1
|
Luthuli SD, Shonhai A. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Biophys Rev 2023; 15:1951-1965. [PMID: 38192347 PMCID: PMC10771493 DOI: 10.1007/s12551-023-01127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/27/2023] [Indexed: 01/10/2024] Open
Abstract
Macromolecular complexes play essential roles in various cellular processes. The assembly of macromolecular assemblies within the cell must overcome barriers imposed by a crowded cellular environment which is characterized by an estimated concentration of biological macromolecules amounting to 100-450 g/L that take up approximately 5-40% of the cytoplasmic volume. The formation of the macromolecular assemblies is facilitated by molecular chaperones in cooperation with their co-chaperones. The R2TP protein complex has emerged as a co-chaperone of Hsp90 that plays an important role in macromolecular assembly. The R2TP complex is composed of a heterodimer of RPAP3:P1H1DI that is in turn complexed to members of the ATPase associated with diverse cellular activities (AAA +), RUVBL1 and RUVBL2 (R1 and R2) families. What makes the R2TP co-chaperone complex particularly important is that it is involved in a wide variety of cellular processes including gene expression, translation, co-translational complex assembly, and posttranslational protein complex formation. The functional versatility of the R2TP co-chaperone complex makes it central to cellular development; hence, it is implicated in various human diseases. In addition, their roles in the development of infectious disease agents has become of interest. In the current review, we discuss the roles of these proteins as co-chaperones regulating Hsp90 and its partnership with Hsp70. Furthermore, we highlight the structure-function features of the individual proteins within the R2TP complex and describe their roles in various cellular processes.
Collapse
Affiliation(s)
- Sifiso Duncan Luthuli
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
2
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Davydenko S, Meledina T, Mittenberg A, Shabelnikov S, Vonsky M, Morozov A. Proteomics Answers Which Yeast Genes Are Specific for Baking, Brewing, and Ethanol Production. Bioengineering (Basel) 2020; 7:E147. [PMID: 33217975 PMCID: PMC7711625 DOI: 10.3390/bioengineering7040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
Yeast strains are convenient models for studying domestication processes. The ability of yeast to ferment carbon sources from various substrates and to produce ethanol and carbon dioxide is the core of brewing, winemaking, and ethanol production technologies. The present study reveals the differences among yeast strains used in various industries. To understand this, we performed a proteomic study of industrial Saccharomyces cerevisiae strains followed by a comparative analysis of available yeast genetic data. Individual protein expression levels in domesticated strains from different industries indicated modulation resulting from response to technological environments. The innovative nature of this research was the discovery of genes overexpressed in yeast strains adapted to brewing, baking, and ethanol production, typical genes for specific domestication were found. We discovered a gene set typical for brewer's yeast strains. Baker's yeast had a specific gene adapted to osmotic stress. Toxic stress was typical for yeast used for ethanol production. The data obtained can be applied for targeted improvement of industrial strains.
Collapse
Affiliation(s)
- Svetlana Davydenko
- Innovation & Research Department, Baltika Breweries—Part of the Carlsberg Group, 6-th Verkhnij ln. 3, 194292 St. Petersburg, Russia;
| | - Tatiana Meledina
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| | - Alexey Mittenberg
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Sergey Shabelnikov
- Proteomics and Mass Spectrometry Group, Cell Technologies Center, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia; (A.M.); (S.S.)
| | - Maksim Vonsky
- Department of State Standards and Reference Materials in the Area of Bioanalytical and Medical Measurements, D.I. Mendeleyev Institute for Metrology VNIIM, Moskovsky pr. 19, 190005 St. Petersburg, Russia;
| | - Artyom Morozov
- Faculty of Biotechnologies (BioTech), ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia;
| |
Collapse
|
4
|
Pontin/Tip49 negatively regulates JNK-mediated cell death in Drosophila. Cell Death Discov 2018; 4:8. [PMID: 30062057 PMCID: PMC6060144 DOI: 10.1038/s41420-018-0074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Pontin (Pont), also known as Tip49, encodes a member of the AAA+ (ATPases Associated with Diverse Cellular Activities) superfamily and plays pivotal roles in cell proliferation and growth, yet its function in cell death has remained poorly understood. Here we performed a genetic screen for dominant modifiers of Eiger-induced JNK-dependent cell death in Drosophila, and identified Pont as a negative regulator of JNK-mediated cell death. In addition, loss of function of Pont is sufficient to induce cell death and activate the transcription of JNK target gene puc. Furthermore, the epistasis analysis indicates that Pont acts downstream of Hep. Finally, we found that Pont is also required for JNK-mediated thorax development and acts as a negative regulator of JNK phosphorylation. Together, our data suggest that pont encodes a negative component of Egr/JNK signaling pathway in Drosophila through negatively regulating JNK phosphorylation, which provides a novel role of ATPase in Egr-JNK signaling.
