involved in recognizing, tagging, transporting, and cleaving proteins, all in a highly regulated manner. Short-lived transcription factors, misfolded translation products, stress-damaged polypeptides, or worn-out long-lived proteins, all can be found among the substrates of UPP. Carefully choreographed protein-protein interactions (PPI) are involved in each step of the pathway. For many of the steps small-molecule inhibitors have been identified and often they directly or indirectly target PPI. The inhibitors may destabilize intracellular proteostasis and trigger apoptosis. So far this is the most explored option used as an anticancer strategy. Alternatively, substrate-specific polyubiquitination may be regulated for a precise intervention aimed at a particular metabolic pathway. This very attractive opportunity is moving close to clinical application. The best known drug target in UPP is the proteasome: the end point of the journey of a protein destined for degradation. The proteasome alone is a perfect object to study the mechanisms and roles of PPI on many levels. This giant protease is built from multisubunit modules and additionally utilizes a service from transient protein ligands, for example, delivering substrates. An elaborate set of PPI within the highest-order proteasome assembly is involved in substrate recognition and processing. Below we will outline PPI involved in the UPP and discuss the growing prospects for their utilization in pharmacological interventions.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
9
|
Gaczynska M, Osmulski PA. Harnessing proteasome dynamics and allostery in drug design. Antioxid Redox Signal 2014; 21:2286-301. [PMID: 24410482 PMCID: PMC4241894 DOI: 10.1089/ars.2013.5816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The proteasome is the essential protease that is responsible for regulated cleavage of the bulk of intracellular proteins. Its central role in cellular physiology has been exploited in therapies against aggressive cancers where proteasome-specific competitive inhibitors that block proteasome active centers are very effectively used. However, drugs regulating this essential protease are likely to have broader clinical usefulness. The non-catalytic sites of the proteasome emerge as an attractive alternative target in search of highly specific and diverse proteasome regulators. RECENT ADVANCES Crystallographic models of the proteasome leave the false impression of fixed structures with minimal molecular dynamics lacking long-distance allosteric signaling. However, accumulating biochemical and structural observations strongly support the notion that the proteasome is regulated by precise allosteric interactions arising from protein dynamics, encouraging the active search for allosteric regulators. Here, we discuss properties of several promising compounds that affect substrate gating and processing in antechambers, and interactions of the catalytic core with regulatory proteins. CRITICAL ISSUES Given the structural complexity of proteasome assemblies, it is a painstaking process to better understand their allosteric regulation and molecular dynamics. Here, we discuss the challenges and achievements in this field. We place special emphasis on the role of atomic force microscopy imaging in probing the allostery and dynamics of the proteasome, and in dissecting the mechanisms involving small-molecule allosteric regulators. FUTURE DIRECTIONS New small-molecule allosteric regulators may become a next generation of drugs targeting the proteasome, which is critical to the development of new therapies in cancers and other diseases.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | |
Collapse
|
10
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
11
|
Raule M, Cerruti F, Benaroudj N, Migotti R, Kikuchi J, Bachi A, Navon A, Dittmar G, Cascio P. PA28αβ reduces size and increases hydrophilicity of 20S immunoproteasome peptide products. ACTA ACUST UNITED AC 2014; 21:470-480. [PMID: 24631123 DOI: 10.1016/j.chembiol.2014.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
The specific roles that immunoproteasome variants play in MHC class I antigen presentation are unknown at present. To investigate the biochemical properties of different immunoproteasome forms and unveil the molecular mechanisms of PA28 activity, we performed in vitro degradation of full-length proteins by 20S, 26S, and PA28αβ-20S immunoproteasomes and analyzed the spectrum of peptides released. Notably, PA28αβ-20S immunoproteasomes hydrolyze proteins at the same low rates as 20S alone, which is in line with PA28, neither stimulating nor preventing entry of unfolded polypeptides into the core particle. Most importantly, binding of PA28αβ to 20S greatly reduces the size of proteasomal products and favors the release of specific, more hydrophilic, longer peptides. Hence, PA28αβ may either allosterically modify proteasome active sites or act as a selective "smart" sieve that controls the efflux of products from the 20S proteolytic chamber.
