1
|
Stabilization of the Hinge Region of Human E-selectin Enhances Binding Affinity to Ligands Under Force. Cell Mol Bioeng 2021; 14:65-74. [PMID: 33633813 PMCID: PMC7878631 DOI: 10.1007/s12195-021-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction E-selectin is a member of the selectin family of cell adhesion molecules expressed on the plasma membrane of inflamed endothelium and facilitates initial leukocyte tethering and subsequent cell rolling during the early stages of the inflammatory response via binding to glycoproteins expressing sialyl LewisX and sialyl LewisA (sLeX/A). Existing crystal structures of the extracellular lectin/EGF-like domain of E-selectin complexed with sLeX have revealed that E-selectin can exist in two conformation states, a low affinity (bent) conformation, and a high affinity (extended) conformation. The differentiating characteristic of the two conformations is the interdomain angle between the lectin and the EGF-like domain. Methods Using molecular dynamics (MD) simulations we observed that in the absence of tensile force E-selectin undergoes spontaneous switching between the two conformational states at equilibrium. A single amino acid substitution at residue 2 (serine to tyrosine) on the lectin domain favors the extended conformation. Results Steered molecular dynamics (SMD) simulations of E-selectin and PSGL-1 in conjunction with experimental cell adhesion assays show a longer binding lifetime of E-selectin (S2Y) to PSGL-1 compared to wildtype protein. Conclusions The findings in this study advance our understanding into how the structural makeup of E-selectin allosterically influences its adhesive dynamics.
Collapse
|
2
|
Wen X, Wang H, Chai P, Fan J, Zhang X, Ding T, Jia R, Ge S, Zhang H, Fan X. An Artificial CTCF Peptide Triggers Efficient Therapeutic Efficacy in Ocular Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:317-325. [PMID: 32775616 PMCID: PMC7394857 DOI: 10.1016/j.omto.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Although CCCTC binding factor (CTCF) has been demonstrated to play a variety of often contradictory roles in tumorigenesis, little is known about its function in the tumorigenesis of ocular melanoma. Here, we generated two artificial CTCF peptides (Decoy-CTCFs) combining the zinc finger domain of wild-type CTCF and artificial marker region. This Decoy-CTCF retained the DNA binding region but lost the functional regions of wild-type CTCF. Transferring artificial CTCF into ocular melanoma cells suppressed proliferation and migration in the tumor cells, while no effect was observed in normal cells. Intriguingly, we first showed that decoy-CTCF inhibited tumorigenesis by preventing the histone acetyltransferase EP300 from binding to the promoter of SELL. Thus SELL was a novel oncogene in the tumorigenesis of ocular melanoma. These studies provide efficient decoy CTCF-based therapeutic concept in malignant ocular melanoma and reveal the potential mechanism underlying decoy-based tumor therapy.
Collapse
Affiliation(s)
- Xuyang Wen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoyu Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China.,Frontier Science Research Center for Stem Cells, Tongji University, Shanghai 200092, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
3
|
Chisolm DA, Cheng W, Colburn SA, Silva-Sanchez A, Meza-Perez S, Randall TD, Weinmann AS. Defining Genetic Variation in Widely Used Congenic and Backcrossed Mouse Models Reveals Varied Regulation of Genes Important for Immune Responses. Immunity 2019; 51:155-168.e5. [PMID: 31248780 DOI: 10.1016/j.immuni.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/24/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.
Collapse
Affiliation(s)
- Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wayne Cheng
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shelby A Colburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
SDA and IDA - Two aptamers to inhibit cancer cell adhesion. Biochimie 2017; 145:84-90. [PMID: 29080832 DOI: 10.1016/j.biochi.2017.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Aptamers which bind to proteins involved in cell-cell interactions could have significant value to directly affect cancer cell adhesion or for directed cargo delivery. Here, I discuss two aptamers: aptamer SDA which binds to E- and P-selectin, and aptamer IDA which binds to α6β4 integrin. Both aptamers (SDA 91 nt and IDA 77 nt) bind their target proteins with dissociation constants in the 100-150 nM range and substantially inhibit special cellular adhesion, possibly a first and pivotal step in transendothelial migration during metastasis formation. The aptamers' half-lives in cell culture media are between two and six hours. IDA is internalized by integrin presenting cells within minutes thus possibly serving as vehicle for directed cargo delivery.
Collapse
|
5
|
Wedepohl S, Dernedde J, Vahedi-Faridi A, Tauber R, Saenger W, Bulut H. Reducing Macro- and Microheterogeneity of N-Glycans Enables the Crystal Structure of the Lectin and EGF-Like Domains of Human L-Selectin To Be Solved at 1.9 Å Resolution. Chembiochem 2017; 18:1338-1345. [PMID: 28489325 DOI: 10.1002/cbic.201700220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/07/2023]
Abstract
L-Selectin, a cell-adhesion receptor on the surface of most leukocytes, contains seven N-glycosylation sites. In order to obtain the crystal structure of human L-selectin, we expressed a shortened version of L-selectin comprising the C-type lectin and EGF-like domains (termed LE) and systematically analysed mutations of the three glycosylation sites (Asn22, Asn66 and Asn139) in order to reduce macroheterogeneity. After we further removed microheterogeneity, we obtained crystals that diffracted X-rays up to 1.9 Å from a variant (LE010) with exchanges N22Q and N139Q and one GlcNAc2 Man5 N-glycan chain attached to Asn66. Crystal-structure analysis showed that the terminal mannose of GlcNAc2 Man5 of one LE010 molecule was coordinated to Ca2+ in the binding site of a symmetry-related LE010. The orientation of the lectin and EGF-like domain was similar to the described "bent" conformation of E- and P-selectins. The Ca2+ -binding site reflects the binding mode seen in E- and P-selectin structures co-crystallised with ligands.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Haydar Bulut
- Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| |
Collapse
|
6
|
Visualization of allostery in P-selectin lectin domain using MD simulations. PLoS One 2010; 5:e15417. [PMID: 21170343 PMCID: PMC2999562 DOI: 10.1371/journal.pone.0015417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022] Open
Abstract
Allostery of P-selectin lectin (Lec) domain followed by an epithelial growth factor (EGF)-like domain is essential for its biological functionality, but the underlying pathways have not been well understood. Here the molecular dynamics simulations were performed on the crystallized structures to visualize the dynamic conformational change for state 1 (S1) or state 2 (S2) Lec domain with respective bent (B) or extended (E) EGF orientation. Simulations illustrated that both S1 and S2 conformations were unable to switch from one to another directly. Instead, a novel S1' conformation was observed from S1 when crystallized B-S1 or reconstructed “E-S1” structure was employed, which was superposed well with that of equilibrated S1 Lec domain alone. It was also indicated that the corresponding allosteric pathway from S1 to S1' conformation started with the separation between residues Q30 and K67 and terminated with the release of residue N87 from residue C109. These results provided an insight into understanding the structural transition and the structure-function relationship of P-selectin allostery.
