1
|
Wang X, Guillem-Marti J, Kumar S, Lee DS, Cabrerizo-Aguado D, Werther R, Alamo KAE, Zhao YT, Nguyen A, Kopyeva I, Huang B, Li J, Hao Y, Li X, Brizuela-Velasco A, Murray A, Gerben S, Roy A, DeForest CA, Springer T, Ruohola-Baker H, Cooper JA, Campbell MG, Manero JM, Ginebra MP, Baker D. De Novo Design of Integrin α5β1 Modulating Proteins for Regenerative Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600123. [PMID: 38979380 PMCID: PMC11230231 DOI: 10.1101/2024.06.21.600123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrin α5β1 is crucial for cell attachment and migration in development and tissue regeneration, and α5β1 binding proteins could have considerable utility in regenerative medicine and next-generation therapeutics. We use computational protein design to create de novo α5β1-specific modulating miniprotein binders, called NeoNectins, that bind to and stabilize the open state of α5β1. When immobilized onto titanium surfaces and throughout 3D hydrogels, the NeoNectins outperform native fibronectin and RGD peptide in enhancing cell attachment and spreading, and NeoNectin-grafted titanium implants outperformed fibronectin and RGD-grafted implants in animal models in promoting tissue integration and bone growth. NeoNectins should be broadly applicable for tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Saurav Kumar
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David S Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Daniel Cabrerizo-Aguado
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Rachel Werther
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam Nguyen
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuxin Hao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aritza Brizuela-Velasco
- DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, Valladolid, Spain
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Anindya Roy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hannele Ruohola-Baker
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Brzdąk P, Lebida K, Wyroślak M, Mozrzymas JW. GABAergic synapses onto SST and PV interneurons in the CA1 hippocampal region show cell-specific and integrin-dependent plasticity. Sci Rep 2023; 13:5079. [PMID: 36977728 PMCID: PMC10050003 DOI: 10.1038/s41598-023-31882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
It is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment. We thus used hippocampal slices to address the impact of integrins on long-term plasticity of GABAergic synapses on specific inhibitory interneurons (containing parvalbumin, PV + or somatostatin, SST +) known to innervate distinct parts of principal cells. Administration of RGD sequence-containing peptide induced inhibitory long-term potentiation (iLTP) at fast-spiking (FS) PV + as well as on SST + interneurons. Interestingly, treatment with a more specific peptide GA(C)RRETAWA(C)GA (RRETAWA), affecting α5β1 integrins, resulted in iLTP in SST + and iLTD in FS PV + interneurons. Brief exposure to NMDA is known to induce iLTP at GABAergic synapses on pyramidal cells. Intriguingly, application of this protocol for considered interneurons evoked iLTP in SST + and iLTD in PV + interneurons. Moreover, we showed that in SST + cells, NMDA-evoked iLTP depends on the incorporation of GABAA receptors containing α5 subunit to the synapses, and this iLTP is occluded by RRETAWA peptide, indicating a key role of α5β1 integrins. Altogether, our results revealed that plasticity of inhibitory synapses at GABAergic cells shows interneuron-specificity and show differences in the underlying integrin-dependent mechanisms. This is the first evidence that neuronal disinhibition may be a highly plastic process depending on interneuron type and integrins' activity.
Collapse
Affiliation(s)
- Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Marcin Wyroślak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| |
Collapse
|
3
|
Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. J Biol Chem 2022; 298:102323. [PMID: 35931112 PMCID: PMC9483561 DOI: 10.1016/j.jbc.2022.102323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Integrin α5β1 mediates cell adhesion to the extracellular matrix by binding fibronectin (Fn). Selectivity for Fn by α5β1 is achieved through recognition of an RGD motif in the 10th type III Fn domain (Fn10) and the synergy site in the ninth type III Fn domain (Fn9). However, details of the interaction dynamics are unknown. Here, we compared synergy-site and Fn-truncation mutations for their α5β1-binding affinities and stabilities. We also interrogated binding of the α5β1 ectodomain headpiece fragment to Fn using hydrogen-deuterium exchange (HDX) mass spectrometry to probe binding sites and sites of integrin conformational change. Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded domain. We found some residues considered important for synergy are required for stability. Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide containing contacting residues in two β-strands, an intervening loop in Fn9, and the RGD-containing loop in Fn10, indicative of binding sites. We also identified binding sites in the α5-subunit β-propeller domain for the Fn9 synergy site and in the β1-subunit βI domain for Fn10 based on decreases in α5β1 HDX. Interestingly, the dominant effect of Fn binding was an increase in α5β1 deuterium exchange distributed over multiple sites that undergo changes in conformation or solvent accessibility and appear to be sites where energy is stored in the higher-energy, open-integrin conformation. Together, our results highlight regions important for α5β1 binding to Fn and dynamics associated with this interaction.
Collapse
Affiliation(s)
- Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
4
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
5
|
Measurement of Integrin Activation and Conformational Changes on the Cell Surface by Soluble Ligand and Antibody Binding Assays. Methods Mol Biol 2020. [PMID: 33215372 DOI: 10.1007/978-1-0716-0962-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Soluble ligand and conformation-dependent antibody binding assay of integrins on the cell surface is an effective approach to evaluate the activation status of integrins in live cells. The ligands or antibodies are usually labeled with biotin or a fluorescent dye and incubated with integrin-expressing cells in suspension. The cell-bound ligands and antibodies are then detected by flow cytometry. Here we describe the detailed protocols of soluble ligand or antibody binding assay for αIIbβ3, αVβ3, α5β1, and αLβ2 integrins that are transiently or stably expressed in the model cell lines such as HEK293 or CHO-k1 cells.
Collapse
|
6
|
Zhang H, Zheng X, Ahmed W, Yao Y, Bai J, Chen Y, Gao C. Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules 2018; 19:1746-1763. [PMID: 29665330 DOI: 10.1021/acs.biomac.8b00264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue regeneration involves versatile types of cells. The accumulation and disorganized behaviors of undesired cells impair the natural healing process, leading to uncontrolled immune response, restenosis, and/or fibrosis. Cell-selective surfaces and interfaces can have specific and positive effects on desired types of cells, allowing tissue regeneration with restored structures and functions. This review outlines the importance of surfaces and interfaces of biomaterials with cell-selective properties. The chemical and biological cues including peptides, antibodies, and other molecules, physical cues such as topography and elasticity, and physiological cues referring mainly to interactions between cells-cells and cell-chemokines or cytokines are effective modulators for achieving cell selectivity upon being applied into the design of biomaterials. Cell-selective biomaterials have also shown practical significance in tissue regeneration, in particular for endothelialization, nerve regeneration, capture of stem cells, and regeneration of tissues of multiple structures and functions.
Collapse
Affiliation(s)
- Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine , Zhejiang University , Hangzhou 310016 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
7
|
Zhao J, Li Q, Hao X, Ren X, Guo J, Feng Y, Shi C. Multi-targeting peptides for gene carriers with high transfection efficiency. J Mater Chem B 2017; 5:8035-8051. [DOI: 10.1039/c7tb02012k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-viral gene carriers for gene therapy have been developed for many years.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Changcan Shi
- Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering
| |
Collapse
|
8
|
Mould AP, Askari JA, Byron A, Takada Y, Jowitt TA, Humphries MJ. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION. J Biol Chem 2016; 291:20993-21007. [PMID: 27484800 PMCID: PMC5076510 DOI: 10.1074/jbc.m116.736942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.