Collapse
Affiliation(s)
- Mary Raule
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Nadia Benaroudj
- Unité Biologie des Spirochètes, Institut Pasteur, 75015 Paris, France
| | - Rebekka Migotti
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Kikuchi
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Angela Bachi
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gunnar Dittmar
- Mass Spectrometry Core Unit, Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy.
| |
Collapse
|
12
|
Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 2013; 538:6-15. [DOI: 10.1016/j.abb.2013.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
|
13
|
Hovestädt M, Kuckelkorn U, Niewienda A, Keller C, Goede A, Ay B, Günther S, Janek K, Volkmer R, Holzhütter HG. Rapid degradation of solid-phase bound peptides by the 20S proteasome. J Pept Sci 2013; 19:588-97. [DOI: 10.1002/psc.2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marc Hovestädt
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Ulrike Kuckelkorn
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Agathe Niewienda
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Christin Keller
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Andrean Goede
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Bernhard Ay
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Stefan Günther
- Pharmaceutical Bioinformatics Group, Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Freiburg Germany
| | - Katharina Janek
- Proteolysis Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Rudolf Volkmer
- Institute of Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Hermann-Georg Holzhütter
- Mathematical Systems Biochemistry Group, Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
14
|
Dechavanne V, Vilbois F, Glez L, Antonsson B. Purification and separation of the 20S immunoproteasome from the constitutive proteasome and identification of the subunits by LC–MS. Protein Expr Purif 2013; 87:100-10. [DOI: 10.1016/j.pep.2012.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
15
|
Silva GM, Netto LES, Simões V, Santos LFA, Gozzo FC, Demasi MAA, Oliveira CLP, Bicev RN, Klitzke CF, Sogayar MC, Demasi M. Redox control of 20S proteasome gating. Antioxid Redox Signal 2012; 16:1183-94. [PMID: 22229461 PMCID: PMC3324812 DOI: 10.1089/ars.2011.4210] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The proteasome is the primary contributor in intracellular proteolysis. Oxidized or unstructured proteins can be degraded via a ubiquitin- and ATP-independent process by the free 20S proteasome (20SPT). The mechanism by which these proteins enter the catalytic chamber is not understood thus far, although the 20SPT gating conformation is considered to be an important barrier to allowing proteins free entrance. We have previously shown that S-glutathiolation of the 20SPT is a post-translational modification affecting the proteasomal activities. AIMS The goal of this work was to investigate the mechanism that regulates 20SPT activity, which includes the identification of the Cys residues prone to S-glutathiolation. RESULTS Modulation of 20SPT activity by proteasome gating is at least partially due to the S-glutathiolation of specific Cys residues. The gate was open when the 20SPT was S-glutathiolated, whereas following treatment with high concentrations of dithiothreitol, the gate was closed. S-glutathiolated 20SPT was more effective at degrading both oxidized and partially unfolded proteins than its reduced form. Only 2 out of 28 Cys were observed to be S-glutathiolated in the proteasomal α5 subunit of yeast cells grown to the stationary phase in glucose-containing medium. INNOVATION We demonstrate a redox post-translational regulatory mechanism controlling 20SPT activity. CONCLUSION S-glutathiolation is a post-translational modification that triggers gate opening and thereby activates the proteolytic activities of free 20SPT. This process appears to be an important regulatory mechanism to intensify the removal of oxidized or unstructured proteins in stressful situations by a process independent of ubiquitination and ATP consumption. Antioxid. Redox Signal. 16, 1183-1194.
Collapse
Affiliation(s)
- Gustavo M Silva
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 2011; 20:1285-97. [PMID: 21574196 DOI: 10.1002/pro.657] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the "degradation by default" model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
17
|
A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol 2011; 18:622-9. [PMID: 21499243 PMCID: PMC3087856 DOI: 10.1038/nsmb.2027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 02/07/2011] [Indexed: 02/06/2023]
Abstract
Dedicated chaperones facilitate eukaryotic proteasome assembly, yet how they function remains largely unknown. Here we demonstrate that a yeast 20S proteasome assembly factor, Pba1–Pba2, requires a previously overlooked C-terminal HbYX (hydrophobic-tyrosine-X) motif for function. HbYX motifs in proteasome activators open the 20S proteasome entry pore, but Pba1–Pba2 instead binds inactive proteasomal precursors. We discovered an archaeal ortholog of this factor, here named PbaA, that also binds preferentially to proteasomal precursors in a HbYX-dependent fashion using the same proteasomal α-ring surface pockets bound by activators. Remarkably, PbaA and the related PbaB protein can be induced to bind mature 20S proteasomes if the active sites in the central chamber are occupied by inhibitors. Our data suggest an allosteric mechanism in which proteasome active-site maturation determines assembly chaperone binding, potentially shielding assembly intermediates or misassembled complexes from non-productive associations until assembly is complete.