Collapse
|
7
|
Ogino S, Nishida N, Umemoto R, Suzuki M, Takeda M, Terasawa H, Kitayama J, Matsumoto M, Hayasaka H, Miyasaka M, Shimada I. Two-State Conformations in the Hyaluronan-Binding Domain Regulate CD44 Adhesiveness under Flow Condition. Structure 2010; 18:649-56. [DOI: 10.1016/j.str.2010.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/13/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
|
8
|
Robert P, Limozin L, Pierres A, Bongrand P. Biomolecule association rates do not provide a complete description of bond formation. Biophys J 2009; 96:4642-50. [PMID: 19486686 DOI: 10.1016/j.bpj.2009.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/19/2009] [Accepted: 03/23/2009] [Indexed: 02/03/2023] Open
Abstract
The efficiency of many cell-surface receptors is dependent on the rate of binding soluble or surface-attached ligands. Much effort was exerted to measure association rates between soluble molecules (three-dimensional k(on)) and, more recently, between surface-attached molecules (two-dimensional [2D] k(on)). According to a generally accepted assumption, the probability of bond formation between receptors and ligands is proportional to the first power of encounter duration. Here we provide new experimental evidence and review published data demonstrating that this simple assumption is not always warranted. Using as a model system the (2D) interaction between ICAM-1-coated surfaces and flowing microspheres coated with specific anti-ICAM-1 antibodies, we show that the probability of bond formation may scale as a power of encounter duration that is significantly higher than 1. Further, we show that experimental data may be accounted for by modeling ligand-receptor interaction as a displacement along a single path of a rough energy landscape. Under a wide range of conditions, the probability that an encounter of duration t resulted in bond formation varied as erfc[(t(0)/t)(1/2)], where t(0) was on the order of 10 ms. We conclude that the minimum contact time for bond formation may be a useful parameter to describe a ligand-receptor interaction, in addition to conventional association rates.
Collapse
Affiliation(s)
- Philippe Robert
- Laboratory Adhesion et Inflammation, Institut national de santé et de recherche medicale (INSERM) UMR600, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
9
|
Houshmand B, Rafiei A, Hajilooi M, Mani-Kashani K, Gholami L. E-selectin and L-selectin polymorphisms in patients with periodontitis. J Periodontal Res 2009; 44:88-93. [DOI: 10.1111/j.1600-0765.2008.01092.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Abstract
Selectins are adhesion molecules that resist large tensile forces applied by hydrodynamic forces to leukocytes binding to vessel walls. In crystals, the liganded (high-affinity) and unliganded (low-affinity) conformations differ in orientation between their tandem lectin and EGF domains. I examine how tensile force exerted on a selectin-ligand complex in vivo could favor the more extended, high-affinity conformation. Allostery is transmitted from the EGF-lectin domain interface to the ligand-binding interface on the lectin domain, 30 A away. Trp-1 of the lectin domain and the long axis of the EGF domain form an L-shaped prybar that is welded together by hydrogen bonds to the Trp-1 alpha-amino group. Pivoting of the prybar induced by force demolishes an interface between the Trp-1 side chain and the lectin domain at a switch1 region. These changes are transmitted by rigid body movement of the switch2 region to rearrangements in the switch3 region at the ligand binding site. Another switch region corresponds to a single residue in the EGF domain with large effects on ligand binding and rolling adhesion. Allostery in selectins, and the alignment of tensile force on a selectin-ligand complex with the transition pathway for conformational change, explain much of the structural basis for selectin mechanochemistry.
Collapse
|
11
|
Transmission of allostery through the lectin domain in selectin-mediated cell adhesion. Proc Natl Acad Sci U S A 2008; 106:85-90. [PMID: 19118202 DOI: 10.1073/pnas.0810620105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The selectins are cell adhesion proteins that must resist applied forces to mediate leukocyte tethering and rolling along the endothelium and have 2 conformational states. Selectin-ligand bond dissociation increases only modestly with applied force, and exhibits catch bond behavior in a low-force regime where bond lifetimes counterintuitively increase with increasing force. Both allosteric and sliding-rebinding models have emerged to explain catch bonds. Here, we introduce a large residue into a cleft that opens within the lectin domain to stabilize the more extended, high-affinity selectin conformation. This mutation stabilizes the high-affinity state, but surprisingly makes rolling less stable. The position of the mutation in the lectin domain provides evidence for an allosteric pathway through the lectin domain, connecting changes at the lectin-EGF interface to the distal binding interface.