Collapse
|
5
|
Saifi SK, Passricha N, Tuteja R, Tuteja N. Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3' to 5' direction. PROTOPLASMA 2018; 255:669-684. [PMID: 29103092 DOI: 10.1007/s00709-017-1178-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
RuvB, a member of AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins, is essential, highly conserved and multifunctional in nature as it is involved in DNA damage repair, mitotic assembly, switching of histone variants and assembly of telomerase core complex. RuvB family is widely studied in various systems such as Escherichia coli, yeast, human, Drosophila, Plasmodium falciparum and mouse, but not well studied in plants. We have studied the transcript level of rice homologue of RuvB gene (OsRuvBL1a) under various abiotic stress conditions, and the results suggest that it is upregulated under salinity, cold and heat stress. Therefore, the OsRuvBL1a protein was characterized using in silico and biochemical approaches. In silico study confirmed the presence of all the four characteristic motifs of AAA+ superfamily-Walker A, Walker B, Sensor I and Sensor II. Structurally, OsRuvBL1a is similar to RuvB1 from Chaetomium thermophilum. The purified recombinant OsRuvBL1a protein shows unique DNA-independent ATPase activity. Using site-directed mutagenesis, the importance of two conserved motifs (Walker B and Sensor I) in ATPase activity has been also reported with mutants D302N and N332H. The OsRuvBL1a protein unwinds the duplex DNA in the 3' to 5' direction. The presence of unique DNA-independent ATPase and DNA unwinding activities of OsRuvBL1a protein and upregulation of its transcript under abiotic stress conditions suggest its involvement in multiple cellular pathways. The first detailed characterization of plant RuvBL1a in this study may provide important contribution in exploiting the role of RuvB for developing the stress tolerant plants of agricultural importance.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Goto GH, Ogi H, Biswas H, Ghosh A, Tanaka S, Sugimoto K. Two separate pathways regulate protein stability of ATM/ATR-related protein kinases Mec1 and Tel1 in budding yeast. PLoS Genet 2017; 13:e1006873. [PMID: 28827813 PMCID: PMC5578694 DOI: 10.1371/journal.pgen.1006873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/31/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
Checkpoint signaling requires two conserved phosphatidylinositol 3-kinase-related protein kinases (PIKKs): ATM and ATR. In budding yeast, Tel1 and Mec1 correspond to ATM and ATR, respectively. The Tel2-Tti1-Tti2 (TTT) complex connects to the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex for the protein stability of PIKKs; however, TTT-R2TP interaction only partially mediates ATM and ATR protein stabilization. How TTT controls protein stability of ATM and ATR remains to be precisely determined. Here we show that Asa1, like Tel2, plays a major role in stabilization of newly synthesized Mec1 and Tel1 proteins whereas Pih1 contributes to Mec1 and Tel1 stability at high temperatures. Although Asa1 and Pih1 both interact with Tel2, no Asa1-Pih1 interaction is detected. Pih1 is distributed in both the cytoplasm and nucleus wheres Asa1 localizes largely in the cytoplasm. Asa1 and Pih1 are required for proper DNA damage checkpoint signaling. Our findings provide a model in which two different Tel2 pathways promote protein stabilization of Mec1 and Tel1 in budding yeast.
Collapse
Affiliation(s)
- Greicy H. Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Himadri Biswas
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Avik Ghosh
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, and Department of Genetics, School of Life Science, Graduate School for Advanced Studies, (SOKENDAI), Mishima, Shizuoka, Japan
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
- * E-mail:
| |
Collapse
|
7
|
Limudomporn P, Moonsom S, Leartsakulpanich U, Suntornthiticharoen P, Petmitr S, Weinfeld M, Chavalitshewinkoon-Petmitr P. Characterization of Plasmodium falciparum ATP-dependent DNA helicase RuvB3. Malar J 2016; 15:526. [PMID: 27809838 PMCID: PMC5093981 DOI: 10.1186/s12936-016-1573-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious and widespread parasitic diseases affecting humans. Because of the spread of resistance in both parasites and the mosquito vectors to anti-malarial drugs and insecticides, controlling the spread of malaria is becoming difficult. Thus, identifying new drug targets is urgently needed. Helicases play key roles in a wide range of cellular activities involving DNA and RNA transactions, making them attractive anti-malarial drug targets. METHODS ATP-dependent DNA helicase gene (PfRuvB3) of Plasmodium falciparum strain K1, a chloroquine and pyrimethamine-resistant strain, was inserted into pQE-TriSystem His-Strep 2 vector, heterologously expressed and affinity purified. Identity of recombinant PfRuvB3 was confirmed by western blotting coupled with tandem mass spectrometry. Helicase and ATPase activities were characterized as well as co-factors required for optimal function. RESULTS Recombinant PfRuvB3 has molecular size of 59 kDa, showing both DNA helicase and ATPase activities. Its helicase activity is dependent on divalent cations (Cu2+, Mg2+, Ni+2 or Zn+2) and ATP or dATP but is inhibited by high NaCl concentration (>100 mM). PfPuvB3 is unable to act on blunt-ended duplex DNA, but manifests ATPase activity in the presence of either single- or double-stranded DNA. PfRuvB3.is inhibited by doxorubicin, daunorubicin and netropsin, known DNA helicase inhibitors. CONCLUSIONS Purified recombinant PfRuvB3 contains both DNA helicase and ATPase activities. Differences in properties of RuvB between the malaria parasite obtained from the study and human host provide an avenue leading to the development of novel drugs targeting specifically the malaria form of RuvB family of DNA helicases.