Collapse
|
18
|
Abstract
The proteasome is the essential prime protease in all eukaryotes. The large, multisubunit, modular, and multifunctional enzyme is responsible for the majority of regulated intracellular protein degradation. It constitutes a part of the multienzyme ubiquitin-proteasome pathway, which is broadly implicated in recognition, tagging, and cleavage of proteins. The name "proteasome" refers to several types of protein assemblies sharing a common catalytic core particle. Additional protein modules attach to the core, regulate its activities, and broaden its functional capabilities. The structure of proteasomes has been studied extensively with multiple methods. The crystal structure of the core particle was solved for several species. However, only a single structure of the core particle decorated with PA26 activator has been determined. NMR spectroscopy was successfully applied to probe a much -simpler, archaebacterial type of the core particle. In turn, electron microscopy was very effective in exploring the spatial arrangement of many classes of assemblies. Still, the makeup of higher-order -complexes is not well established. Besides, the crystal structure provided very limited information on proteasome molecular dynamics. Atomic force microscopy (AFM) is an ideal technique to address questions that are unanswered by other approaches. For example, AFM is perfectly suited to study allosteric regulation of proteasome, the role of protein dynamics in enzymatic catalysis, and the spatial organization of modules and subunits in assemblies. Here, we present a method that probes the conformational diversity and dynamics of yeast core particle using the oscillating mode AFM in liquid. We are taking advantage of the observation that the tube-shaped core particle is equipped with a swinging gate leading to the catalytic chamber. We demonstrate how to identify distinct gate conformations in AFM images and how to characterize the gate dynamics controlled with ligands and disturbed by mutations.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | | |
Collapse
|
19
|
Xu XL, Zhou YS, Liu QL, Hou JG, Yang JL, Xie YS. Single-Molecular Imaging of Anticoagulation Factor I from Snake Venom by Atomic Force Microscopy. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20020200919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem Biophys Res Commun 2010; 394:798-803. [PMID: 20230784 DOI: 10.1016/j.bbrc.2010.03.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 11/20/2022]
Abstract
VDAC1 is a key component of the mitochondrial permeability transition pore. To initiate apoptosis and certain other forms of cell death, mitochondria become permeable such that cytochrome c and other pre-apoptotic molecules resident inside the mitochondria enter the cytosol and activate apoptotic cascades. We have shown recently that VDAC1 interacts directly with never-in-mitosis A related kinase 1 (Nek1), and that Nek1 phosphorylates VDAC1 on Ser193 to prevent excessive cell death after injury. How this phosphorylation regulates the activity of VDAC1, however, has not yet been reported. Here, we use atomic force microscopy (AFM) and cytochrome c conductance studies to examine the configuration of VDAC1 before and after phosphorylation by Nek1. Wild-type VDAC1 assumes an open configuration, but closes and prevents cytochrome c efflux when phosphorylated by Nek1. A VDAC1-Ser193Ala mutant, which cannot be phosphorylated by Nek1 under identical conditions, remains open and constitutively allows cytochrome c efflux. Conversely, a VDAC1-Ser193Glu mutant, which mimics constitutive phosphorylation by Nek1, remains closed by AFM and prevents cytochrome c leakage in the same liposome assays. Our data provide a mechanism to explain how Nek1 regulates cell death by affecting the opening and closing of VDAC1.
Collapse
|
21
|
Osmulski PA, Hochstrasser M, Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel. Structure 2010; 17:1137-47. [PMID: 19679091 DOI: 10.1016/j.str.2009.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/22/2009] [Accepted: 06/09/2009] [Indexed: 11/29/2022]
Abstract
Intrinsic conformational transitions contribute to the catalytic action of many enzymes. Here we use a single-molecule approach to demonstrate how such transitions are linked to the catalytic sites of the eukaryotic proteasome, an essential protease of the ubiquitin pathway. The active sites of the cylindrical proteasomal core particle are located in a central chamber accessible through gated entry channels. By using atomic force microscopy, we found continual alternation between open and closed gate conformations. We analyzed the relative abundance of these conformers in wild-type and mutated yeast core particles upon exposure to substrates or inhibitors. Our data indicate that the dynamic gate can be opened by allosteric coupling to a tetrahedral transition state at any of the working active centers. The results point to the N(alpha)-amine of the N-terminal active site threonyl residue as the major effector group responsible for triggering the essential conformational switch.