Collapse
|
12
|
Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 2008; 4:314-23. [PMID: 18854236 DOI: 10.1016/j.chom.2008.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 08/19/2008] [Accepted: 09/15/2008] [Indexed: 12/25/2022]
Abstract
Catch bonds are bonds between a ligand and its receptor that are enhanced by mechanical force pulling the ligand-receptor complex apart. To date, catch-bond formation has been documented for the most common Escherichia coli adhesin, FimH, and for P-/L-selectins, universally expressed by leukocytes, platelets, and blood vessel walls. One compelling explanation for catch bonds is that force-induced structural alterations in the receptor protein are allosterically linked to a high-affinity conformation of its ligand-binding pocket. Catch-bond properties are likely to be widespread among adhesive proteins, thus calling for a detailed understanding of their underlying mechanisms and physiological significance.
Collapse
|
13
|
Dwir O, Grabovsky V, Pasvolsky R, Manevich E, Shamri R, Gutwein P, Feigelson SW, Altevogt P, Alon R. Membranal cholesterol is not required for L-selectin adhesiveness in primary lymphocytes but controls a chemokine-induced destabilization of L-selectin rolling adhesions. THE JOURNAL OF IMMUNOLOGY 2007; 179:1030-8. [PMID: 17617595 DOI: 10.4049/jimmunol.179.2.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholesterol-enriched lipid microdomains regulate L-selectin signaling, but the role of membrane cholesterol in L-selectin adhesion is unclear. Arrest chemokines are a subset of endothelial chemokines that rapidly activate leukocyte integrin adhesiveness under shear flow. In the absence of integrin ligands, these chemokines destabilize L-selectin-mediated leukocyte rolling. In the present study, we investigated how cholesterol extraction from the plasma membrane of peripheral blood T or B cells affects L-selectin adhesions and their destabilization by arrest chemokines. Unlike the Jurkat T cell line, whose L-selectin-mediated adhesion is cholesterol dependent, in primary human PBLs and in murine B cells and B cell lines, cholesterol depletion did not impair any intrinsic adhesiveness of L-selectin, consistent with low selectin partitioning into lipid rafts in these cells. However, cholesterol raft disruption impaired the ability of two arrest chemokines, CXCL12 and CXCL13, but not of a third arrest chemokine, CCL21, to destabilize L-selectin-mediated rolling of T lymphocytes. Actin capping by brief incubation with cytochalasin D impaired the ability of all three chemokines to destabilize L-selectin rolling. Blocking of the actin regulatory phosphatidylinositol lipid, phosphatidylinositol 4,5-bisphosphate, did not affect chemokine-mediated destabilization of L-selectin adhesions. Collectively, our results suggest that L-selectin adhesions are inhibited by actin-associated, cholesterol-stabilized assemblies of CXCL12- and CXCL13-binding receptors on both T and B lymphocytes. Thus, the regulation of L-selectin by cholesterol-enriched microdomains varies with the cell type as well as with the identity of the destabilizing chemokine.
Collapse
Affiliation(s)
- Oren Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Catch bonds, whose lifetimes are prolonged by force, have been observed in selectin-ligand interactions and other systems. Several biophysical models have been proposed to explain this counterintuitive phenomenon, but none was based on the structure of the interacting molecules and the noncovalent interactions at the binding interface. Here we used molecular dynamics simulations to study changes in structure and atomic-level interactions during forced unbinding of P-selectin from P-selectin glycoprotein ligand-1. A mechanistic model for catch bonds was developed based on these observations. In the model, "catch" results from forced opening of an interdomain hinge that tilts the binding interface to allow two sides of the contact to slide against each other. Sliding promotes formation of new interactions and even rebinding to the original state, thereby slowing dissociation and prolonging bond lifetimes. Properties of this sliding-rebinding mechanism were explored using a pseudoatom representation and Monte Carlo simulations. The model has been supported by its ability to fit experimental data and can be related to previously proposed two-pathway models.
Collapse
Affiliation(s)
- Jizhong Lou
- Institute for Bioengineering and Bioscience, Coulter Department of Biomedical Engineering, and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
15
|
Swers JS, Widom A, Phan U, Springer TA, Wittrup KD. A high affinity human antibody antagonist of P-selectin mediated rolling. Biochem Biophys Res Commun 2006; 350:508-13. [PMID: 17027652 DOI: 10.1016/j.bbrc.2006.08.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
We have characterized the IgG form of a previously isolated and engineered single-chain Fv (scFv), named RR2r3s4-1, that binds to human PSGL-1. This fully human IgG was determined to have a Kd of 1.8+/-0.7 nM by fluorescence quenching titration. It better inhibits P-selectin-PSGL-1 interactions than a commercially available murine monoclonal antibody KPL1 and better inhibits neutrophil rolling than KPL1. Thus, RR2r3s4-1 is the most effective antibody at inhibiting P-selectin-PSGL-1 interactions known. Specificity analysis reveals that RR2r3s4-1 does not cross react with murine PSGL-1 and thus requires more than tyrosine sulfate for binding to human PSGL-1. This evidence demonstrates the therapeutic potential of this antibody as a potent anti-inflammatory therapeutic.