Collapse
Affiliation(s)
- Paviga Limudomporn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Pahonyothin Rd, Pathumthani, 12120, Thailand
| | - Pattra Suntornthiticharoen
- Department of Biomedical Sciences, Faculty of Science, Rangsit University, Lak Hok, Pathumthani, 12000, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | | |
Collapse
|
8
|
Magalska A, Schellhaus A, Moreno-Andrés D, Zanini F, Schooley A, Sachdev R, Schwarz H, Madlung J, Antonin W. RuvB-like ATPases Function in Chromatin Decondensation at the End of Mitosis. Dev Cell 2014; 31:305-318. [DOI: 10.1016/j.devcel.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
9
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|
10
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB1 is an active DNA helicase and translocates in the 5′–3′ direction. Gene 2013; 515:99-109. [DOI: 10.1016/j.gene.2012.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 11/16/2022]
|
11
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: Emerging importance and expectations beyond cell cycle progression. Commun Integr Biol 2012; 5:350-61. [PMID: 23060959 PMCID: PMC3460840 DOI: 10.4161/cib.20005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
12
|
Novel RuvB nuclear ATPase is specific to intraerythrocytic mitosis during schizogony of Plasmodium falciparum. Mol Biochem Parasitol 2012; 185:58-65. [DOI: 10.1016/j.molbiopara.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/17/2022]
|
13
|
First identification of small-molecule inhibitors of Pontin by combining virtual screening and enzymatic assay. Biochem J 2012; 443:549-59. [PMID: 22273052 DOI: 10.1042/bj20111779] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human protein Pontin, which belongs to the AAA+ (ATPases associated with various cellular activities) family, is overexpressed in several cancers and its silencing in vitro leads to tumour cell growth arrest and apoptosis, making it a good target for cancer therapy. In particular, high levels of expression were found in hepatic tumours for which the therapeutic arsenal is rather limited. The three-dimensional structure of Pontin has been resolved previously, revealing a hexameric assembly with one ADP molecule co-crystallized in each subunit. Using Vina, DrugScore and Xscore, structure-based virtual screening of 2200 commercial molecules was conducted into the ATP-binding site formed by a dimer of Pontin in order to prioritize the best candidates. Complementary to the in silico screening, a versatile and sensitive colorimetric assay was set up to measure the disruption of the ATPase activity of Pontin. This assay allowed the determination of inhibition curves for more than 20 top-scoring compounds, resulting in the identification of four ligands presenting an inhibition constant in the micromolar concentration range. Three of them inhibited tumour cell proliferation. The association of virtual screening and experimental assay thus proved successful for the discovery of the first small-molecule inhibitors of Pontin.
Collapse
|
14
|
Kakihara Y, Houry WA. The R2TP complex: Discovery and functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:101-7. [DOI: 10.1016/j.bbamcr.2011.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
15
|
Grandin N, Charbonneau M. Rvb2/reptin physically associates with telomerase in budding yeast. FEBS Lett 2011; 585:3890-7. [DOI: 10.1016/j.febslet.2011.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/27/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
|
16
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
17
|
Czaja W, Bespalov VA, Hinz JM, Smerdon MJ. Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity. DNA Repair (Amst) 2010; 9:976-84. [PMID: 20674516 DOI: 10.1016/j.dnarep.2010.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 01/16/2023]
Abstract
Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Delta cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Delta cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Delta cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | | | | | |
Collapse
|
18
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
19
|
Jaishankar A, Barthelery M, Freeman WM, Salli U, Ritty TM, Vrana KE. Human Embryonic and Mesenchymal Stem Cells Express Different Nuclear Proteomes. Stem Cells Dev 2009; 18:793-802. [DOI: 10.1089/scd.2008.0156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amritha Jaishankar
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Miguel Barthelery
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Willard M. Freeman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ugur Salli
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Timothy M. Ritty
- Department of Orthopedics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kent E. Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
20
|
Huber O, Ménard L, Haurie V, Nicou A, Taras D, Rosenbaum J. Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 2008; 68:6873-6. [PMID: 18757398 DOI: 10.1158/0008-5472.can-08-0547] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies in model organisms or cultured human cells suggest potential implications in carcinogenesis for the AAA+ ATPases Pontin and Reptin. Both proteins are associated with several chromatin-remodeling complexes and have many functions including transcriptional regulation, DNA damage repair, and telomerase activity. They also interact with major oncogenic actors such as beta-catenin and c-myc and regulate their oncogenic function. We only now begin to get insight into the role of Pontin and Reptin in human cancers.
Collapse
Affiliation(s)
- Otmar Huber
- Department of Laboratory Medicine and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Gorynia S, Matias PM, Bandeiras TM, Donner P, Carrondo MA. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1-RuvBL2 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:840-6. [PMID: 18765919 PMCID: PMC2531268 DOI: 10.1107/s174430910802558x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 08/08/2008] [Indexed: 01/23/2023]
Abstract
The complex of RuvBL1 and its homologue RuvBL2, two evolutionarily highly conserved eukaryotic proteins belonging to the AAA(+) (ATPase associated with diverse cellular activities) family of ATPases, was co-expressed in Escherichia coli. For crystallization purposes, the flexible domains II of RuvBL1 and RuvBL2 were truncated. The truncated RuvBL1-RuvBL2 complex was crystallized using the hanging-drop vapour-diffusion method at 293 K. The crystals were hexagonal-shaped plates and belonged to either the orthorhombic space group C222(1), with unit-cell parameters a = 111.4, b = 188.0, c = 243.4 A and six monomers in the asymmetric unit, or the monoclinic space group P2(1), with unit-cell parameters a = 109.2, b = 243.4, c = 109.3 A, beta = 118.7 degrees and 12 monomers in the asymmetric unit. The crystal structure could be solved by molecular replacement in both possible space groups and the solutions obtained showed that the complex forms a dodecamer.