Collapse
Affiliation(s)
- A Paul Mould
- From the Biomolecular Analysis Core Facility and
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Adam Byron
- the Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom, and
| | - Yoshikazu Takada
- the Department of Vascular Biology, VB-1, The Scripps Research Institute, La Jolla, California 92037
| | | | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom,
| |
Collapse
|
9
|
Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits. Sci Rep 2015; 5:13756. [PMID: 26349930 PMCID: PMC4563375 DOI: 10.1038/srep13756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (<25 Å) contained within a footprint of the mAbs were mutated, and the loop W3:34 on the bottom face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.
Collapse
|
10
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
11
|
Abstract
Integrin α5β1 binds to an Arg-Gly-Asp (RGD) motif in its ligand fibronectin. We report high-resolution crystal structures of a four-domain α5β1 headpiece fragment, alone or with RGD peptides soaked into crystals, and RGD peptide affinity measurements. The headpiece crystallizes in a closed conformation essentially identical to that seen previously for α5β1 complexed with a Fab that allosterically inhibits ligand binding by stabilizing the closed conformation. Soaking experiments show that binding of cyclic RGD peptide with 20-fold higher affinity than a linear RGD peptide induces conformational change in the β1-subunit βI domain to a state that is intermediate between closed (low affinity) and open (high affinity). In contrast, binding of a linear RGD peptide induces no shape shifting. However, linear peptide binding induces shape shifting when Ca(2+) is depleted during soaking. Ca(2+) bound to the adjacent to metal ion-dependent adhesion site (ADMIDAS), at the locus of shape shifting, moves and decreases in occupancy, correlating with an increase in affinity for RGD measured when Ca(2+) is depleted. The results directly demonstrate that Ca(2+) binding to the ADMIDAS stabilizes integrins in the low-affinity, closed conformation. Comparisons in affinity between four-domain and six-domain headpiece constructs suggest that flexible integrin leg domains contribute to conformational equilibria. High-resolution views of the hybrid domain interface with the plexin-semaphorin-integrin (PSI) domain in different orientations show a ball-and-socket joint with a hybrid domain Arg side chain that rocks in a PSI domain socket lined with carbonyl oxygens.
Collapse
|
12
|
Gandavarapu NR, Alge DL, Anseth KS. Osteogenic differentiation of human mesenchymal stem cells on α5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater Sci 2014; 2:352-361. [PMID: 24660057 DOI: 10.1039/c3bm60149h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular matrix plays a crucial role in controlling human mesenchymal stem cell (hMSC) biology including differentiation, and α5β1 integrin signaling plays an important role during osteogenic differentiation of hMSCs. Here, peptide-functionalized hydrogels were used to examine the role of α5β1 integrin signaling in inducing osteogenic differentiation in hMSCs. Further, the role of substrate elasticity was also studied. A thiolene chemistry was used to functionalize poly(ethylene glycol) hydrogels with a pendant peptide moieity, c(RRETAWA), as previous studies have shown that RRETAWA containing peptides bind to the α5β1 integrin with very high specificity. Notably, hMSC attachment to c(RRETAWA)-functionalized hydrogels was found to occur primarily through α5 integrins, as the number of attached cells was significantly reduced to ~20% upon blocking the α5 integrin during culture. To investigate the interplay between stiffness and c(RRETAWA) concentration, hydrogels were formulated with Young's moduli of ~2 kPa (soft) and ~25 kPa (stiff) and c(RRETAWA) concentrations of 0.1 mM and 1 mM. Stiff substrates led to ~3.5 fold higher hMSC attachment and ~3 fold higher cell area in comparison to soft substrates. hMSCs formed robust and larger focal adhesions on stiff substrates at 1 mM c(RRETAWA) compared to soft substrates. Alkaline phosphatase (ALP) activity in hMSCs cultured on stiff gels at 0.1 mM and 1 mM c(RRETAWA) was increased 2.5 and 3.5 fold, respectively after 14 days in growth media. hMSCs did not show an increase in ALP activity when cultured on soft gels. Further, gene expression of osteogenic related genes, core binding factor-1, osteopontin and Collagen-1a at day 14 in hMSCs cultured on stiff gels at 1 mM c(RRETAWA) were increased 10, 7 and 4 fold, respectively, while on soft gels, gene expression was at basal levels. Collectively, these results demonstrate that the combination of high substrate stiffness and α5β1 integrin signaling stimulated by c(RRETAWA) is sufficient to induce osteogenic differentiation of hMSCs without requiring the addition of soluble factors.
Collapse
Affiliation(s)
- Navakanth R Gandavarapu
- Department of Chemical and Biological Engineering and the BioFrontiers Insitute, University of Colorado Boulder, Boulder, Colorado - 80309, USA
| | - Daniel L Alge
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado - 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Insitute, University of Colorado Boulder, Boulder, Colorado - 80309, USA ; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado - 80309, USA
| |
Collapse
|
13
|
Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J. Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. ACTA ACUST UNITED AC 2012; 197:131-40. [PMID: 22451694 PMCID: PMC3317794 DOI: 10.1083/jcb.201111077] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The crystal structure of the α5β1 integrin reveals conformational changes and amino acids important for ligand binding. Integrin α5β1 is a major cellular receptor for the extracellular matrix protein fibronectin and plays a fundamental role during mammalian development. A crystal structure of the α5β1 integrin headpiece fragment bound by an allosteric inhibitory antibody was determined at a 2.9-Å resolution both in the absence and presence of a ligand peptide containing the Arg-Gly-Asp (RGD) sequence. The antibody-bound β1 chain accommodated the RGD ligand with very limited structural changes, which may represent the initial step of cell adhesion mediated by nonactivated integrins. Furthermore, a molecular dynamics simulation pointed to an important role for Ca2+ in the conformational coupling between the ligand-binding site and the rest of the molecule. The RGD-binding pocket is situated at the center of a trenchlike exposed surface on the top face of α5β1 devoid of glycosylation sites. The structure also enabled the precise prediction of the acceptor residue for the auxiliary synergy site of fibronectin on the α5 subunit, which was experimentally confirmed by mutagenesis and kinetic binding assays.
Collapse
Affiliation(s)
- Masamichi Nagae
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Sreejalekshmi KG, Nair PD. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response. J Biomed Mater Res A 2010; 96:477-91. [PMID: 21171167 DOI: 10.1002/jbm.a.32980] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/09/2010] [Indexed: 12/16/2022]
Abstract
Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field.