Collapse
Affiliation(s)
- Jeffrey S Swers
- Department of Chemical Engineering, Massachusetts Institute of Technology 66-552, 25 Ames Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
16
|
Lou J, Yago T, Klopocki AG, Mehta P, Chen W, Zarnitsyna VI, Bovin NV, Zhu C, McEver RP. Flow-enhanced adhesion regulated by a selectin interdomain hinge. ACTA ACUST UNITED AC 2006; 174:1107-17. [PMID: 17000883 PMCID: PMC2064400 DOI: 10.1083/jcb.200606056] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin–ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kinetics experiments, Monte Carlo modeling, and flow chamber adhesion studies, we show that eliminating a hydrogen bond to increase the flexibility of an interdomain hinge in L-selectin reduced the shear threshold for adhesion via two mechanisms. One affects the on-rate by increasing tethering through greater rotational diffusion. The other affects the off-rate by strengthening rolling through augmented catch bonds with longer lifetimes at smaller forces. By forcing open the hinge angle, ligand may slide across its interface with L-selectin to promote rebinding, thereby providing a mechanism for catch bonds. Thus, allosteric changes remote from the ligand-binding interface regulate both bond formation and dissociation.
Collapse
Affiliation(s)
- Jizhong Lou
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Phan UT, Waldron TT, Springer TA. Remodeling of the lectin-EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat Immunol 2006; 7:883-9. [PMID: 16845394 PMCID: PMC1764822 DOI: 10.1038/ni1366] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 06/22/2006] [Indexed: 02/06/2023]
Abstract
Crystal structures of the lectin and epidermal growth factor (EGF)-like domains of P-selectin show 'bent' and 'extended' conformations. An extended conformation would be 'favored' by forces exerted on a selectin bound at one end to a ligand and at the other end to a cell experiencing hydrodynamic drag forces. To determine whether the extended conformation has higher affinity for ligand, we introduced an N-glycosylation site to 'wedge open' the interface between the lectin and EGF-like domains of P-selectin. This alteration increased the affinity of P-selectin for its ligand P-selectin glycoprotein 1 (PSGL-1) and thereby the strength of P-selectin-mediated rolling adhesion. Similarly, an asparagine-to-glycine substitution in the lectin-EGF-like domain interface of L-selectin enhanced rolling adhesion under shear flow. Our results demonstrate that force, by 'favoring' an extended selectin conformation, can strengthen selectin-ligand bonds.
Collapse
Affiliation(s)
- Uyen T Phan
- CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Rafiei A, Hajilooi M, Shakib RJ, Shams S, Sheikh N. Association between the Phe206Leu polymorphism of L-selectin and brucellosis. J Med Microbiol 2006; 55:511-516. [PMID: 16585636 DOI: 10.1099/jmm.0.46383-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brucellosis remains a major zoonosis worldwide; therefore, better understanding of its immunology is a priority for the development of new therapeutic and vaccination strategies. Genetic factors appear to have an important role in the pathogenesis of infectious diseases such as brucellosis. Adhesion molecules, such as members of the selectin family, participate in the interaction between leukocytes and the endothelium, as well as in inflammatory cell recruitment. The impact of L-selectin polymorphisms on brucellosis has not so far been investigated. The aim of this study was to assess an L-selectin Phe206Leu (F206L) polymorphism in patients with active brucellosis, and to analyse its possible relationship with disease progression. A case-control association study was carried out on 619 subjects, including 374 patients with brucellosis and 245 age- and sex-matched healthy controls. Genomic DNA was isolated, and amplification of L-selectin genomic regions was performed by PCR incorporating sequence-specific primers (PCR-SSP) to distinguish the genotypes. The frequencies of the F206L polymorphism were studied. A significant difference in F206L polymorphism was found between patients with brucellosis and controls. The 206Leu allele was more frequent in patients than in healthy individuals (36.6 versus 28 %, P=0.003). In addition, there was an association between the presence of the 206Leu allele and a relapse of brucellosis (odds ratio 6.53, 95 % confidence interval 1.5-28.8, P=0.005). The higher frequency of L-selectin genotypes in patients with brucellosis than in control individuals, as well as the association between the 206Leu allele and the occurrence of brucellosis relapse, suggest that the F206L polymorphism could make individuals more vulnerable to brucellosis.
Collapse
Affiliation(s)
- Alireza Rafiei
- Department of Immunology and Microbiology, Sari Medical School, Mazandaran University of Medical Sciences, Khazar blvd, Sari, Iran
| | | | - Reza J Shakib
- Department of Immunology and Microbiology, Rasht Medical School, Gilan University of Medical Sciences, Rasht, Iran
| | | | | |
Collapse
|
19
|
Alon R, Feigelson SW, Manevich E, Rose DM, Schmitz J, Overby DR, Winter E, Grabovsky V, Shinder V, Matthews BD, Sokolovsky-Eisenberg M, Ingber DE, Benoit M, Ginsberg MH. Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain. ACTA ACUST UNITED AC 2006; 171:1073-84. [PMID: 16365170 PMCID: PMC2171310 DOI: 10.1083/jcb.200503155] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which α4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the α4 tail that disrupts paxillin binding, α4(Y991A), reduced talin association to the α4β1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed α4β1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal α4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Discovery of new genes and proteins directly supporting leukocyte adhesion is waning, whereas there is heightened interest in the cell mechanics and receptor dynamics that lead from transient tethering via selectins to affinity shifts and adhesion strengthening through integrins. New optical tools enable real-time imaging of leukocyte rolling and arrest in parallel plate flow channels (PPFCs), and detection of single-molecule force spectroscopy provides an inner view of the intercellular adhesive contact region. Leukocyte recruitment during acute inflammation is triggered by ligation of G protein-coupled chemotactic receptors (GPCRs) and clustering of selectins. This, in turn, activates beta(2)-integrin (CD18), which facilitates cell capture and arrest in shear flow. This review provides a conceptual model for the molecular events supporting leukocyte recruitment.