Collapse
Affiliation(s)
- Sabine Gorynia
- ITQB - Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
22
|
Yeast Rvb1 and Rvb2 are ATP-Dependent DNA Helicases that Form a Heterohexameric Complex. J Mol Biol 2008; 376:1320-33. [DOI: 10.1016/j.jmb.2007.12.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
|
23
|
Rousseau B, Ménard L, Haurie V, Taras D, Blanc JF, Moreau-Gaudry F, Metzler P, Hugues M, Boyault S, Lemière S, Canron X, Costet P, Cole M, Balabaud C, Bioulac-Sage P, Zucman-Rossi J, Rosenbaum J. Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma. Hepatology 2007; 46:1108-18. [PMID: 17657734 DOI: 10.1002/hep.21770] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Using a proteomic analysis of human hepatocellular carcinoma (HCC), we identified the overexpression in 4 tumors of RuvB-like 2 (RUVBL2), an ATPase and putative DNA helicase known to interact with beta-catenin and cellular v-myc myelocytomatosis viral oncogene homolog (c-myc). RUVBL2 expression was further analyzed in tumors with quantitative reverse-transcription polymerase chain reaction analysis and immunohistochemistry; in addition, RUVBL2 expression in a HuH7 cell line was silenced by small interfering RNA or increased with a lentiviral vector. RUVBL2 messenger RNA overexpression was confirmed in 72 of 96 HCC cases, and it was associated with poorly differentiated tumors (P = 0.02) and a poor prognosis (P = 0.02) but not with beta-catenin mutations or c-myc levels. Although RUVBL2 was strictly nuclear in normal hepatocytes, tumoral hepatocytes exhibited additional cytoplasmic staining. There was no mutation in the coding sequence of RUVBL2 in 10 sequenced cases. Silencing RUVBL2 in HuH7 HCC cells reduced cell growth (P < 0.001) and increased apoptosis, as shown by DNA fragmentation (P < 0.001) and caspase 3 activity (P < 0.005). This was associated with an increased expression of several proapoptotic genes and with an increased conformational activation of Bak-1 and Bax. On the other hand, HuH7 cells with an overexpression of RUVBL2 grew better in soft agar (P < 0.03), had increased resistance to C2 ceramide-induced apoptosis (P < 0.001), and gave rise to significantly larger tumors when injected into immunodeficient Rag2/gammac mice (P = 0.016). CONCLUSION RUVBL2 is overexpressed in a large majority of HCCs. RUVBL2 overexpression enhances tumorigenicity, and RUVBL2 is required for tumor cell viability. These results argue for a major role of RUVBL2 in liver carcinogenesis.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Aged
- Aged, 80 and over
- Animals
- Apoptosis/genetics
- Apoptosis/physiology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Fragmentation
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/etiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred Strains
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transplantation, Heterologous
Collapse
|
24
|
Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol 2007; 17:187-92. [PMID: 17320397 DOI: 10.1016/j.tcb.2007.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/24/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Pontin and Reptin are two closely related members of the AAA+ family of DNA helicases. They have roles in diverse cellular processes, including the response to DNA double-strand breaks and the control of gene expression. The two proteins share residence in different multiprotein complexes, such as the Tip60, Ino80, SRCAP and Uri1 complexes in animals, which are involved (directly or indirectly) in transcriptional regulation, but they also function independently from each other. Both Reptin and Pontin repress certain transcriptional targets of Myc, but only Reptin is required for the repression of specific beta-catenin and nuclear factor-kappaB targets. Here, I review recent studies that have addressed the mechanisms of transcriptional control by Pontin and Reptin.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
25
|
Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ. The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 2006; 119:4857-65. [PMID: 17105772 DOI: 10.1242/jcs.03262] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has recently been suggested that the Saccharomyces cerevisiae protein Chl1p plays a role in cohesion establishment. Here, we show that the human ATP-dependent DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. Localization studies show that ChlR1 diffusely coats mitotic chromatin in prophase and then translocates from the chromatids to concentrate at the spindle poles during the transition to metaphase. Depletion of ChlR1 protein by RNA interference results in mitotic failure with replicated chromosomes failing to segregate after a pro-metaphase arrest. We show that depletion also results in abnormal sister chromatid cohesion, determined by increased separation of chromatid pairs at the centromere. Furthermore, biochemical studies show that ChlR1 is in complex with cohesin factors Scc1, Smc1 and Smc3. We conclude that human ChlR1 is required for sister chromatid cohesion and, hence, normal mitotic progression. These functions are important to maintain genetic fidelity.
Collapse
Affiliation(s)
- Joanna L Parish
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, and Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 2006; 366:179-92. [PMID: 17157868 DOI: 10.1016/j.jmb.2006.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/04/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
TIP48 and TIP49 are two related and highly conserved eukaryotic AAA(+) proteins with an essential biological function and a critical role in major pathways that are closely linked to cancer. They are found together as components of several highly conserved chromatin-modifying complexes. Both proteins show sequence homology to bacterial RuvB but the nature and mechanism of their biochemical role remain unknown. Recombinant human TIP48 and TIP49 were assembled into a stable high molecular mass equimolar complex and tested for activity in vitro. TIP48/TIP49 complex formation resulted in synergistic increase in ATPase activity but ATP hydrolysis was not stimulated in the presence of single-stranded, double-stranded or four-way junction DNA and no DNA helicase or branch migration activity could be detected. Complexes with catalytic defects in either TIP48 or TIP49 had no ATPase activity showing that both proteins within the TIP48/TIP49 complex are required for ATP hydrolysis. The structure of the TIP48/TIP49 complex was examined by negative stain electron microscopy. Three-dimensional reconstruction at 20 A resolution revealed that the TIP48/TIP49 complex consisted of two stacked hexameric rings with C6 symmetry. The top and bottom rings showed substantial structural differences. Interestingly, TIP48 formed oligomers in the presence of adenine nucleotides, whilst TIP49 did not. The results point to biochemical differences between TIP48 and TIP49, which may explain the structural differences between the two hexameric rings and could be significant for specialised functions that the proteins perform individually.