Collapse
Affiliation(s)
- Kumaran G Sreejalekshmi
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace, Poojapura, Thiruvananthapuram 695 012, Kerala, India, India.
| | | |
Collapse
|
15
|
Siebert HC, Burg-Roderfeld M, Eckert T, Stötzel S, Kirch U, Diercks T, Humphries MJ, Frank M, Wechselberger R, Tajkhorshid E, Oesser S. Interaction of the α2A domain of integrin with small collagen fragments. Protein Cell 2010; 1:393-405. [PMID: 21203951 DOI: 10.1007/s13238-010-0038-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/27/2010] [Indexed: 11/29/2022] Open
Abstract
We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany.
| | - Monika Burg-Roderfeld
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Thomas Eckert
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Sabine Stötzel
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Ulrike Kirch
- Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Tammo Diercks
- CiC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160, Derio, Spain.,Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Frank
- Molecular Structure Analysis Core Facility, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Rainer Wechselberger
- Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steffen Oesser
- Collagen Research Institute, Schauenburgerstr. 116, D-24118, Kiel, Germany
| |
Collapse
|
16
|
Askari JA, Tynan CJ, Webb SED, Martin-Fernandez ML, Ballestrem C, Humphries MJ. Focal adhesions are sites of integrin extension. ACTA ACUST UNITED AC 2010; 188:891-903. [PMID: 20231384 PMCID: PMC2845069 DOI: 10.1083/jcb.200907174] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
FRET experiments model integrin conformation changes in adherent cells. Integrins undergo global conformational changes that specify their activation state. Current models portray the inactive receptor in a bent conformation that upon activation converts to a fully extended form in which the integrin subunit leg regions are separated to enable ligand binding and subsequent signaling. To test the applicability of this model in adherent cells, we used a fluorescent resonance energy transfer (FRET)–based approach, in combination with engineered integrin mutants and monoclonal antibody reporters, to image integrin α5β1 conformation. We find that restricting leg separation causes the integrin to adopt a bent conformation that is unable to respond to agonists and mediate cell spreading. By measuring FRET between labeled α5β1 and the cell membrane, we find extended receptors are enriched in focal adhesions compared with adjacent regions of the plasma membrane. These results demonstrate definitely that major quaternary rearrangements of β1-integrin subunits occur in adherent cells and that conversion from a bent to extended form takes place at focal adhesions.
Collapse
Affiliation(s)
- Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | | | | | | | | | | |
Collapse
|
17
|
The use of RGDGWK-lipopeptide to selectively deliver genes to mouse tumor vasculature and its complexation with p53 to inhibit tumor growth. Biomaterials 2010; 31:1787-97. [DOI: 10.1016/j.biomaterials.2009.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/09/2009] [Indexed: 11/21/2022]
|
18
|
Mould AP, Koper E, Byron A, Zahn G, Humphries MJ. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem J 2009; 424:179-89. [PMID: 19747169 PMCID: PMC3329623 DOI: 10.1042/bj20090992] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Integrin alpha5beta1 is a key receptor for the extracellular matrix protein fibronectin. Antagonists of human integrin alpha5beta1 have therapeutic potential as anti-angiogenic agents in cancer and diseases of the eye. However, the structure of the integrin is unsolved and the atomic basis of fibronectin and antagonist binding by integrin alpha5beta1 is poorly understood. In the present study, we demonstrate that zebrafish alpha5beta1 integrins do not interact with human fibronectin or the human alpha5beta1 antagonists JSM6427 and cyclic peptide CRRETAWAC. Zebrafish alpha5beta1 integrins do bind zebrafish fibronectin-1, and mutagenesis of residues on the upper surface and side of the zebrafish alpha5 subunit beta-propeller domain shows that these residues are important for the recognition of the Arg-Gly-Asp (RGD) motif and the synergy sequence [Pro-His-Ser-Arg-Asn (PHSRN)] in fibronectin. Using a gain-of-function analysis involving swapping regions of the zebrafish integrin alpha5 subunit with the corresponding regions of human alpha5 we show that blades 1-4 of the beta-propeller are required for human fibronectin recognition, suggesting that fibronectin binding involves a broad interface on the side and upper face of the beta-propeller domain. We find that the loop connecting blades 2 and 3 of the beta-propeller, the D3-A3 loop, contains residues critical for antagonist recognition, with a minor role played by residues in neighbouring loops. A new homology model of human integrin alpha5beta1 supports an important function for D3-A3 loop residues Trp157 and Ala158 in the binding of antagonists. These results will aid the development of reagents that block integrin alpha5beta1 functions in vivo.
Collapse
Affiliation(s)
- A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ewa Koper
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Hamidouche Z, Fromigué O, Ringe J, Häupl T, Vaudin P, Pagès JC, Srouji S, Livne E, Marie PJ. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci U S A 2009; 106:18587-91. [PMID: 19843692 PMCID: PMC2773973 DOI: 10.1073/pnas.0812334106] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
Adult human mesenchymal stromal cells (hMSCs) have the potential to differentiate into chondrogenic, adipogenic, or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptome analysis, we found that integrin alpha5 (ITGA5) expression is up-regulated during dexamethasone-induced osteoblast differentiation of hMSCs. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers and in vitro osteogenesis of hMSCs. Down-regulation of endogenous ITGA5 using specific shRNAs blunted osteoblast marker gene expression and osteogenic differentiation. Molecular analyses showed that the enhanced osteoblast differentiation induced by ITGA5 was mediated by activation of focal adhesion kinase/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of endogenous ITGA5 using agonists such as a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. Importantly, we demonstrated that hMSCs engineered to overexpress ITGA5 exhibited a marked increase in their osteogenic potential in vivo. Taken together, these findings not only reveal that ITGA5 is required for osteoblast differentiation of adult hMSCs but also provide a targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs. This may be used for tissue regeneration in bone disorders where the recruitment or capacity of hMSCs is compromised.
Collapse
Affiliation(s)
- Zahia Hamidouche
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| | - Olivia Fromigué
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| | | | | | - Pascal Vaudin
- Institut National de la Santé et de la Recherche Médicale U966, University of Tours, France; and
| | - Jean-Christophe Pagès
- Institut National de la Santé et de la Recherche Médicale U966, University of Tours, France; and
| | - Samer Srouji
- Anatomy and Cell Biology Department, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Erella Livne
- Anatomy and Cell Biology Department, Faculty of Medicine, Rappaport Institute, Haifa, Israel
| | - Pierre J. Marie
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
- University Denis Diderot, Paris, France
| |
Collapse
|
20
|
Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci 2009; 66:2851-71. [PMID: 19495561 PMCID: PMC11115964 DOI: 10.1007/s00018-009-0050-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/01/2009] [Accepted: 05/11/2009] [Indexed: 01/26/2023]
Abstract
Snake venom contains mixture of bioactive proteins and polypeptides. Most of these proteins and polypeptides exist as monomers, but some of them form complexes in the venom. These complexes exhibit much higher levels of pharmacological activity compared to individual components and play an important role in pathophysiological effects during envenomation. They are formed through covalent and/or non-covalent interactions. The subunits of the complexes are either identical (homodimers) or dissimilar (heterodimers; in some cases subunits belong to different families of proteins). The formation of complexes, at times, eliminates the non-specific binding and enhances the binding to the target molecule. On several occasions, it also leads to recognition of new targets as protein-protein interaction in complexes exposes the critical amino acid residues buried in the monomers. Here, we describe the structure and function of various protein complexes of snake venoms and their role in snake venom toxicity.