Collapse
Affiliation(s)
- Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA 95616-5294, USA.
| | | |
Collapse
|
21
|
Beauharnois ME, Lindquist KC, Marathe D, Vanderslice P, Xia J, Matta KL, Neelamegham S. Affinity and kinetics of sialyl Lewis-X and core-2 based oligosaccharides binding to L- and P-selectin. Biochemistry 2005; 44:9507-19. [PMID: 15996105 DOI: 10.1021/bi0507130] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Soluble oligosaccharide mimetics of natural selectin ligands act as competitive inhibitors of leukocyte adhesion in models of inflammation. We quantified the binding of simple oligosaccharides based on sialyl Lewis-X (sLe(X)) and complex molecules with the core-2 structure to L- and P-selectin, under both static and fluid flow conditions. Isolated human neutrophils were employed to mimic the physiological valency of selectins and selectin ligands. Surface plasmon resonance studies quantified binding kinetics. We observed the following: (i) The functional group at the anomeric position of carbohydrates plays an important role during selectin recognition, since sLe(X) and sialyl Lewis-a (sLe(a)) were approximately 5-7-fold poorer inhibitors of L-selectin mediated cell adhesion compared to their methyl glycosides. (ii) Despite their homology to physiological glycans, the putative carbohydrate epitopes of GlyCAM-1 and PSGL-1 bound selectins with low affinity comparable to that of sLe(X)-selectin interactions. Thus, besides the carbohydrate portion, the protein core of GlyCAM-1 or the presentation of carbohydrates in clusters on this glycoprotein may contribute to selectin recognition. (iii) A compound Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(GalNAcbeta1,3)GalNAcalpha-OMe was identified which blocked L- and P-selectin binding at 30-100-fold lower doses than sLe(X). (iv) Surface plasmon resonance experiments determined that an sLe(X) analogue (TBC1269) competitively inhibited, via steric/allosteric mechanisms, the binding of two anti-P-selectin function blocking antibodies that recognized different epitopes of P-selectin. (v) TBC1269 bound P-selectin via both calcium-dependent and -independent mechanisms, with K(D) of approximately 111.4 microM. The measured on- and off-rates were high (k(off) > 3 s(-)(1), k(on) > 27,000 M(-)(1) s(-)(1)). Similar binding kinetics are expected for sLe(X)-selectin interactions. Taken together, our study provides new insight into the kinetics and mechanisms of carbohydrate interaction with selectins.
Collapse
Affiliation(s)
- Mark E Beauharnois
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang J, Chen J, Chesla SE, Yago T, Mehta P, McEver RP, Zhu C, Long M. Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J Biol Chem 2004; 279:44915-23. [PMID: 15299021 DOI: 10.1074/jbc.m407039200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface presentation of adhesion receptors influences cell adhesion, although the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the molecular orientation and length of adhesion receptors on the cell membrane affected two-dimensional kinetic rates of interactions with surface ligands. Interactions of P-selectin, E-selectin, and CD16A with their respective ligands or antibody were used to demonstrate such effects. Randomizing the orientation of the adhesion receptor or lowering its ligand- and antibody-binding domain above the cell membrane lowered two-dimensional affinities of the molecular interactions by reducing the forward rates but not the reverse rates. In contrast, the soluble antibody bound with similar three-dimensional affinities to cell-bound P-selectin constructs regardless of their orientation and length. These results demonstrate that the orientation and length of an adhesion receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding.
Collapse
Affiliation(s)
- Jun Huang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kumar RA, Dong JF, Thaggard JA, Cruz MA, López JA, McIntire LV. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates. Biophys J 2004; 85:4099-109. [PMID: 14645097 PMCID: PMC1303709 DOI: 10.1016/s0006-3495(03)74822-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interaction between platelet glycoprotein (GP) Ib-IX-V complex and von Willebrand factor (vWF) is the first step of the hemostatic response to vessel injury. In platelet-type von Willebrand disease, two mutations, G233V and M239V, have been described within the Cys209-Cys248 disulfide loop of GPIbalpha that compromise hemostasis by increasing the affinity for vWF. We have earlier shown that converting other residues in this region to valine alters the affinity of GPIbalpha for vWF, with mutations K237V and Q232V, respectively, showing the greatest increase and decrease in affinity. Here, we investigated further the effect of these two mutations on the kinetics of the GPIbalpha interaction with the vWF-A1 domain under dynamic flow conditions. We measured the cellular on- and off-rate constants of Chinese hamster ovary cells expressing GPIb-IX complexes containing wild-type or mutant GPIbalpha interacting with vWF-A1-coated surfaces at different shear stresses. We found that the gain-of-function mutant, K237V, rolled very slowly and continuously on vWF-A1 surface while the loss-of-function mutant, Q232V, showed fast, saltatory movement compared to the wild-type (WT). The off-rate constants, calculated based on the analysis of lifetimes of transient tethers formed on surfaces coated with limiting densities of vWF-A1, revealed that the Q232V and K237V dissociated 1.25-fold faster and 2.2-fold slower than the WT. The cellular on-rate constant of WT, measured in terms of tethering frequency, was threefold more and threefold less than Q232V and K237V, respectively. Thus, the gain- and loss-of-function mutations in GPIbalpha affect both the association and dissociation kinetics of the GPIbalpha-vWF-A1 bond. These findings are in contrast to the functionally similar selectin bonds where some of the mutations have been reported to affect only the dissociation rate.