Collapse
Affiliation(s)
- Teena Puri
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
27
|
Weiske J, Huber O. The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. J Cell Sci 2006; 118:3117-29. [PMID: 16014379 DOI: 10.1242/jcs.02437] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pontin and Reptin previously were identified as nuclear beta-catenin interaction partners that antagonistically modulate beta-catenin transcriptional activity. In this study, Hint1/PKCI, a member of the evolutionary conserved family of histidine triad proteins, was characterised as a new interaction partner of Pontin and Reptin. Pull-down assays and co-immunoprecipitation experiments show that Hint1/PKCI directly binds to Pontin and Reptin. The Hint1/PKCI-binding site was mapped to amino acids 214-295 and 218-289 in Pontin and Reptin, respectively. Conversely, Pontin and Reptin bind to the N-terminus of Hint1/PKCI. Moreover, by its interaction with Pontin and Reptin, Hint1/PKCI is associated with the LEF-1/TCF-beta-catenin transcription complex. In this context, Hint1/PKCI acts as a negative regulator of TCF-beta-catenin transcriptional activity in Wnt-transfected cells and in SW480 colon carcinoma cells as shown in reporter gene assays. Consistent with these observations, Hint1/PKCI represses expression of the endogenous target genes cyclin D1 and axin2 whereas knockdown of Hint1/PKCI by RNA interference increases their expression. Disruption of the Pontin/Reptin complex appears to mediate this modulatory effect of Hint1/PKCI on TCF-beta-catenin-mediated transcription. These data now provide a molecular mechanism to explain the tumor suppressor function of Hint1/PKCI recently suggested from the analysis of Hint1/PKCI knockout mice.
Collapse
Affiliation(s)
- Jörg Weiske
- Institute of Clinical Chemistry and Pathobiochemistry, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | |
Collapse
|
28
|
Mizuno K, Tokumasu A, Nakamura A, Hayashi Y, Kojima Y, Kohri K, Noce T. Genes associated with the formation of germ cells from embryonic stem cells in cultures containing different glucose concentrations. Mol Reprod Dev 2006; 73:437-45. [PMID: 16425234 DOI: 10.1002/mrd.20395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In a previous study, we established a system for visualizing the development of germ cells from mouse embryonic stem (ES) cells in culture using knock-in ES clones in which visual reporter genes were expressed from the mouse vasa homolog, Mvh. While assessing various culture conditions, we found that germ-cell formation was markedly depressed in low glucose medium. Using a repeated polymerase chain reaction (PCR) subtraction method, we identified genes that were differentially expressed in low versus high glucose media. Three genes that were predominantly expressed in high glucose medium, thioredoxin-interacting protein (Txnip), pituitary tumor-transforming gene 1 (Pttg), and RuvB-like protein 2 (RuvBl2), were further investigated. These genes were also found to be highly expressed in adult and embryonic gonads, and RuvBl2 in particular, which encodes an ATP-dependent DNA helicase, was specifically detected in the spermatocytes and spermatids of the adult testis as well as in primordial germ cells. Furthermore, using a green fluorescent protein (GFP) fusion construct, we found that RuvBl2 was expressed in both the nucleus and cytoplasm of testicular germ cells. These findings suggest a possible relationship between glucose metabolism and germ-cell development.
Collapse
Affiliation(s)
- Kentaro Mizuno
- Mitsubishi Kagaku Institute of Life Sciences, Minami-Ooya, Machida, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357-69. [PMID: 16157330 DOI: 10.1016/j.yexcr.2005.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/23/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
TIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
30
|
Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P. Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Natl Acad Sci U S A 2005; 102:11799-804. [PMID: 16087886 PMCID: PMC1187951 DOI: 10.1073/pnas.0408945102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor dMyc is the sole Drosophila ortholog of the vertebrate c-myc protooncogenes and a central regulator of growth and cell-cycle progression during normal development. We have investigated the molecular basis of dMyc function by analyzing its interaction with the putative transcriptional cofactors Tip48/Reptin (Rept) and Tip49/Pontin (Pont). We demonstrate that Rept and Pont have conserved their ability to bind to Myc during evolution. All three proteins are required for tissue growth in vivo, because mitotic clones mutant for either dmyc, pont,or rept suffer from cell competition. Most importantly, pont shows a strong dominant genetic interaction with dmyc that is manifested in the duration of development, rates of survival and size of the adult animal and, in particular, of the eye. The molecular basis for these effects may be found in the repression of certain target genes, such as mfas, by dMyc:Pont complexes. These findings indicate that dMyc:Pont complexes play an essential role in the control of cellular growth and proliferation during normal development.