Collapse
Affiliation(s)
- R Doley
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | | |
Collapse
|
21
|
Sato Y, Uemura T, Morimitsu K, Sato-Nishiuchi R, Manabe RI, Takagi J, Yamada M, Sekiguchi K. Molecular basis of the recognition of nephronectin by integrin alpha8beta1. J Biol Chem 2009; 284:14524-36. [PMID: 19342381 DOI: 10.1074/jbc.m900200200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin alpha8beta1 interacts with a variety of Arg-Gly-Asp (RGD)-containing ligands in the extracellular matrix. Here, we examined the binding activities of alpha8beta1 integrin toward a panel of RGD-containing ligands. Integrin alpha8beta1 bound specifically to nephronectin with an apparent dissociation constant of 0.28 +/- 0.01 nm, but showed only marginal affinities for fibronectin and other RGD-containing ligands. The high-affinity binding to alpha8beta1 integrin was fully reproduced with a recombinant nephronectin fragment derived from the RGD-containing central "linker" segment. A series of deletion mutants of the recombinant fragment identified the LFEIFEIER sequence on the C-terminal side of the RGD motif as an auxiliary site required for high-affinity binding to alpha8beta1 integrin. Alanine scanning mutagenesis within the LFEIFEIER sequence defined the EIE sequence as a critical motif ensuring the high-affinity integrin-ligand interaction. Although a synthetic LFEIFEIER peptide failed to inhibit the binding of alpha8beta1 integrin to nephronectin, a longer peptide containing both the RGD motif and the LFEIFEIER sequence was strongly inhibitory, and was approximately 2,000-fold more potent than a peptide containing only the RGD motif. Furthermore, trans-complementation assays using recombinant fragments containing either the RGD motif or LFEIFEIER sequence revealed a clear synergism in the binding to alpha8beta1 integrin. Taken together, these results indicate that the specific high-affinity binding of nephronectin to alpha8beta1 integrin is achieved by bipartite interaction of the integrin with the RGD motif and LFEIFEIER sequence, with the latter serving as a synergy site that greatly potentiates the RGD-driven integrin-ligand interaction but has only marginal activity to secure the interaction by itself.
Collapse
Affiliation(s)
- Yuya Sato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tang C, Kligman F, Larsen CC, Kottke-Marchant K, Marchant RE. Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification. J Biomed Mater Res A 2009; 88:348-58. [PMID: 18286624 DOI: 10.1002/jbm.a.31888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A prominent failure mechanism of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts is platelet-mediated thrombosis. We have designed a surface modification for ePTFE consisting of a self-assembling fluorosurfactant polymer (FSP) bearing biologically active ligands, including adhesive peptides and polysaccharide moieties. The goal of this biomimetic construct is to improve graft hemocompatibility by promoting rapid surface endothelialization, whereas minimizing platelet adhesion. Here we present a direct comparison of platelet and endothelial cell (EC) adhesion to FSPs containing one of three cell-adhesion peptides: cyclic Arg-Gly-Asp-D-Phe-Glu (cRGD), cyclic *Cys-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys* (cRRE, *denotes disulfide bond cyclization), linear Gly-Arg-Gly-Asp-Ser-Pro-Ala (RGD), or a polysaccharide moiety: oligomaltose (M-7), later designed to prevent nonspecific protein adhesion. Measurements of soluble peptide-integrin binding indicated that cRRE exhibits very low affinity for the alpha(IIb)beta(3) platelet fibrinogen receptor. Static and dynamic adhesion of washed, activated platelets on FSP-modified surfaces revealed that M-7 and cRRE promote significantly less platelet adhesion compared to RGD and cRGD FSPs, whereas EC adhesion was similar on all peptide FSPs and minimal on M-7 FSP. These results illustrate the potential for ligands presented in a FSP surface modification to selectively adhere ECs with limited platelet attachment.
Collapse
Affiliation(s)
- Chad Tang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
23
|
Schmieder AH, Caruthers SD, Zhang H, Williams TA, Robertson JD, Wickline SA, Lanza GM. Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J 2008; 22:4179-89. [PMID: 18697838 DOI: 10.1096/fj.08-112060] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our objectives were 1) to characterize angiogenesis in the MDA-MB-435 xenograft mouse model with three-dimensional (3D) MR molecular imaging using alpha(5)beta(1)(RGD)- or irrelevant RGS-targeted paramagnetic nanoparticles and 2) to use MR molecular imaging to assess the antiangiogenic effectiveness of alpha(5)beta(1)(alpha(nu)beta(3))- vs. alpha(nu)beta(3)-targeted fumagillin (50 mug/kg) nanoparticles. Tumor-bearing mice were imaged with MR before and after administration of either alpha(5)beta(1)(RGD) or irrelevant RGS-paramagnetic nanoparticles. In experiment 2, mice received saline or alpha(5)beta(1)(alpha(nu)beta(3))- or alpha(nu)beta(3)-targeted fumagillin nanoparticles on days 7, 11, 15, and 19 posttumor implant. On day 22, MRI was performed using alpha(5)beta(1)(alpha(nu)beta(3))-targeted paramagnetic nanoparticles to monitor the antiangiogenic response. 3D reconstructions of alpha(5)beta(1)(RGD)-signal enhancement revealed a sparse, asymmetrical pattern of angiogenesis along the tumor periphery, which occupied <2.0% tumor surface area. alpha(5)beta(1)-targeted rhodamine nanoparticles colocalized with FITC-lectin corroborated the peripheral neovascular signal. alpha(5)beta(1)(alpha(nu)beta(3))-fumagillin nanoparticles decreased neovasculature to negligible levels relative to control; alpha(nu)beta(3)-targeted fumagillin nanoparticles were less effective (P>0.05). Reduction of angiogenesis in MDA-MB-435 tumors from low to negligible levels did not decrease tumor volume. MR molecular imaging may be useful for characterizing tumors with sparse neovasculature that are unlikely to have a reduced growth response to targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Anne H Schmieder
- Washington University Medical School, Campus Box 8215, 4320 Forest Park Ave., St. Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Saegusa J, Akakura N, Wu CY, Hoogland C, Ma Z, Lam KS, Liu FT, Takada YK, Takada Y. Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins alphavbeta3 and alpha4beta1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem 2008; 283:26107-15. [PMID: 18635536 DOI: 10.1074/jbc.m804835200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretory phospholipase A2 group IIA (sPLA2-IIA) plays an important role in the pathogenesis of inflammatory diseases. Catalytic activity of this enzyme that generates arachidonic acid is a major target for development of anti-inflammatory agents. Independent of its catalytic activity, sPLA2-IIA induces pro-inflammatory signals in a receptor-mediated mechanism (e.g. through the M-type receptor). However, the M-type receptor is species-specific: sPLA2-IIA binds to the M-type receptor in rodents and rabbits, but not in human. Thus sPLA2-IIA receptors in human have not been established. Here we demonstrated that sPLA2-IIA bound to integrin alphavbeta3 at a high affinity (K(D)=2 x 10(-7) M). We identified amino acid residues in sPLA2-IIA (Arg-74 and Arg-100) that are critical for integrin binding using docking simulation and mutagenesis. The integrin-binding site did not include the catalytic center or the M-type receptor-binding site. sPLA2-IIA also bound to alpha4beta1. We showed that sPLA2-IIA competed with VCAM-1 for binding to alpha4beta1, and bound to a site close to those for VCAM-1 and CS-1 in the alpha4 subunit. Wild type and the catalytically inactive H47Q mutant of sPLA2-IIA induced cell proliferation and ERK1/2 activation in monocytic cells, but the integrin binding-defective R74E/R100E mutant did not. This indicates that integrin binding is required, but catalytic activity is not required, for sPLA2-IIA-induced proliferative signaling. These results suggest that integrins alphavbeta3 and alpha4beta1 may serve as receptors for sPLA2-IIA and mediate pro-inflammatory action of sPLA2-IIA, and that integrin-sPLA2-IIA interaction is a novel therapeutic target.