Collapse
Affiliation(s)
- Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
22
|
Abstract
The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Atomic force microscopy as a tool to study the proteasome assemblies. Methods Cell Biol 2009. [PMID: 19195545 DOI: 10.1016/s0091-679x(08)00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteasome is an exceptional enzyme because of its essential physiological role, multiple activities, and structural complexity. It is, in fact, a family of enzymes sharing a common catalytic core and equipped with distinct protein attachments regulating the core and adding to its new functional capabilities. As a drug target and a major regulator of cellular processes, proteasome is extensively studied with tools of structural, biochemical, and molecular biology. Atomic force microscopy (AFM) besides X-ray crystallography and electron microscopy is one of the most attractive methods to study proteasome. The noninvasive nature of this method is particularly well suited for investigating the structure-function relationship within the core particle (CP) as well as in higher-order assemblies. Here we review, from the methodological point of view, AFM-based studies on the proteasome. First, we will present the application of height distribution analysis of proteasome complexes to dissect the subunit organization in the base of the regulatory particle (RP). The RP is considered the most physiologically important among all the attachments of the CP; however, its structure remains enigmatic. Then, we will outline the use of AFM imaging to research on structural dynamics of the proteasome, a phenomenon which is starting to gain a broad interest. We will finish with a brief presentation of nanotechnological studies performed using ordered proteasomes and nanolithography carried out with the particles. The presented AFM research offers a unique and often unexpected insight into the structure and function of the proteasome.
Collapse
|
24
|
Abstract
The term "biological complexes" broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications.
Collapse
|
25
|
Zaikin A, Kurths J. Optimal length transportation hypothesis to model proteasome product size distribution. J Biol Phys 2006; 32:231-43. [PMID: 19669465 DOI: 10.1007/s10867-006-9014-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 02/10/2006] [Indexed: 11/30/2022] Open
Abstract
This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.
Collapse
Affiliation(s)
- Alexey Zaikin
- Institute of Physics, University of Potsdam, D-14415 Potsdam, Germany.
| | | |
Collapse
|
26
|
Gaczynska M, Rodriguez K, Madabhushi S, Osmulski PA. Highbrow proteasome in high-throughput technology. Expert Rev Proteomics 2006; 3:115-27. [PMID: 16445356 DOI: 10.1586/14789450.3.1.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteasome is a major protease of the ubiquitin-proteasome pathway involved in the regulation of practically all intracellular biochemical processes. The enzyme core is created by a heteromultimer of complex architecture built with multiple subunits arranged into a tube-like structure. The multiple active sites of diverse peptidase specificity are hidden inside the tube. Access to the interior is guarded by a gate formed by the N-termini of specialized subunits and by the attachment of additional multisubunit protein complexes controlling the enzymatic capabilities of the core. Proteasome, due to its Byzantine molecular architecture and equally sophisticated enzymatic mechanism, is by itself a fascinating biophysical object. Recently, the position of the protease advanced from an academically remarkable protein processor to a providential anticancer drug target and futuristic nanomachine. Proteomics studies actively shape our current understanding of the protease and direct the future applications of the proteasome in medicine.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
27
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Squier TC. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Antioxid Redox Signal 2006; 8:217-28. [PMID: 16487055 DOI: 10.1089/ars.2006.8.217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.
Collapse
Affiliation(s)
- Thomas C Squier
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
29
|
Suhara W, Kobayashi M, Sagara H, Hamada K, Goto T, Fujimoto I, Torimitsu K, Mikoshiba K. Visualization of inositol 1,4,5-trisphosphate receptor by atomic force microscopy. Neurosci Lett 2006; 391:102-7. [PMID: 16198054 DOI: 10.1016/j.neulet.2005.08.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 08/12/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) acts as a ligand-gated channel that mediates neuronal signals by releasing Ca(2+) from the endoplasmic reticulum. The three-dimensional (3D) structure of tetrameric IP(3)R has been demonstrated by using electron microscopy (EM) with static specimens; however, the dynamic aspects of the IP(3)R structure have never been visualized in a native environment. Here we attempt to measure the surface topography of IP(3)R in solution using atomic force microscopy (AFM). AFM revealed large protrusions extending approximately 4.3 nm above a flat membrane prepared from Spodoptera frugiperda (Sf9) cells overexpressing mouse type 1 IP(3)R (Sf9-IP(3)R1). The average diameter of the large protrusions was approximately 32 nm. A specific antibody against a cytosolic epitope close to the IP(3)-binding site enabled us to gold-label the Sf9-IP(3)R1 membrane as confirmed by EM. AFM images of the gold-labeled membrane revealed 7.7-nm high protrusions with a diameter of approximately 30 nm, which should be IP(3)R1-antibody complexes. Authentic IP(3)R1 immuno-purified from mouse cerebella had approximately the same dimensions as those of the IP(3)R-like protrusions on the membrane. Altogether, these results suggest that the large protrusions on the Sf9-IP(3)R1 membrane correspond to the cytosolic domain of IP(3)R1. Our study provides the first 3D representation of individual IP(3)R1 particles in an aqueous solution.