Collapse
Affiliation(s)
- Paola Bellosta
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Chauvet S, Usseglio F, Aragnol D, Pradel J. Analysis of paralogous pontin and reptin gene expression during mouse development. Dev Genes Evol 2005; 215:575-9. [PMID: 16003523 DOI: 10.1007/s00427-005-0011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 05/27/2005] [Indexed: 12/25/2022]
Abstract
Evolutionarily conserved from yeast to human, the paralogous DNA helicases Pontin (Pont) and Reptin (Rept) are simultaneously recruited in multi-protein chromatin complexes that function in different aspects of DNA metabolism (transcription, replication and repair). When assayed, the two proteins were found to be essential for viability and to play antagonistic roles, suggesting that the balance of Pont/Rept regulates epigenetic programmes critical for development. Consistent with this, the two helicases are provided in the same embryonic territories during Drosophila development. In Xenopus, while transcribed in the same regions early in embryogenesis, pont and rept adopt significantly different patterns afterwards. Here we report that the two genes follow highly resembling transcription patterns in mouse embryos, with prominent expression in limb buds and branchial arches, organs undergoing mesenchymal-epithelial interactions and in motoneurones from cranial and spinal regions. Thus, simultaneous expression during development appears to constitute another feature of the evolutionary conservation of pont and rept genes.
Collapse
Affiliation(s)
- Sophie Chauvet
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
32
|
Etard C, Gradl D, Kunz M, Eilers M, Wedlich D. Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mech Dev 2005; 122:545-56. [PMID: 15804567 DOI: 10.1016/j.mod.2004.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 11/17/2004] [Accepted: 11/17/2004] [Indexed: 01/28/2023]
Abstract
Pontin (Tip49) and Reptin (Tip48) are highly conserved components of multimeric protein complexes important for chromatin remodelling and transcription. They interact with many different proteins including TATA box binding protein (TBP), beta-catenin and c-Myc and thus, potentially modulate different pathways. As antagonistic regulators of Wnt-signalling, they control wing development in Drosophila and heart growth in zebrafish. Here we show that the Xenopus xPontin and xReptin in conjunction with c-Myc regulate cell proliferation in early development. Overexpression of xPontin or xReptin results in increased mitoses and bending of embryos, which is mimicked by c-Myc overexpression. Furthermore, the knockdown of either xPontin or xReptin resulted in embryonic lethality at late gastrula stage, which is abrogated by the injection of c-Myc-RNA. The N-termini of xPontin and xReptin, which mediate the mitogenic effect were mapped to contain c-Myc interaction domains. c-Myc protein promotes cell cycle progression either by transcriptional activation through the c-Myc/Max complex or by repression of cyclin dependent kinase inhibitors (p21, p15) through c-Myc/Miz-1 interaction. Importantly, xPontin and xReptin exert their mitogenic effect through the c-Myc/Miz-1 pathway as dominant negative Miz-1 and wild-type c-Myc but not a c-Myc mutant deficient in Miz-1 binding could rescue embryonic lethality. Finally, promoter reporter studies revealed that xPontin and xReptin but not the N-terminal deletion mutants enhance p21 repression by c-Myc. We conclude that xPontin and xReptin are essential genes regulating cell proliferation in early Xenopus embryogenesis through interaction with c-Myc. We propose a novel function of xPontin and xReptin as co-repressors in the c-Myc/Miz-1 pathway.
Collapse
Affiliation(s)
- Christelle Etard
- Zoologisches Institut II, Universität Karlsruhe (TH), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
33
|
Gartner W, Rossbacher J, Zierhut B, Daneva T, Base W, Weissel M, Waldhäusl W, Pasternack MS, Wagner L. The ATP-dependent helicase RUVBL1/TIP49a associates with tubulin during mitosis. ACTA ACUST UNITED AC 2004; 56:79-93. [PMID: 14506706 DOI: 10.1002/cm.10136] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RUVBL1/TIP49a/Pontin52 is a recently identified multi-functional protein with 2 ATP binding (WALKER) sites, which is essential for cell proliferation. We recovered and identified RUVBL1/TIP49a as a tubulin-binding protein from Triton X-100 lysates of U937 promonocytic cells by protein affinity chromatography and tryptic peptide microsequencing. Performing co-immunoprecipitation using newly generated RUVBL1/TIP49a-specific antibodies (mAb and rabbit polyclonal Ab) and RUVBL1/TIP49a-GST fusion protein-pull down assays we demonstrate co-precipitation of alpha- and gamma tubulin with RUVBL1/TIP49a. Confocal immunoflourescence microscopy reveals that RUVBL1/TIP49a was present not only in the nucleus, as expected, but was also concentrated at the centrosome and at the mitotic spindle in colocalization with tubulin. The topology of RUVBL1/TIP49a at the mitotic spindle varied, depending on the mitotic stage. The protein was localized at the centrosome and at the polar and astral microtubules in metaphase, and was detectable at the zone of polar tubule interdigitation in anaphase B and telophase. During cytokinesis the protein reappeared at the area of decondensing chromosomes. Whereas preincubation of U937 cells with colcemid resulted in inhibition of mitotic spindle formation with subsequent loss of RUVBL1/TIP49a mitotic spindle staining, no relevant influence of colcemid on RUVBL1/TIP49a-tubulin binding was observed. An agonistic effect of RUVBL1/TIP49a on in vitro tubulin assembly is demonstrated. Our results reveal a new functional aspect of RUVBL1/TIP49a.