Collapse
Affiliation(s)
- Jun Saegusa
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Larsen CC, Kligman F, Tang C, Kottke-Marchant K, Marchant RE. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials 2007; 28:3537-48. [PMID: 17507089 PMCID: PMC2034336 DOI: 10.1016/j.biomaterials.2007.04.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/03/2007] [Indexed: 01/21/2023]
Abstract
Endothelialization of expanded polytetrafluoroethylene (ePTFE) has the potential to improve long-term patency for small-diameter vascular grafts. Successful endothelialization requires ePTFE surface modification to permit cell attachment to this otherwise non-adhesive substrate. We report here on a peptide fluorosurfactant polymer (FSP) biomimetic construct that promotes endothelial cell (EC)-selective attachment, growth, shear stability, and function on ePTFE. The peptide FSP consists of a flexible poly(vinyl amine) backbone with EC-selective peptide ligands for specific cell adhesion and pendant fluorocarbon branches for stable anchorage to underlying ePTFE. The EC-selective peptide (primary sequence: Cys-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys, CRRETAWAC) has demonstrated high binding affinity for the alpha(5)beta(1) integrin found on ECs. Here, we demonstrate low affinity of CRRETAWAC for platelets and platelet integrins, thus providing it with EC-selectivity. This EC-selectivity could potentially facilitate rapid in vivo endothelialization and healing without thrombosis for small-diameter ePTFE vascular grafts.
Collapse
Affiliation(s)
- Coby C Larsen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Wickenden 309, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
26
|
Galeazzi R, Marcucci E, Martelli G, Natali D, Orena M, Rinaldi S. Synthesis of a versatile constrained analogue of dipeptide DG (Asp-Gly). Amino Acids 2006; 34:333-6. [PMID: 17136507 DOI: 10.1007/s00726-006-0469-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
The synthesis of an orthogonally protected constrained analogue of dipeptide DG (Asp-Gly) is reported exploiting alkylation of a chiral lactam. The versatility of this analogue was proven by removal of t-Boc protecting group, followed by coupling under homogeneous conditions with t-Boc-Arg(Z(2))-Gly, to give a conformationally restricted analogue of RGDG tetrapeptide.
Collapse
Affiliation(s)
- R Galeazzi
- Dipartimento di Scienze dei Materiali e della Terra, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Petrie TA, Capadona JR, Reyes CD, García AJ. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 2006; 27:5459-70. [PMID: 16846640 DOI: 10.1016/j.biomaterials.2006.06.027] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 06/29/2006] [Indexed: 11/28/2022]
Abstract
Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Timothy A Petrie
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, 2314 IBB, Atlanta, GA 30332-0363, USA.
| | | | | | | |
Collapse
|
28
|
García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005; 84:407-13. [PMID: 15840774 DOI: 10.1177/154405910508400502] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Binding of integrin adhesion receptors to extracellular matrix components, such as fibronectin and type I collagen, activates signaling pathways directing osteoblast survival, cell-cycle progression, gene expression, and matrix mineralization. Biomimetic strategies exploit these adhesive interactions to engineer bio-inspired surfaces that promote osteoblast adhesion and differentiation, bone formation, and osseointegration. These emerging initiatives focus on directing integrin binding through presentation of bio-adhesive motifs derived from extracellular matrices. These biomolecular approaches provide promising strategies for the development of biologically active implants and grafting substrates for enhanced bone repair.
Collapse
Affiliation(s)
- A J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Drive, 2314 Petit Biotechnology Building, Atlanta, GA 30332-0363, USA.
| | | |
Collapse
|
29
|
Humphries JD, Schofield NR, Mostafavi-Pour Z, Green LJ, Garratt AN, Mould AP, Humphries MJ. Dual functionality of the anti-beta1 integrin antibody, 12G10, exemplifies agonistic signalling from the ligand binding pocket of integrin adhesion receptors. J Biol Chem 2005; 280:10234-43. [PMID: 15632175 PMCID: PMC3327468 DOI: 10.1074/jbc.m411102200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although integrins are known to mediate connections between extracellular adhesion molecules and the intracellular actin cytoskeleton, the mechanisms that are responsible for coupling ligand binding to intracellular signaling, for generating diversity in signaling, and for determining the efficacy of integrin signaling in response to ligand engagement are largely unknown. By characterizing the class of anti-integrin monoclonal antibodies (mAbs) that stimulate integrin activation and ligand binding, we have identified integrin-ligand-mAb complexes that exhibit differential signaling properties. Specifically, addition of 12G10 mAb to cells adhering via integrin alpha4beta1 was found to trigger disruption of the actin cytoskeleton and prevent cell attachment and spreading, whereas mAb addition to cells adhering via alpha5beta1 stimulated all of these processes. In contrast, soluble ligand binding to either alpha4beta1 or alpha5beta1 was augmented or unaffected by 12G10. The regions of the integrin responsible for differential signaling were then mapped using chimeras. Surprisingly, a chimeric alpha5 integrin containing the beta-propeller domain from the ligand binding pocket of alpha4 exhibited the same signaling properties as the full-length alpha4 integrin, whereas exchanging or removing cytoplasmic domains had no effect. Thus the mAb 12G10 demonstrates dual functionality, inhibiting cell adhesion and spreading while augmenting soluble ligand binding, via a mechanism that is determined by the extracellular beta-propeller domain of the associating alpha-subunit. These findings therefore demonstrate a direct and variable agonistic link between the ligand binding pocket of integrins and the cell interior that is independent of the alpha cytoplasmic domains. We propose that either ligand-specific transmembrane conformational changes or ligand-specific differences in the kinetics of transmembrane domain separation underlie integrin agonism.