Collapse
Affiliation(s)
- R Anand Kumar
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
24
|
McEver RP. Interactions of selectins with PSGL-1 and other ligands. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:137-47. [PMID: 14579778 DOI: 10.1007/978-3-662-05397-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
25
|
Dwir O, Grabovsky V, Alon R. Selectin avidity modulation by chemokines at subsecond endothelial contacts: a novel regulatory level of leukocyte trafficking. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:109-35. [PMID: 14579777 DOI: 10.1007/978-3-662-05397-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- O Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
26
|
Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R. The CD81 Tetraspanin Facilitates Instantaneous Leukocyte VLA-4 Adhesion Strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under Shear Flow. J Biol Chem 2003; 278:51203-12. [PMID: 14532283 DOI: 10.1074/jbc.m303601200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukocyte integrins must rapidly strengthen their binding to target endothelial sites to arrest rolling adhesions under physiological shear flow. We demonstrate that the integrin-associated tetraspanin, CD81, regulates VLA-4 and VLA-5 adhesion strengthening in monocytes and primary murine B cells. CD81 strengthens multivalent VLA-4 contacts within subsecond integrin occupancy without altering intrinsic adhesive properties to low density ligand. CD81 facilitates both VLA-4-mediated leukocyte rolling and arrest on VCAM-1 under shear flow as well as VLA-5-dependent adhesion to fibronectin during short stationary contacts. CD81 also augments VLA-4 avidity enhancement induced by either chemokine-stimulated Gi proteins or by protein kinase C activation, although it is not required for Gi protein or protein kinase C signaling activities. In contrast to other proadhesive integrin-associated proteins, CD81-promoted integrin adhesiveness does not require its own ligand occupancy or ligation. These results provide the first demonstration of an integrin-associated transmembranal protein that facilitates instantaneous multivalent integrin occupancy events that promote leukocyte adhesion to an endothelial ligand under shear flow.
Collapse
Affiliation(s)
- Sara W Feigelson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | | | |
Collapse
|
27
|
Dwir O, Solomon A, Mangan S, Kansas GS, Schwarz US, Alon R. Avidity enhancement of L-selectin bonds by flow: shear-promoted rotation of leukocytes turn labile bonds into functional tethers. ACTA ACUST UNITED AC 2003; 163:649-59. [PMID: 14597772 PMCID: PMC2173661 DOI: 10.1083/jcb.200303134] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
L-selectin is a key lectin essential for leukocyte capture and rolling on vessel walls. Functional adhesion of L-selectin requires a minimal threshold of hydrodynamic shear. Using high temporal resolution videomicroscopy, we now report that L-selectin engages its ligands through exceptionally labile adhesive bonds (tethers) even below this shear threshold. These tethers share a lifetime of 4 ms on distinct physiological ligands, two orders of magnitude shorter than the lifetime of the P-selectin–PSGL-1 bond. Below threshold shear, tether duration is not shortened by elevated shear stresses. However, above the shear threshold, selectin tethers undergo 14-fold stabilization by shear-driven leukocyte transport. Notably, the cytoplasmic tail of L-selectin contributes to this stabilization only above the shear threshold. These properties are not shared by P-selectin– or VLA-4–mediated tethers. L-selectin tethers appear adapted to undergo rapid avidity enhancement by cellular transport, a specialized mechanism not used by any other known adhesion receptor.
Collapse
Affiliation(s)
- Oren Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Doggett TA, Girdhar G, Lawshe A, Miller JL, Laurenzi IJ, Diamond SL, Diacovo TG. Alterations in the intrinsic properties of the GPIbalpha-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood 2003; 102:152-60. [PMID: 12637314 DOI: 10.1182/blood-2003-01-0072] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Platelet-type von Willebrand disease (PTVWD) is a bleeding disorder in which an increase of function mutation in glycoprotein Ibalpha (GPIbalpha), with respect to binding of von Willebrand factor (VWF), results in a loss of circulating high molecular weight VWF multimers together with a mild-moderate thrombocytopenia. To better ascertain the specific perturbations in adhesion associated with this disease state, we performed a detailed analysis of the kinetic and mechanical properties of tether bonds formed between PT-VWD platelets and the A1-domain of VWF. Results indicate that the GPIbalpha mutation, Gly233Val, promotes and stabilizes platelet adhesion to VWF at shear rates that do not support binding between the native receptor-ligand pair due to enhanced formation and increased longevity of the mutant tether bond (k0 off values for mutant versus native complex of 0.67 +/- 0.11 s-1 and 3.45 +/- 0.37 s-1, respectively). By contrast, the sensitivity of this interaction to an applied force, a measure of bond strength, was similar to the wild-type (WT) receptor. Although the observed alterations in the intrinsic properties of the GPIbalpha-VWF tether bond are comparable to those reported for the type 2B VWD, distinct molecular mechanisms may be responsible for these function-enhancing bleeding disorders, as interactions between the mutant receptor and mutant ligand resulted in a greater stability in platelet adhesion. We speculate that the enhanced cellular on-rate together with the prolongation in the lifetime of the mutant receptor-ligand bond contributes to platelet aggregation in circulating blood by permitting the formation of multiple GPIbalpha-VWF-A1 interactions.