Collapse
Affiliation(s)
- Wolfgang Gartner
- Department of Medicine III, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K. Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem 2003; 278:14647-56. [PMID: 12576485 DOI: 10.1074/jbc.m213220200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In Saccharomyces cerevisiae, two highly conserved proteins, Rvb1p/Tih1p and Rvb2p/Tih2p, have been demonstrated to be major components of the chromatin-remodeling INO80 complex. The mammalian orthologues of these two proteins have been shown to physically associate with the TATA-binding protein (TBP) in vitro but not clearly in vivo. Here we show that yeast proteins interact with TBP under both conditions. To assess the functional importance of these interactions, we examined the effect of mutating both TIH2/RVB2 and SPT15, which encodes TBP, on yeast cell growth. Intriguingly, only those spt15 mutations that affected the ability of TBP to bind to the TATA box caused synthetic growth defects in a tih2-ts160 background. This suggests that Tih2p might be important in recruiting TBP to the promoter. A DNA microarray technique was used to identify genes differentially expressed in the tih2-ts160 strain grown at the restrictive temperature. Only 34 genes were significantly and reproducibly affected; some up-regulated and others down-regulated. We compared the transcription of several of these Tih2p target genes in both wild type and various mutant backgrounds. We found that the transcription of some genes depends on functions possessed by both Tih2p and TBP and that these functions are substantially impaired in the spt15/tih2-ts160 double mutants that confer synthetic growth defects.
Collapse
Affiliation(s)
- Hidezumi Ohdate
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Watkins NJ, Dickmanns A, Lührmann R. Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 2002; 22:8342-52. [PMID: 12417735 PMCID: PMC134055 DOI: 10.1128/mcb.22.23.8342-8352.2002] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' stem-loop of the U4 snRNA and the box C/D motif of the box C/D snoRNAs can both be folded into a similar stem-internal loop-stem structure that binds the 15.5K protein. The homologous proteins NOP56 and NOP58 and 61K (hPrp31) associate with the box C/D snoRNPs and the U4/U6 snRNP, respectively. This raises the intriguing question of how the two homologous RNP complexes specifically assemble onto similar RNAs. Here we investigate the requirements for the specific binding of the individual snoRNP proteins to the U14 box C/D snoRNPs in vitro. This revealed that the binding of 15.5K to the box C/D motif is essential for the association of the remaining snoRNP-associated proteins, namely, NOP56, NOP58, fibrillarin, and the nucleoplasmic proteins TIP48 and TIP49. Stem II of the box C/D motif, in contrast to the U4 5' stem-loop, is highly conserved, and we show that this sequence is responsible for the binding of NOP56, NOP58, fibrillarin, TIP48, and TIP49, but not of 15.5K, to the snoRNA. Indeed, the sequence of stem II was essential for nucleolar localization of U14 snoRNA microinjected into HeLa cells. Thus, the conserved sequence of stem II determines the specific assembly of the box C/D snoRNP.
Collapse
Affiliation(s)
- Nicholas J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, D-37070, Göttingen, Germany
| | | | | |
Collapse
|
36
|
Dugan KA, Wood MA, Cole MD. TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 2002; 21:5835-43. [PMID: 12185582 DOI: 10.1038/sj.onc.1205763] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 04/15/2002] [Accepted: 06/14/2002] [Indexed: 11/09/2022]
Abstract
We previously described two nuclear cofactors, TRRAP and TIP49, that have functional roles in Myc-mediated oncogenesis. We have now expanded the analysis of these Myc-associated cofactors to investigate their roles in apoptosis and cell proliferation. Although TRRAP and TIP49 are both essential for transformation, TIP49 modulates c-Myc-mediated apoptosis whereas disruption of TRRAP activity has no apparent effect on apoptosis. We extended our analysis of TIP49 to show that it also binds to the E2F1 transactivation domain and modulates both transforming and apoptotic activities. These results indicate that individual cofactors differentially potentiate c-Myc and E2F1 functions.
Collapse
Affiliation(s)
- Kerri A Dugan
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
37
|
Zhang X, Chaney M, Wigneshweraraj SR, Schumacher J, Bordes P, Cannon W, Buck M. Mechanochemical ATPases and transcriptional activation. Mol Microbiol 2002; 45:895-903. [PMID: 12180911 DOI: 10.1046/j.1365-2958.2002.03065.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activator proteins that act upon the sigma54-containing form of the bacterial RNA polymerase belong to the extensive AAA+ superfamily of ATPases, members of which are found in all three kingdoms of life and function in diverse cellular processes, often via chaperone-like activities. Formation and collapse of the transition state of ATP for hydrolysis appears to engender the interaction of the activator proteins with sigma54 and leads to the protein structural transitions needed for RNA polymerase to isomerize and engage with the DNA template strand. The common oligomeric structures of AAA+ proteins and the creation of the active site for ATP hydrolysis between protomers suggest that the critical changes in protomer structure required for productive interactions with sigma54-holoenzyme occur as a consequence of sensing the state of the gamma-phosphate of ATP. Depending upon the form of nucleotide bound, different functional states of the activator are created that have distinct substrate and chaperone-like binding activities. In particular, interprotomer ATP interactions rely upon the use of an arginine finger, a situation reminiscent of GTPase-activating proteins.