Collapse
Affiliation(s)
- Jonathan D. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Neil R. Schofield
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | - Linda J. Green
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | - A. Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
30
|
Feng Y, Mrksich M. The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 2005; 43:15811-21. [PMID: 15595836 DOI: 10.1021/bi049174+] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work reports on the role of the synergy peptide PHSRN in mediating the adhesion of cells. The attachment of baby hamster kidney cells and 3T3 Swiss fibroblasts to model substrates presenting either GRGDS or PHSRN was evaluated using self-assembled monolayers of alkanethiolates on gold presenting the peptide ligands mixed with tri(ethylene glycol) groups. These substrates permit rigorous control over the structures and densities of peptide ligands and at the same time prevent nonspecific interactions with adherent cells. Both cell types attached efficiently to monolayers presenting either the RGD or the PHSRN peptide but not to monolayers presenting scrambled peptide GRDGS or HRPSN. Cell attachment was comparable on substrates presenting either peptide ligand but less efficient than on substrates presenting the protein fibronectin. The degree of cell spreading, however, was substantially higher on substrates presenting RGD relative to PHSRN. Staining of 3T3 fibroblasts with anti-vinculin and phalloidin revealed clear cytoskeletal filaments and focal adhesions for cells attached by way of either RGD or PHSRN. Inhibition experiments showed that the attachment of 3T3 fibroblasts to monolayers presenting RGD could be inhibited completely by a soluble RGD peptide and partially by a soluble PHSRN peptide. IMR 90 fibroblast attachment to monolayers presenting PHSRN could be inhibited with anti-integrin alpha(5) or anti-integrin beta(1) antibody. This work demonstrates unambiguously that PHSRN alone can support the attachment of cells and that the RGD and PHSRN bind competitively to the integrin receptors.
Collapse
Affiliation(s)
- Yuezhong Feng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
31
|
Calvete JJ. Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3. Exp Biol Med (Maywood) 2004; 229:732-44. [PMID: 15337827 DOI: 10.1177/153537020422900805] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Integrins are heterodimeric type I transmembrane cell-adhesive receptors whose affinity for ligands is regulated by tertiary and quaternary conformational changes that are transmitted from the cytoplasmic tails to the extracellular ectodomains during the transition from the inactive to the active state. Receptor occupancy initiates further structural alterations that transduce signals across the plasma membrane and result in receptor clustering and recruitment of signaling molecules and cytoskeletal rearrangements at the integrin's cytoplasmic domains. The large distance between the intracellular cytoplasmic domains and the ligand-binding site, which in an extended conformation spans more that 200 A, imposes a complex mechanism of interdomain communication for the bidirectional information flow across the plasma membrane. Significant progress has recently been made in elucidating the crystal and electron microscopy structures of integrin ectodomains in its unliganded and liganded states, and the nuclear magnetic resonance solution structures of stalk domains and the cytoplasmic tails. These structures revealed the location of sites that are functionally important and provided the basis for defining new models of integrin activation and signaling through bidirectional conformational changes, and for understanding the structural basis of the cation-dependent ligand-binding specificity of integrins. Platelet integrin alphaIIbbeta3 has served as a paradigm for many aspects of the structure and function of integrins The aim of this minireview is to combine recent structural and biochemical studies on integrin receptors that converge into a model of the tertiary and quaternary conformational changes in alphaIIbbeta3 and other homologous integrins that propagate inside-out and outside-in signals.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, C.S.I.C., 46010, Valencia, Spain.
| |
Collapse
|
32
|
Pradip D, Peng X, Durden DL. Rac2 specificity in macrophage integrin signaling: potential role for Syk kinase. J Biol Chem 2003; 278:41661-9. [PMID: 12917394 DOI: 10.1074/jbc.m306491200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Herein we report that, despite the similarity of Rac2 to Rac1 (92% amino acid identity), macrophages derived from Rac2-/- mice, which continue to express Rac1, display a marked defect in alphavbeta3/alphavbeta5 and alpha4beta1 integrin-directed migration measured on vitronectin and fibronectin fragments (FN-H296), respectively. In contrast, mouse embryo fibroblasts derived from the Rac2 knockout mice utilize Rac1 for migration via alphavbeta3/alphavbeta5 and alpha4beta1. The genetic reconstitution of bone marrow-derived macrophages (BMM) with Rac2 restores the integrin-dependent migration of Rac2-deficient macrophages on vitronectin (VN) and FN-H296. The levels of GTP-Rac2 generated upon specific integrin engagement in wild type macrophages parallels the phenotypic defect observed in Rac2-deficient macrophages; i.e. FN-H296, alpha4beta1 > VN, alphavbeta3/alphavbeta5 > FN-CH271, alpha5beta1 > intact FN. In a COS7 cell system, the expression of Syk kinase alone is sufficient to convert the alpha4beta1 migration response to Rac2 dependence. Therefore, we present the first evidence that the alpha4beta1 receptor in blood cells has evolved a Syk-Rac2 signaling axis to transmit signals required for integrin-directed migration suggesting that Syk kinase in part encodes myeloid Rac2 specificity in vivo.
Collapse
Affiliation(s)
- De Pradip
- Section of Hematology/Oncology, Department of Pediatrics, Biochemistry and Molecular Biology, Herman B Wells Center for Pediatric Research, School of Medicine of Indiana University, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
33
|
Takagi J, Strokovich K, Springer TA, Walz T. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 2003; 22:4607-15. [PMID: 12970173 PMCID: PMC212714 DOI: 10.1093/emboj/cdg445] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The membrane-distal headpiece of integrins has evolved to specifically bind large extracellular protein ligands, but the molecular architecture of the resulting complexes has not been determined. We used molecular electron microscopy to determine the three-dimensional structure of the ligand-binding headpiece of integrin alpha5beta1 complexed with fragments of its physiological ligand fibronectin. The density map for the unliganded alpha5beta1 headpiece shows a 'closed' conformation similar to that seen in the alphaVbeta3 crystal structure. By contrast, binding to fibronectin induces an 'open' conformation with a dramatic, approximately 80 degrees change in the angle of the hybrid domain of the beta subunit relative to its I-like domain. The fibronectin fragment binds to the interface between the beta-propeller and I-like domains in the integrin headpiece through the RGD-containing module 10, but direct contact of the synergy-region-containing module 9 to integrin is not evident. This finding is corroborated by kinetic analysis of real-time binding data, which shows that the synergy site greatly enhances k(on) but has little effect on the stability or k(off) of the complex.
Collapse
Affiliation(s)
- Junichi Takagi
- The Center for Blood Research, Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
34
|
Xiong JP, Stehle T, Goodman SL, Arnaout MA. New insights into the structural basis of integrin activation. Blood 2003; 102:1155-9. [PMID: 12714499 DOI: 10.1182/blood-2003-01-0334] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Renal Unit, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Integrins are cell adhesion receptors that couple extracellular divalent cation-dependent recognition events with intracellular mechanical and biochemical responses and vice versa, thus affecting every function of nucleated cells. The structural basis of this bidirectional signaling and its dependency on cations has been the focus of intensive study over the past three decades. Significant progress made recently in elucidating the three-dimensional structure of the extracellular and cytoplasmic segments of integrins is giving valuable new insights into the tertiary and quaternary changes that underlie activation, ligand recognition and signaling by these receptors.