Collapse
Affiliation(s)
- Teresa A Doggett
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8208, St Louis, MO 93110, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, Grabovsky V, Shamri R, Etzioni A. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 2003; 101:4437-45. [PMID: 12595312 DOI: 10.1182/blood-2002-11-3427] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leukocyte arrest on vascular endothelium under disruptive shear flow is a multistep process that requires in situ integrin activation on the leukocyte surface by endothelium-displayed chemoattractants, primarily chemokines. A genetic deficiency of leukocyte adhesion to endothelium associated with defective beta2 integrin expression or function (LAD-1) has been described. We now report a novel severe genetic disorder in this multistep process associated with functional defects in multiple leukocyte integrins, reflected in recurrent infections, profound leukocytosis, and a bleeding tendency. This syndrome is associated with an impaired ability of neutrophil and lymphocyte beta1 and beta2 integrins to generate high avidity to their endothelial ligands and arrest cells on vascular endothelium in response to endothelial chemoattractant signals. Patient leukocytes roll normally on endothelial selectins, express intact integrins and G protein-coupled chemokine receptors (GPCR), spread on integrin ligands, and migrate normally along a chemotactic gradient. Activation of beta2 integrins in response to GPCR signals and intrinsic soluble ligand binding properties of the very late activation antigen-4 (VLA-4) integrin are also retained in patient leukocytes. Nevertheless, all integrins fail to generate firm adhesion to immobilized ligands in response to in situ GPCR-mediated activation by chemokines or chemoattractants, a result of a primary defect in integrin rearrangement at ligand-bearing contacts. This syndrome is the first example of a human integrin-activation deficiency associated with defective GPCR stimulation of integrin avidity at subsecond contacts, a key step in leukocyte arrest on vascular endothelium under shear flow.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rao RM, Haskard DO, Landis RC. Enhanced recruitment of Th2 and CLA-negative lymphocytes by the S128R polymorphism of E-selectin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5860-5. [PMID: 12421968 DOI: 10.4049/jimmunol.169.10.5860] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E-selectin is a cytokine-inducible endothelial cell adhesion molecule that binds a restricted population of T lymphocytes consisting of Th1 memory cells bearing the cutaneous lymphocyte Ag (CLA). A serine to arginine (S128R) polymorphism in E-selectin has been reported at increased frequency in patients with systemic lupus erythematosus and atherosclerosis. Here we tested the hypothesis that the S128R substitution may contribute to increased vascular disease by altering the number and/or phenotype of lymphocytes interacting with E-selectin under shear flow. We observed that CHO cell monolayers transfected with S128R recruited significantly greater numbers of unfractionated lymphocytes than monolayers expressing an equivalent density of wild-type (WT) E-selectin. Depletion of the CLA(+) subpopulation or generation of CLA(-) lymphoblasts abolished rolling and arrest on WT E-selectin, but left a residual population that interacted with S128R. Generation of Th subsets revealed preferential interaction of Th0 and Th2, but not Th1, cells with S128R compared with WT. However, only T cells of a memory phenotype interacted with S128R, since neither monolayer supported rolling of CD45RA(+) cells. Our results demonstrate that the S128R polymorphism extends the range of lymphocytes recruited by E-selectin, which may provide a mechanistic link between this polymorphism and vascular inflammatory disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, Differentiation, T-Lymphocyte
- Antigens, Neoplasm
- Arginine/genetics
- CHO Cells
- Cell Communication/genetics
- Cell Communication/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Cricetinae
- E-Selectin/genetics
- E-Selectin/metabolism
- E-Selectin/physiology
- Humans
- Leukocyte Common Antigens/biosynthesis
- Lymphocyte Count
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Membrane Glycoproteins/biosynthesis
- Polymorphism, Genetic/immunology
- Serine/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Th2 Cells/cytology
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Ravi M Rao
- BHF Cardiovascular Medicine Unit, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London, U.K. W12 0NN
| | | | | |
Collapse
|
31
|
Abstract
Interactions of selectins with cell-surface glycoconjugates mediate tethering and rolling adhesion of leukocytes and platelets on vascular surfaces. Recent studies have helped elucidate the molecular details of selectin-ligand interactions, the biosynthetic pathways for constructing selectin ligands, and the biophysical and cell biological features that modulate selectin-dependent rolling under flow.
Collapse
Affiliation(s)
- Rodger P McEver
- Oklahoma Medical Research Foundation, and Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
32
|
Yago T, Leppänen A, Qiu H, Marcus WD, Nollert MU, Zhu C, Cummings RD, McEver RP. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J Cell Biol 2002; 158:787-99. [PMID: 12177042 PMCID: PMC2174028 DOI: 10.1083/jcb.200204041] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Revised: 07/01/2002] [Accepted: 07/01/2002] [Indexed: 11/22/2022] Open
Abstract
Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin-binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-beta-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin-ligand interactions.
Collapse
Affiliation(s)
- Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 74104, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Berlanga J, Prats P, Remirez D, Gonzalez R, Lopez-Saura P, Aguiar J, Ojeda M, Boyle JJ, Fitzgerald AJ, Playford RJ. Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:373-9. [PMID: 12163361 PMCID: PMC1850750 DOI: 10.1016/s0002-9440(10)64192-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2002] [Indexed: 01/20/2023]
Abstract
Ischemia/reperfusion of mesenteric vessels is a useful model for acute vascular insufficiency and the early stages of multiorgan failure, conditions associated with high morbidity and mortality. Epidermal growth factor (EGF) is a potent mitogen that shows potential for use in intestinal injury. We therefore examined its influence on this model. Male Sprague-Dawley rats received human recombinant EGF (2 mg/kg i.p., n = 14) or saline (n = 16); 25 minutes before arterial clamping of the superior mesenteric artery (ischemic period) for 60 minutes followed by a final 60-minute reperfusion period. Additional rats were not operated on (controls, n = 7) or had sham operation (laparotomy only, n = 10). Ischemia/reperfusion caused macroscopic damage affecting 56%, 51 to 67% (median, interquartile range), of small intestinal length and intraluminal bleeding. Malondialdehyde levels (free radical marker) increased eightfold compared to nonoperated animals (2400, 2200 to 2700 micro mol/mg protein versus 290, 250 to 350 micro mol/mg protein, P < 0.01) and myeloperoxidase levels (marker for inflammatory infiltrate) increased 15-fold (3150, 2670 to 4180 U/g tissue versus 240, 190 to 250 U/g tissue, P < 0.01). Pretreatment with EGF reduced macroscopic injury to 11%, 0 to 15%; prevented intraluminal bleeding; and reduced malondialdehyde and myeloperoxidase levels by approximately 60% and 90% (all P < 0.01 versus non-EGF-treated). Mesenteric ischemia/reperfusion also damaged the lungs and kidneys and increased serum tumor necrosis factor-alpha levels (circulating cytokine activity marker). EGF pretreatment also reduced these changes. These studies provide preliminary evidence that EGF is a novel therapy for the early treatment or prevention of intestinal damage and multiorgan failure resulting from mesenteric hypoperfusion.