Collapse
Affiliation(s)
- Wakako Suhara
- The Division of Neural Signal Information NTT-IMSUT, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The proteasome should be an ideal molecule for studies on large enzymatic complexes, given its multisubunit and modular structure, compartmentalized design, numerous activities, and its own means of regulation. Considering the recent increased interest in the ubiquitin-proteasome pathway, it is surprising that biophysical approaches to study this enzymatic assembly are applied with limited frequency. Methods including atomic force microscopy, fluorescence spectroscopy, surface plasmon resonance, and high-pressure procedures all have gained popularity in characterization of the proteasome. These methods provide significant and often unexpected insight regarding the structure and function of the enzyme. This chapter describes the use of atomic force microscopy for dynamic structural studies of the proteasome.
Collapse
Affiliation(s)
- Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | | |
Collapse
|
31
|
Whittier JE, Xiong Y, Rechsteiner MC, Squier TC. Hsp90 enhances degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem 2004; 279:46135-42. [PMID: 15319444 DOI: 10.1074/jbc.m406048200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 20 S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaM(ox)), we have purified red blood cell 20 S proteasomes free of Hsp90 and assessed their ability to degrade CaM(ox) in the absence or presence of Hsp90. Purified 20 S proteasome does not degrade CaM(ox) unless Hsp90 is added. CaM(ox) degradation is sensitive to both proteasome and Hsp90-specific inhibitors and is further enhanced in the presence of 2 mm ATP. Irrespective of the presence of Hsp90, we find that unoxidized CaM is not significantly degraded. Direct binding measurements demonstrate that Hsp90 selectively associates with CaM(ox); essentially no binding is observed between Hsp90 and unoxidized CaM. These results indicate that Hsp90 in association with the 20 S proteasome can selectively associate with oxidized and partially unfolded CaM to promote degradation by the proteasome.
Collapse
Affiliation(s)
- Jennifer E Whittier
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
32
|
Shu F, Guo S, Dang Y, Qi M, Zhou G, Guo Z, Zhang Y, Wu C, Zhao S, Yu L. Human aurora-B binds to a proteasome alpha-subunit HC8 and undergoes degradation in a proteasome-dependent manner. Mol Cell Biochem 2004; 254:157-62. [PMID: 14674694 DOI: 10.1023/a:1027317014159] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human Aurora/Ipl1-related kinase 2 (Aurora-B) is a key regulator of mitosis. Here human proteasome alpha-subunit C8 (HC8) was identified to interact with the Aurora-B by yeast two-hybrid screen. This finding was confirmed by GST pull-down assays and immunoprecipitation experiments. The Aurora-B protein level increased in HeLa cells cultured with proteasome inhibitor ALLN. Our data suggest that Aurora-B might undergo degradation by binding to HC8 in a proteasome-dependent manner during mitosis.
Collapse
Affiliation(s)
- Fengjue Shu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hutschenreiter S, Tinazli A, Model K, Tampé R. Two-substrate association with the 20S proteasome at single-molecule level. EMBO J 2004; 23:2488-97. [PMID: 15175655 PMCID: PMC449772 DOI: 10.1038/sj.emboj.7600262] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/10/2004] [Indexed: 11/08/2022] Open
Abstract
The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity.
Collapse
Affiliation(s)
- Silke Hutschenreiter
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
| | - Ali Tinazli
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
| | - Kirstin Model
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt a. M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie Str. 9–11, 60439 Frankfurt a. M., Germany. Tel.: +49 69 798 29476; Fax: +49 69 798 29495; E-mail:
| |
Collapse
|
34
|
Nnebe I, Schneider JW. Characterization of distance-dependent damping in tapping-mode atomic force microscopy force measurements in liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:3195-201. [PMID: 15875848 DOI: 10.1021/la030324b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have used a spectral analysis method to characterize changes in the local damping coefficient for an acoustically driven cantilever as it approaches a hard surface in liquid. We show a significant distance dependence of the damping coefficient (and associated quality factor) that must be accounted for to achieve successful theoretical reproduction of experimental tapping-mode force curves. We model the cantilever dynamics using a forced damped harmonic oscillator model and solve the equation of motion using the method of finite differences. Experiments in solutions of differing viscosities show that bulk viscous damping is not the source of the system dissipation, while simulations of the cantilever dynamics including adhesion hysteresis also eliminate this as the origin of the dissipation. We conclude that frictional dissipation that occurs with the intermittent contact is the likely source of dissipation in the system. Our results identify a semiquantitative means of interpreting tapping-mode force curves on nondeformable surfaces in liquid.
Collapse
Affiliation(s)
- Ijeoma Nnebe
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, USA
| | | |
Collapse
|
35
|
Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M. Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J 2004; 23:500-10. [PMID: 14739934 PMCID: PMC1271798 DOI: 10.1038/sj.emboj.7600059] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Accepted: 12/08/2003] [Indexed: 11/08/2022] Open
Abstract
The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/alpha3 subunit is deleted. Purified pre9Delta proteasomes show a two-fold enrichment for the Pre6/alpha4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure-guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/alpha4 is expressed in yeast, it complements not only pre6Delta but also pre6Delta pre9Delta mutants; therefore, the plant alpha4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9Delta cells, suggesting an advantage for Pre9 over Pre6 incorporation at the alpha3 position that facilitates correct assembly.