Collapse
Affiliation(s)
- J-P Xiong
- Renal Unit, Leukocyte Biology & Inflammation Program, Structural Biology Program, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
36
|
Mould AP, Barton SJ, Askari JA, McEwan PA, Buckley PA, Craig SE, Humphries MJ. Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J Biol Chem 2003; 278:17028-35. [PMID: 12615914 DOI: 10.1074/jbc.m213139200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ligand-binding head region of integrin beta subunits contains a von Willebrand factor type A domain (betaA). Ligand binding activity is regulated through conformational changes in betaA, and ligand recognition also causes conformational changes that are transduced from this domain. The molecular basis of signal transduction to and from betaA is uncertain. The epitopes of mAbs 15/7 and HUTS-4 lie in the beta(1) subunit hybrid domain, which is connected to the lower face of betaA. Changes in the expression of these epitopes are induced by conformational changes in betaA caused by divalent cations, function perturbing mAbs, or ligand recognition. Recombinant truncated alpha(5)beta(1) with a mutation L358A in the alpha7 helix of betaA has constitutively high expression of the 15/7 and HUTS-4 epitopes, mimics the conformation of the ligand-occupied receptor, and has high constitutive ligand binding activity. The epitopes of 15/7 and HUTS-4 map to a region of the hybrid domain that lies close to an interface with the alpha subunit. Taken together, these data suggest that the transduction of conformational changes through betaA involves shape shifting in the alpha7 helix region, which is linked to a swing of the hybrid domain away from the alpha subunit.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
37
|
García AJ, Schwarzbauer JE, Boettiger D. Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry 2002; 41:9063-9. [PMID: 12119020 DOI: 10.1021/bi025752f] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha5beta1 integrin can occupy several distinct conformational states which support different strengths of binding to fibronectin [García, A. J., et al. (1998) J. Biol. Chem. 273, 34710-34715]. Using a model system in which specific activating monoclonal antibodies were used to achieve uniform activated states, the binding of alpha5beta1 to full-length wild-type fibronectin and mutants of fibronectin in the defined RGD and PHSRN synergy sites was analyzed using a novel method that measures the strength of the coupling between integrin and its ligand. Neither TS2/16- nor AG89-activated alpha5beta1 showed significant mechanical coupling to RGD-deleted fibronectin. However, peptide competition assays demonstrated a 6-fold difference in the binding affinities of these two states for RGD. The mutant synergy site reduced the AG89 (low)-activated state to background levels, but the TS2/16-activated state still retained approximately 30% of the wild-type activity. Thus, these two active binding states of alpha5beta1 interact differently with both the RGD and synergy domains. The failure of the AG89-activated state to show mechanical coupling to either the RGD or synergy domain mutants was unexpected and implies that the RGD domain itself does not contribute significant mechanical strength to the alpha5beta1-fibronectin interaction. The lack of RGD alone to support alpha5beta1 coupling was further confirmed using a synthetic polymer presenting multiple copies of the RGD loop. These results suggest a model in which the RGD domain serves to activate and align the alpha5beta1-fibronectin interface, and the synergy site provides the mechanical strength to the bond.
Collapse
Affiliation(s)
- Andrés J García
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
38
|
Abstract
Directed protein evolution, which employs a combination of random mutagenesis, phage display, and in vitro selection, was used to identify second-site suppressors of the fibronectin (Fn) cell binding domain mutation Asp1495Ala (RGA). The mutations in the Fn 9th (3fn9) and 10th (3fn10) type III repeats obtained after selection on purified integrins alphaIIbbeta3(D119Y) and alpha5beta1 are reported. The 3fn9-10(D1495A) phage with substitution mutations at Asp1418, which is located within the linker region between 3fn9 and 3fn10, enhanced binding to the integrins alphaIIbbeta3 and alpha5beta1, but not alphavbeta3. The substitution mutations identified at residue Asp1418 were introduced into the native recombinant 3fn9-10 sequence and found to augment binding to alphaIIbbeta3, demonstrating that the observed gain-of-function phenotype was independent of the multivalent character of the phage. These results support the following conclusions. First, regions of Fn in addition to the RGD loop are in close proximity to alphaIIbbeta3 and alpha5beta1 and are capable of participating in the binding to these integrins. Secondly, the conformational relationship between the 3fn9 and 3fn10 modules may be an important factor in the binding of Fn to these two integrins. Thirdly, other altered properties of Fn-integrin interactions, such as integrin specificity, may also be selected. This is the first description of Fn mutations that augment binding to integrins. The ability to select for particular phenotypes in vitro and the subsequent characterization of these mutations should further our understanding of the molecular details involved in the association of integrins and their ligands. Additionally, these higher-affinity 3fn9-10 ligands provide a starting point for further in vitro evolution and engineering of integrin-specific modules.
Collapse
Affiliation(s)
- Patricia H Tani
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
39
|
Mould AP, Askari JA, Barton S, Kline AD, McEwan PA, Craig SE, Humphries MJ. Integrin activation involves a conformational change in the alpha 1 helix of the beta subunit A-domain. J Biol Chem 2002; 277:19800-5. [PMID: 11893752 DOI: 10.1074/jbc.m201571200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ligand-binding region of integrin beta subunits contains a von Willebrand factor type A-domain: an alpha/beta "Rossmann" fold containing a metal ion-dependent adhesion site (MIDAS) on its top face. Although there is evidence to suggest that the betaA-domain undergoes changes in tertiary structure during receptor activation, the identity of the secondary structure elements that change position is unknown. The mAb 12G10 recognizes a unique cation-regulated epitope on the beta(1) A-domain, induction of which parallels the activation state of the integrin (i.e. competency for ligand recognition). The ability of Mn(2+) and Mg(2+) to stimulate 12G10 binding is abrogated by mutation of the MIDAS motif, demonstrating that the MIDAS is a Mn(2+)/Mg(2+) binding site and that occupancy of this site induces conformational changes in the A-domain. The cation-regulated region of the 12G10 epitope maps to Arg(154)/Arg(155) in the alpha1 helix. Our results demonstrate that the alpha1 helix undergoes conformational alterations during integrin activation and suggest that Mn(2+) acts as a potent activator of beta(1) integrins because it can promote a shift in the position of this helix. The mechanism of beta subunit A-domain activation appears to be distinct from that of the A-domains found in some integrin alpha subunits.
Collapse
Affiliation(s)
- A Paul Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kohli RM, Takagi J, Walsh CT. The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides. Proc Natl Acad Sci U S A 2002; 99:1247-52. [PMID: 11805307 PMCID: PMC122175 DOI: 10.1073/pnas.251668398] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nonribosomal peptide synthetases responsible for the production of macrocyclic compounds often use their C-terminal thioesterase (TE) domain for enzymatic cyclization of a linear precursor. The excised TE domain from the nonribosomal peptide synthetase responsible for the production of the cyclic decapeptide tyrocidine A, TycC TE, retains autonomous ability to catalyze head-to-tail macrocyclization of a linear peptide thioester with the native sequence of tyrocidine A and can additionally cyclize peptide analogs that incorporate limited alterations in the peptide sequence. Here we show that TycC TE can catalyze macrocyclization of peptide substrates that are dramatically different from the native tyrocidine linear precursor. Several peptide thioesters that retain a limited number of elements of the native peptide sequence are shown to be substrates for TycC TE. These peptides were designed to integrate an Arg-Gly-Asp sequence that confers potential activity in the inhibition of ligand binding by integrin receptors. Although enzymatic hydrolysis of the peptide thioester substrates is preferred over cyclization, TycC TE can be used on a preparative scale to generate both linear and cyclic peptide products for functional characterization. The products are shown to be inhibitors of ligand binding by integrin receptors, with cyclization and N(alpha)-methylation being important contributors to the nanomolar potency of the best inhibitors of fibrinogen binding to alpha IIb beta 3 integrin. This study provides evidence for TycC TE as a versatile macrocyclization catalyst and raises the prospect of using TE catalysis for the generation of diverse macrocyclic peptide libraries that can be probed for novel biological function.