Collapse
Affiliation(s)
- Jorge Berlanga
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dwir O, Steeber DA, Schwarz US, Camphausen RT, Kansas GS, Tedder TF, Alon R. L-selectin dimerization enhances tether formation to properly spaced ligand. J Biol Chem 2002; 277:21130-9. [PMID: 11907045 DOI: 10.1074/jbc.m201999200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selectin counterreceptors are glycoprotein scaffolds bearing multiple carbohydrate ligands with exceptional ability to tether flowing cells under disruptive shear forces. Bond clusters may facilitate formation and stabilization of selectin tethers. L-selectin ligation has been shown to enhance L-selectin rolling on endothelial surfaces. We now report that monoclonal antibodies-induced L-selectin dimerization enhances L-selectin leukocyte tethering to purified physiological L-selectin ligands and glycopeptides. Microkinetic analysis of individual tethers suggests that leukocyte rolling is enhanced through the dimerization-induced increase in tether formation, rather than by tether stabilization. Notably, L-selectin dimerization failed to augment L-selectin-mediated adhesion below a threshold ligand density, suggesting that L-selectin dimerization enhanced adhesiveness only to properly clustered ligand. In contrast, an epidermal growth factor domain substitution of L-selectin enhanced tether formation to L-selectin ligands irrespective of ligand density, suggesting that this domain controls intrinsic ligand binding properties of L-selectin without inducing L-selectin dimerization. Strikingly, at low ligand densities, where L-selectin tethering was not responsive to dimerization, elevated shear stress restored sensitivity of tethering to selectin dimerization. This is the first indication that shear stress augments effective selectin ligand density at local contact sites by promoting L-selectin encounter of immobilized ligand.
Collapse
Affiliation(s)
- Oren Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Grabovsky V, Dwir O, Alon R. Endothelial chemokines destabilize L-selectin-mediated lymphocyte rolling without inducing selectin shedding. J Biol Chem 2002; 277:20640-50. [PMID: 12042326 DOI: 10.1074/jbc.m201763200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemokines presented on specialized endothelial surfaces rapidly up-regulate leukocyte integrin avidity and firm arrest through G(i)-protein signaling. Here we describe a novel, G-protein-independent, down-regulatory activity of apical endothelial chemokines in destabilizing L-selectin-mediated leukocyte rolling. Unexpectedly, this anti-adhesive chemokine suppression of rolling does not involve L-selectin shedding. Destabilization of rolling is induced only by immobilized chemokines juxtaposed to L-selectin ligands and is an energy-dependent process. Chemokines are found to interfere with a subsecond stabilization of selectin tethers necessary for persistent rolling. This is a first indication that endothelial chemokines can attenuate in situ L-selectin adhesion to endothelial ligands at subsecond contacts. This negative feedback mechanism may underlie the jerky nature of rolling mediated by L-selectin in vivo.
Collapse
Affiliation(s)
- Valentin Grabovsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
36
|
Rao RM, Clarke JL, Ortlepp S, Robinson MK, Landis RC, Haskard DO. The S128R polymorphism of E-selectin mediates neuraminidase-resistant tethering of myeloid cells under shear flow. Eur J Immunol 2002; 32:251-60. [PMID: 11782016 DOI: 10.1002/1521-4141(200201)32:1<251::aid-immu251>3.0.co;2-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
E-selectin mediates the rolling of circulating leukocytes on vascular endothelial cells. A polymorphism, in which serine is substituted for arginine at position 128 (S128R) in the EGF domain, has been associated with both early-onset atherosclerosis and SLE. We investigated whether the substitution alters the ligand-binding properties of E-selectin under shear flow by studying the capacity of Chinese hamster ovary cell transfectants expressing wild type (WT) or S128R E-selectin to support interactions of neutrophils, K562 cells or HL60 cells. We initially chose to study non-fucosylated K562 cells. No interactions were observed on WT E-selectin, whereas S128R supported a transient tethering interaction of K562 cells, which was resistant to digestion with either neuraminidase or O-sialoglycoprotein endopeptidase, and, in turn, could result in firm adhesion in the presence of a beta2-integrin. HL60 cells exhibited increased rolling on S128R E-selectin. Although neuraminidase treatment inhibited all HL60 interactions with WT E-selectin, it unmasked transient tethers on S128R. We further observed that S128R recruited significantly more neutrophils than WT E-selectin, without affecting neutrophil rolling velocity. This polymorphism may therefore amplify leukocyte-endothelial cell interactions and may be a factor linking the S128R polymorphism to vascular disease.
Collapse
Affiliation(s)
- Ravi M Rao
- BHF Cardiovascular Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Dwir O, Kansas GS, Alon R. Cytoplasmic anchorage of L-selectin controls leukocyte capture and rolling by increasing the mechanical stability of the selectin tether. J Cell Biol 2001; 155:145-56. [PMID: 11581291 PMCID: PMC2150804 DOI: 10.1083/jcb.200103042] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.
Collapse
Affiliation(s)
- O Dwir
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|