Collapse
Affiliation(s)
- Irina Velichutina
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Pamela L Connerly
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Cassandra S Arendt
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Xia Li
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520, USA. Tel.: +1 203 432 5101; Fax: +1 203 432 5175; E-mail:
| |
Collapse
|
36
|
Furuike S, Hirokawa J, Yamada S, Yamazaki M. Atomic force microscopy studies of interaction of the 20S proteasome with supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:1-6. [PMID: 12948584 DOI: 10.1016/s0005-2736(03)00227-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 20S proteasome plays important roles in degradation of intracellular proteins. Mechanisms of its activation, its localization in cells, and its binding to biomembranes are not well understood. In this study, we used atomic force microscopy (AFM) to investigate interactions between the 20S proteasome and supported bilayers of various lipids in a buffer. We found that the 20S proteasome specifically bound to supported bilayers containing phosphatidylinositol (PI), but did not bind to supported bilayers containing phosphatidylcholine, phosphatidic acid or dioleoyltrimethylammonium propane. Binding of the 20S proteasomes had a high orientation; almost all were in a top view position. The specific and orientational binding of the 20S proteasome with PI may play important roles inside cells such as endoplasmic reticulum (ER) membrane. Use of AFM to study supported bilayers provides new information on ligand-receptor interactions.
Collapse
Affiliation(s)
- Shou Furuike
- Division of Materials Science, Graduate School of Science and Engineering, Shizuoka University, Japan
| | | | | | | |
Collapse
|
37
|
Gaczynska M, Osmulski PA, Gao Y, Post MJ, Simons M. Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 2003; 42:8663-70. [PMID: 12873125 DOI: 10.1021/bi034784f] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substrate-specific inhibition of the proteasome has been unachievable despite great interest in proteasome inhibitors as drugs. Recent studies demonstrated that PR39, a natural proline- and arginine-rich antibacterial peptide, stimulates angiogenesis and inhibits inflammatory responses by specifically blocking degradation of IkappaBalpha and HIF-1alpha by the proteasome. However, molecular events involved in the PR39-proteasome interaction have not been elucidated. Here we show that PR39 is a noncompetitive and reversible inhibitor of the proteasome function. This effect is achieved by a unique allosteric mechanism allowing for specific inhibition of degradation of selected proteins without affecting total proteasome-dependent proteolysis. Atomic force microscopy (AFM) studies demonstrate that 20S and 26S proteasomes treated with PR39 or its derivatives exhibit serious perturbations in their structure and their normal allosteric movements. These effects are universal for proteasomes from yeast to human. The shortest functional sequence derived from PR39 still showing the allosteric inhibitory effect consists of eleven NH(2)-terminal residues containing essential three NH(2)-terminal arginines. The noncompetitive and reversible in vitro action of PR39 and its truncated derivatives is matched by the ability of the peptides to induce angiogenesis in vivo. We postulate that PR39 changes conformational dynamics of the proteasomes by interactions with the noncatalytic subunit alpha7 in a way that prevents the enzyme from cleaving the substrates of unique structural constraints.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA.
| | | | | | | | | |
Collapse
|
38
|
Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Archaeal proteasomes: potential in metabolic engineering. Metab Eng 2003; 5:151-63. [PMID: 12948749 DOI: 10.1016/s1096-7176(03)00030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Archaea are a valuable source of enzymes for industrial and scientific applications because of their ability to survive extreme conditions including high salt and temperature. Thanks to advances in molecular biology and genetics, archaea are also attractive hosts for metabolic engineering. Understanding how energy-dependent proteases and chaperones function to maintain protein quality control is key to high-level synthesis of recombinant products. In archaea, proteasomes are central players in energy-dependent proteolysis and form elaborate nanocompartments that degrade proteins into oligopeptides by processive hydrolysis. The catalytic core responsible for this proteolytic activity is the 20S proteasome, a barrel-shaped particle with a central channel and axial gates on each end that limit substrate access to a central proteolytic chamber. AAA proteins (ATPases associated with various cellular activities) are likely to play several roles in mediating energy-dependent proteolysis by the proteasome. These include ATP binding/hydrolysis, substrate binding/unfolding, opening of the axial gates, and translocation of substrate into the proteolytic chamber.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Room 1052, Building 981, Gainesville, FL 32611-0700, USA.
| | | | | | | | | |
Collapse
|
39
|
Burri L, Servis C, Chapatte L, Lévy F. A recyclable assay to analyze the NH(2)-terminal trimming of antigenic peptide precursors. Protein Expr Purif 2002; 26:19-27. [PMID: 12356466 DOI: 10.1016/s1046-5928(02)00507-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.