Collapse
Affiliation(s)
- Rahul M Kohli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Humphries MJ. Insights into integrin-ligand binding and activation from the first crystal structure. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S69-78. [PMID: 12110125 PMCID: PMC3240139 DOI: 10.1186/ar563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 02/28/2002] [Accepted: 03/03/2002] [Indexed: 12/31/2022]
Abstract
Integrin receptors transduce bidirectional signals between extracellular adhesion molecules and intracellular cytoskeletal and signalling molecules. The structural basis of integrin signalling is unknown, but the recent publication of the first crystal structure of the extracellular domain of integrin alphaVbeta3 has provided a number of insights. In this review, previous structure-function analyses of integrins that have employed biochemical and molecular biological approaches are placed in the context of the crystal structure, and novel routes to the development of integrin antagonists are discussed.
Collapse
Affiliation(s)
- Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, UK.
| |
Collapse
|
42
|
Kamata T, Takada Y. Platelet integrin alphaIIbbeta3-ligand interactions: what can we learn from the structure? Int J Hematol 2001; 74:382-9. [PMID: 11794692 DOI: 10.1007/bf02982080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Upon vascular injury, platelets initiate interaction with exposed subendothelial matrices through various receptors such as glycoprotein (GP) Ib/IX/V complex, alpha2beta1 integrin, and GPVI/FcRgamma. Although these interactions cannot sustain stable platelet thrombus formation by themselves, they ultimately lead to the activation of alphaIIbbeta3 integrin (GPIIb-IIIa complex [GPIIb-IIIa]), the most abundant receptor in platelets. The alphaIIbbeta3 integrin plays a central role in primary hemostasis by serving as a receptor for fibrinogen and von Willebrand factor (vWf). It establishes a stable interaction with vWf bound to the extracellular matrices and uses fibrinogen as a bridging molecule in platelet aggregate formation. The alphaIIbbeta3 integrin also plays an important role in the pathogenesis of thrombosis. Over the past decades, a tremendous amount of effort has been made to elucidate the ligand-binding mechanisms of alphaIIbbeta3, in part because of its clinical significance. Most of the studies have relied on biochemical analyses of purified alphaIIbbeta3 or recombinant proteins generated in vitro. With the lack of actual 3-dimensional structure, molecular modeling has provided a useful framework for interpreting such experimental data on structure-function correlation of integrin molecules. However, it has also generated disagreement between different models. The aim of this minireview is to summarize the past efforts as well as the recent accomplishments in elucidating the structure/function of alphaIIbbeta3. Finally, we will try to explain all those experimental data using the recently published crystal structure of the extracellular domains of the alphaVbeta3 heterodimeric complex.
Collapse
Affiliation(s)
- T Kamata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
43
|
Coe AP, Askari JA, Kline AD, Robinson MK, Kirby H, Stephens PE, Humphries MJ. Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem 2001; 276:35854-66. [PMID: 11389148 DOI: 10.1074/jbc.m103639200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tertiary structure of the integrin heterodimer is currently unknown, although several predictive models have been generated. Detailed structural studies of integrins have been consistently hampered for several reasons, including the small amounts of purified protein available, the large size and conformational flexibility of integrins, and the presence of transmembrane domains and N-linked glycosylation sites in both receptor subunits. As a first step toward obtaining crystals of an integrin receptor, we have expressed a minimized dimer. By using the Fc dimerization and mammalian cell expression system designed and optimized by Stephens et al. (Stephens, P. E., Ortlepp, S., Perkins, V. C., Robinson, M. K., and Kirby, H. (2000) Cell. Adhes. Commun. 7, 377-390), a series of recombinant soluble human alpha(5)beta(1) integrin truncations have been expressed as Fc fusion proteins. These proteins were examined for their ligand-binding properties and for their expression of anti-integrin antibody epitopes. The shortest functional alpha(5)-subunit truncation contained the N-terminal 613 residues, whereas the shortest beta(1)-subunit was a fragment containing residues 121-455. Each of these minimally truncated integrins displayed the antibody binding characteristics of alpha(5)beta(1) purified from human placenta and bound ligand with the same apparent affinity as the native receptor.
Collapse
Affiliation(s)
- A P Coe
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Mould AP, Askari JA, Humphries MJ. Molecular basis of ligand recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino acid sequences in the second and third NH2-terminal repeats of the alpha subunit. J Biol Chem 2000; 275:20324-36. [PMID: 10764748 DOI: 10.1074/jbc.m000572200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH(2)-terminal portion (putative ligand-binding domain) of alpha subunits contains 7 homologous repeats, the last 3 or 4 of which possess divalent cation binding sequences. These repeats are predicted to form a seven-bladed beta-propeller structure. To map ligand recognition sites on the alpha(5) subunit we have taken the approach of constructing and expressing alpha(V)/alpha(5) chimeras. Although the NH(2)-terminal repeats of alpha(5) and alpha(V) are >50% identical at the amino acid level, alpha(5)beta(1) and alpha(V)beta(1) show marked differences in their ligand binding specificities. Thus: (i) although both integrins recognize the Arg-Gly-Asp (RGD) sequence in fibronectin, the interaction of alpha(5)beta(1) but not of alpha(V)beta(1) with fibronectin is strongly dependent on the "synergy" sequence Pro-His-Ser-Arg-Asn; (ii) alpha(5)beta(1) binds preferentially to RGD peptides in which RGD is followed by Gly-Trp (GW) whereas alpha(V)beta(1) has a broader specificity; (iii) only alpha(5)beta(1) recognizes peptides containing the sequence Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Therefore, amino acid residues involved in ligand recognition by alpha(5)beta(1) can potentially be identified in gain-of-function experiments by their ability to switch the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1). By introducing appropriate restriction enzyme sites, or using site-directed mutagenesis, parts of the NH(2)-terminal repeats of alpha(V) were replaced with the corresponding regions of the alpha(5) subunit. Chimeric subunits were expressed on the surface of Chinese hamster ovary-B2 cells (which lack endogenous alpha(5)) as heterodimers with hamster beta(1). Stable cell lines were generated and tested for their ability to attach to alpha(5)beta(1)-selective ligands. Our results demonstrate that: (a) the first three NH(2)-terminal repeats contain the amino acid sequences that determine ligand binding specificity and the same repeats include the epitopes of function blocking anti-alpha subunit mAbs; (b) the divalent cation-binding sites (in repeats 4-7) do not confer alpha(5)beta(1)- or alpha(V)beta(1)-specific ligand recognition; (c) amino acid residues Ala(107)-Tyr(226) of alpha(5) (corresponding approximately to repeats 2 and 3) are sufficient to change all the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1); (d) swapping a small part of a predicted loop region of alpha(V) with the corresponding region of alpha(5) (Asp(154)-Ala(159)) is sufficient to confer selectivity for RGDGW and the ability to recognize RRETAWA.
Collapse
Affiliation(s)
- A P Mould
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|