Collapse
Affiliation(s)
- X Zhang
- Imperial College Centre for Structural Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Cho SG, Bhoumik A, Broday L, Ivanov V, Rosenstein B, Ronai Z. TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. Mol Cell Biol 2001; 21:8398-413. [PMID: 11713276 PMCID: PMC100004 DOI: 10.1128/mcb.21.24.8398-8413.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activating transcription factor 2 (ATF2/CRE-BP1) is implicated in transcriptional control of stress-responsive genes. A yeast two-hybrid screen identified TBP-interacting protein 49b (TIP49b), a component of the INO80 chromatin-remodeling complex, as a novel ATF2-interacting protein. TIP49b's association with ATF2 is phosphorylation dependent and requires amino acids 150 to 248 of ATF2 (ATF2(150-248)), which are implicated in intramolecular inhibition of ATF2 transcriptional activities. Forced expression of TIP49b efficiently attenuated ATF2 transcriptional activities under normal growth conditions as well as after UV treatment, ionizing irradiation, or activation of p38 kinase, all of which induced ATF2 phosphorylation and increased TIP49b-ATF2 association. Constitutive expression of ATF2(150-248) peptide outcompeted TIP49b interaction with ATF2 and alleviated the suppression of ATF2 transcriptional activities. Expression of ATF2(150-248) in fibroblasts or melanoma but not in ATF2-null cells caused a profound G(2)M arrest and increased degree of apoptosis following irradiation. The interaction between ATF2 and TIP49b constitutes a novel mechanism that serves to limit ATF2 transcriptional activities and highlights the central role of ATF2 in the control of the cell cycle and apoptosis in response to stress and DNA damage.
Collapse
Affiliation(s)
- S G Cho
- The Ruttenberg Cancer Center, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
39
|
King TH, Decatur WA, Bertrand E, Maxwell ES, Fournier MJ. A well-connected and conserved nucleoplasmic helicase is required for production of box C/D and H/ACA snoRNAs and localization of snoRNP proteins. Mol Cell Biol 2001; 21:7731-46. [PMID: 11604509 PMCID: PMC99944 DOI: 10.1128/mcb.21.22.7731-7746.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of small nucleolar RNA-protein complexes (snoRNPs) consists of synthesis of the snoRNA and protein components, snoRNP assembly, and localization to the nucleolus. Recently, two nucleoplasmic proteins from mice were observed to bind to a model box C/D snoRNA in vitro, suggesting that they function at an early stage in snoRNP biogenesis. Both proteins have been described in other contexts. The proteins, called p50 and p55 in the snoRNA binding study, are highly conserved and related to each other. Both have Walker A and B motifs characteristic of ATP- and GTP-binding and nucleoside triphosphate-hydrolyzing domains, and the mammalian orthologs have DNA helicase activity in vitro. Here, we report that the Saccharomyces cerevisiae ortholog of p50 (Rvb2, Tih2p, and other names) is required for production of C/D snoRNAs in vivo and, surprisingly, H/ACA snoRNAs as well. Point mutations in the Walker A and B motifs cause temperature-sensitive or lethal growth phenotypes and severe defects in snoRNA accumulation. Notably, depletion of p50 (called Rvb2 in this study) also impairs localization of C/D and H/ACA core snoRNP proteins Nop1p and Gar1p, suggesting a defect(s) in snoRNP assembly or trafficking to the nucleolus. Findings from other studies link Rvb2 orthologs with chromatin remodeling and transcription. Taken together, the present results indicate that Rvb2 is involved in an early stage of snoRNP biogenesis and may play a role in coupling snoRNA synthesis with snoRNP assembly and localization.
Collapse
Affiliation(s)
- T H King
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
40
|
Solinger JA, Heyer WD. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 2001; 98:8447-53. [PMID: 11459988 PMCID: PMC37456 DOI: 10.1073/pnas.121009898] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad54 and Rad51 are important proteins for the repair of double-stranded DNA breaks by homologous recombination in eukaryotes. As previously shown, Rad51 protein forms nucleoprotein filaments on single-stranded DNA, and Rad54 protein directly interacts with such filaments to enhance synapsis, the homologous pairing with a double-stranded DNA partner. Here we demonstrate that Saccharomyces cerevisiae Rad54 protein has an additional role in the postsynaptic phase of DNA strand exchange by stimulating heteroduplex DNA extension of established joint molecules in Rad51/Rpa-mediated DNA strand exchange. This function depended on the ATPase activity of Rad54 protein and on specific protein:protein interactions between the yeast Rad54 and Rad51 proteins.
Collapse
Affiliation(s)
- J A Solinger
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
Collapse
Affiliation(s)
- T Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
42
|
Jónsson ZO, Dhar SK, Narlikar GJ, Auty R, Wagle N, Pellman D, Pratt RE, Kingston R, Dutta A. Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 2001; 276:16279-88. [PMID: 11278922 DOI: 10.1074/jbc.m011523200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Rvb1p and Rvb2p are two highly conserved proteins related to the helicase subset of the AAA+ family of ATPases. Conditional mutants in both genes show rapid changes in the transcription of over 5% of yeast genes, with a similar number of genes being repressed and activated. Both Rvb1p and Rvb2p are required for maintaining the induced state of many inducible promoters. ATP binding and hydrolysis by Rvb1p and Rvb2p is individually essential in vivo, and the two proteins are associated with each other in a high molecular weight complex that shows ATP-dependent chromatin remodeling activity in vitro. Our findings show that Rvb1p and Rvb2p are essential components of a chromatin remodeling complex and determine genes regulated by the complex.
Collapse
Affiliation(s)
- Z O Jónsson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|