Collapse
Affiliation(s)
- Lena Burri
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
40
|
Thess A, Hutschenreiter S, Hofmann M, Tampé R, Baumeister W, Guckenberger R. Specific orientation and two-dimensional crystallization of the proteasome at metal-chelating lipid interfaces. J Biol Chem 2002; 277:36321-8. [PMID: 12114506 DOI: 10.1074/jbc.m202145200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The potential of a protein-engineered His tag to immobilize macromolecules in a predictable orientation at metal-chelating lipid interfaces was investigated using recombinant 20 S proteasomes His-tagged in various positions. Electron micrographs demonstrated that the orientation of proteasomes bound to chelating lipid films could be controlled via the location of their His tags: proteasomes His-tagged at their sides displayed exclusively side-on views, while proteasomes His-tagged at their ends displayed exclusively end-on views. The activity of proteasomes immobilized at chelating lipid interfaces was well preserved. In solution, His-tagged proteasomes hydrolyzed casein at rates comparable with wild-type proteasomes, unless the His tags were located in the vicinity of the N termini of alpha-subunits. The N termini of alpha-subunits might partly occlude the entrance channel in alpha-rings through which substrates enter the proteasome for subsequent degradation. A combination of electron micrographs and atomic force microscope topographs revealed a propensity of vertically oriented proteasomes to crystallize in two dimensions on fluid lipid films. The oriented immobilization of His-tagged proteins at biocompatible lipid interfaces will assist structural studies as well as the investigation of biomolecular interaction via a wide variety of surface-sensitive techniques including single-molecule analysis.
Collapse
Affiliation(s)
- Andreas Thess
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Claverol S, Burlet-Schiltz O, Girbal-Neuhauser E, Gairin JE, Monsarrat B. Mapping and structural dissection of human 20 S proteasome using proteomic approaches. Mol Cell Proteomics 2002; 1:567-78. [PMID: 12376572 DOI: 10.1074/mcp.m200030-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome, a proteolytic complex present in all eukaryotic cells, is part of the ATP-dependent ubiquitin/proteasome pathway. It plays a critical role in the regulation of many physiological processes. The 20 S proteasome, the catalytic core of the 26 S proteasome, is made of four stacked rings of seven subunits each (alpha7beta7beta7alpha7). Here we studied the human 20 S proteasome using proteomics. This led to the establishment of a fine subunit reference map and to the identification of post-translational modifications. We found that the human 20 S proteasome, purified from erythrocytes, exhibited a high degree of structural heterogeneity, characterized by the presence of multiple isoforms for most of the alpha and beta subunits, including the catalytic ones, resulting in a total of at least 32 visible spots after Coomassie Blue staining. The different isoforms of a given subunit displayed shifted pI values, suggesting that they likely resulted from post-translational modifications. We then took advantage of the efficiency of complementary mass spectrometric approaches to investigate further these protein modifications at the structural level. In particular, we focused our efforts on the alpha7 subunit and characterized its N-acetylation and its phosphorylation site localized on Ser(250).
Collapse
Affiliation(s)
- Stephane Claverol
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | | | | | | | | |
Collapse
|
42
|
Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 2002; 277:22260-70. [PMID: 11927581 DOI: 10.1074/jbc.m112360200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic 20 S proteasome contains the following 6 active sites: 2 chymotrypsin-like, 2 trypsin-like, and 2 caspase-like. We previously showed that hydrophobic peptide substrates of the chymotrypsin-like sites allosterically stimulate peptide hydrolysis by the caspase-like sites and their own cleavage. More thorough analysis revealed that these peptides also stimulate peptide hydrolysis by the trypsin-like site. This general activation by hydrophobic peptides occurred even if the chymotrypsin-like sites were occupied by a covalent inhibitor and was highly cooperative, with an average Hill coefficient of 7. Therefore, this stimulation of peptide hydrolysis at all active sites occurs upon binding of hydrophobic peptides to several non-catalytic sites. The stimulation by hydrophobic peptides was not observed in the yeast Delta N alpha 3 mutant 20 S proteasomes, in 20 S-PA26 complexes, or SDS-activated proteasomes and was significantly lower in 26 S proteasomes, all of which appear to have the gated channel in the alpha-rings in an open conformation and hydrolyze peptides at much faster rates than 20 S proteasomes. Also the hydrophobic peptides altered K(m), V(max) of active sites in a similar fashion as PA26 and the Delta N alpha 3 mutation. The activation by hydrophobic peptides was decreased in K(+)-containing buffer, which favors the closed state of the channels. Therefore, hydrophobic peptides stimulate peptide hydrolysis most likely by promoting the opening of the channels in the alpha-rings. During protein breakdown, this peptide-induced channel opening may function to facilitate the release of products from the proteasome.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Osmulski PA, Gaczynska M. Nanoenzymology of the 20S proteasome: proteasomal actions are controlled by the allosteric transition. Biochemistry 2002; 41:7047-53. [PMID: 12033938 DOI: 10.1021/bi0159130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteasome is a major cytosolic proteolytic assembly, essential for the physiology of eukaryotic cells. Both the architecture and enzymatic properties of the 20S proteasome are relatively well understood. However, despite longstanding interest, the integration of structural and functional properties of the proteasome into a coherent model explaining the mechanism of its enzymatic actions has been difficult. Recently, we used tapping mode atomic force microscopy (AFM) in liquid to demonstrate that the alpha-rings of the proteasome imaged in a top-view position repeatedly switched between their open and closed conformations, apparently to control access to the central channel. Here, we show with AFM that the molecules in a side-view position acquired two stable conformations. The overall shapes of the 20S particles were classified as either barrel-like or cylinder-like. The relative abundance of the two conformers depended on the nature of their interactions with ligands. Similarly to the closed molecules in top view, the barrels predominated in control or inhibited molecules. The cylinders and open molecules prevailed when the proteasome was observed in the presence of peptide substrates. Based on these data, we developed the two-state model of allosteric transitions to explain the dynamics of proteasomal structure. This model helps to better understand the observed properties of the 20S molecule, and sets foundations for further studies of the structural dynamics of the proteasome.
Collapse
Affiliation(s)
- Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA
| | | |
Collapse
|
44
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
45
|
Wells WA. Death and Destruction. J Biophys Biochem Cytol 2001. [PMCID: PMC2196861 DOI: 10.1083/jcb.1541mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
46
|
Hofmann M, Nussbaum AK, Emmerich NPN, Stoltze L, Schild H. Mechanisms of MHC class I-restricted antigen presentation. Expert Opin Ther Targets 2001; 5:379-393. [PMID: 12540272 DOI: 10.1517/14728222.5.3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The vertebrate immune system monitors whether an organism is invaded by pathogens. Therefore, each cell has to prove itself as healthy. This is achieved by presenting fragments of intracellular protein degradation products on the surface, i.e., each cell displays peptides on specialised proteins known as major histocompatibility complex (MHC) class I proteins. A displayed peptide has to pass certain constraints before its presentation: It has to be excised out of a protein, translocated into the endoplasmic reticulum (ER) and fit into the binding groove of a MHC molecule. In theory, alteration of the cellular protein profile by mutation or infection should force pathogen-specific T-cells to take action via recognition of foreign peptide bound to MHC class I molecules on the cell surface. Unfortunately, pathogens and tumours have evolved many ways to affect antigen presentation and to escape from immune response. Understanding the exact mechanisms of antigen presentation, i.e., protein cleavage and peptide binding by MHC molecules, would allow their manipulation by drugs and lead to the re-establishment of the correct antigen presentation pathway. This review will summarise current knowledge of the mechanisms of antigen presentation and discuss putative targets for therapeutic treatment as well as for vaccination strategies.
Collapse
Affiliation(s)
- Matthias Hofmann
- Institut für Zellbiologie, Abteilung Immunologie, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Abstract
Despite intensive studies, the molecular basis of the decline of protein degradation with age still remains unresolved. It is suspected that the proteasome is one of the key factors controlling the age-dependent turnover of intracellular proteins. This hypothesis is based on the observation that the proteasome is a part of the ubiquitin-proteasome pathway, which together with the lysosomal pathway constitute the major mechanisms of protein degradation. While there are alterations in proteasome structure and function with age, the observed changes do not provide a clear mechanism for explaining the decline of protein degradation. In addition, there are no consistent changes in the ubiquitination system to account for this decline. On the other hand, because of the essential role played by the proteasome in the maintenance of cellular homeostasis, the observation of age-related changes in structure and function will ultimately be demonstrated to contribute to the aging process. The fact that food restriction, the only currently available experimental paradigm that can alter the aging process, modulates the age-related changes in proteasome structure and function provides presumptive evidence that the proteasome is involved in the aging process.
Collapse
Affiliation(s)
- M Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
48
|
|
49
|
Wojcik C. How is the gate to the proteasome opened? Trends Cell Biol 2000. [DOI: 10.1016/s0962-8924(00)01812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|