1
|
Ma X, Ma L, Huo YX. Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends Biotechnol 2021; 40:735-751. [PMID: 34895933 DOI: 10.1016/j.tibtech.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An ideal microbial cell factory (MCF) should deliver maximal resources to production, which conflicts with the microbe's native growth-oriented resource allocation strategy and can therefore lead to early termination of the high-yield period. Reallocating resources from growth to production has become a critical factor in constructing robust MCFs. Instead of strengthening specific biosynthetic pathways, emerging endeavors are focused on rearranging the gene regulatory network to fundamentally reprogram the resource allocation pattern. Combining this idea with transcriptional regulation within the hierarchical regulatory network, this review discusses recent engineering strategies targeting the transcription machinery, module networks, regulatory edges, and bottom network layer. This global view will help to construct a production-oriented phenotype that fully harnesses the potential of MCFs.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China.
| |
Collapse
|
2
|
Abstract
The low G + C Gram-positive bacteria represent some of the most medically and industrially important microorganisms. They are relied on for the production of food and dietary supplements, enzymes and antibiotics, as well as being responsible for the majority of nosocomial infections and serving as a reservoir for antibiotic resistance. Control of gene expression in this group is more highly studied than in any bacteria other than the Gram-negative model Escherichia coli, yet until recently no structural information on RNA polymerase (RNAP) from this group was available. This review will summarize recent reports on the high-resolution structure of RNAP from the model low G + C representative Bacillus subtilis, including the role of auxiliary subunits δ and ε, and outline approaches for the development of antimicrobials to target RNAP from this group.
Collapse
Affiliation(s)
- Michael Miller
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia
| | - Aaron J Oakley
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia
| | - Peter J Lewis
- School Of Environmental And Life Sciences, University Of Newcastle, Callaghan, NSW, Australia.,School Of Chemistry And Molecular Bioscience, University Of Wollongong And Illawarra Health And Medical Research Institute, Wollongong, Nsw, Australia
| |
Collapse
|
3
|
Ye J, Chu AJ, Lin L, Chan ST, Harper R, Xiao M, Artsimovitch I, Zuo Z, Ma C, Yang X. Benzyl and benzoyl benzoic acid inhibitors of bacterial RNA polymerase-sigma factor interaction. Eur J Med Chem 2020; 208:112671. [PMID: 32920341 PMCID: PMC7680358 DOI: 10.1016/j.ejmech.2020.112671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Transcription is an essential biological process in bacteria requiring a core enzyme, RNA polymerase (RNAP). Bacterial RNAP is catalytically active but requires sigma (σ) factors for transcription of natural DNA templates. σ factor binds to RNAP to form a holoenzyme which specifically recognizes a promoter, melts the DNA duplex, and commences RNA synthesis. Inhibiting the binding of σ to RNAP is expected to inhibit bacterial transcription and growth. We previously identified a triaryl hit compound that mimics σ at its major binding site of RNAP, thereby inhibiting the RNAP holoenzyme formation. In this study, we modified this scaffold to provide a series of benzyl and benzoyl benzoic acid derivatives possessing improved antimicrobial activity. A representative compound demonstrated excellent activity against Staphylococcus epidermidis with minimum inhibitory concentrations reduced to 0.5 μg/mL, matching that of vancomycin. The molecular mechanism of inhibition was confirmed using biochemical and cellular assays. Low cytotoxicity and metabolic stability of compounds demonstrated the potential for further studies.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Adrian Jun Chu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lin Lin
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Shu Ting Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Rachel Harper
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Min Xiao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Sartini S, Levati E, Maccesi M, Guerra M, Spadoni G, Bach S, Benincasa M, Scocchi M, Ottonello S, Rivara S, Montanini B. New Antimicrobials Targeting Bacterial RNA Polymerase Holoenzyme Assembly Identified with an in Vivo BRET-Based Discovery Platform. ACS Chem Biol 2019; 14:1727-1736. [PMID: 31310497 DOI: 10.1021/acschembio.9b00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacterial resistance represents a major health threat worldwide, and the development of new therapeutics, including innovative antibiotics, is urgently needed. We describe a discovery platform, centered on in silico screening and in vivo bioluminescence resonance energy transfer in yeast cells, for the identification of new antimicrobials that, by targeting the protein-protein interaction between the β'-subunit and the initiation factor σ70 of bacterial RNA polymerase, inhibit holoenzyme assembly and promoter-specific transcription. Out of 34 000 candidate compounds, we identified seven hits capable of interfering with this interaction. Two derivatives of one of these hits proved to be effective in inhibiting transcription in vitro and growth of the Gram-positive pathogens Staphylococcus aureus and Listeria monocytogenes. Upon supplementation of a permeability adjuvant, one derivative also effectively inhibited Escherichia coli growth. On the basis of the chemical structures of these inhibitors, we generated a ligand-based pharmacophore model that will guide the rational discovery of increasingly effective antibacterial agents.
Collapse
Affiliation(s)
- Sara Sartini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Elisabetta Levati
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Martina Maccesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Guerra
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Team Physiology and Cell Fate, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
5
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
6
|
Wang Erickson AF, Deighan P, Chen S, Barrasso K, Garcia CP, Martínez-Lumbreras S, Alfano C, Krysztofinska EM, Thapaliya A, Camp AH, Isaacson RL, Hochschild A, Losick R. A novel RNA polymerase-binding protein that interacts with a sigma-factor docking site. Mol Microbiol 2017; 105:652-662. [PMID: 28598017 PMCID: PMC5558796 DOI: 10.1111/mmi.13724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
Sporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σF to create a negative feedback loop that inhibits σF -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σF -directed gene transcription. Based on pull-down experiments, chemical crosslinking, bacterial two-hybrid experiments and nuclear magnetic resonance chemical shift analysis, we now report that Fin binds to RNA polymerase and specifically to the coiled-coil region of the β' subunit. The coiled-coil is a docking site for sigma factors on RNA polymerase, and evidence is presented that the binding of Fin and σF to RNA polymerase is mutually exclusive. We propose that Fin functions by a mechanism distinct from that of classic sigma factor antagonists (anti-σ factors), which bind directly to a target sigma factor to prevent its association with RNA polymerase, and instead functions to inhibit σF by competing for binding to the β' coiled-coil.
Collapse
Affiliation(s)
- Anna F. Wang Erickson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Padraig Deighan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | - Shanshan Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Kelsey Barrasso
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | - Cinthia P. Garcia
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | | | - Caterina Alfano
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Ewelina M. Krysztofinska
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| | - Rivka L. Isaacson
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
7
|
Bhowmik D, Bhardwaj N, Chatterji D. Influence of Flexible "ω" on the Activity of E. coli RNA Polymerase: A Thermodynamic Analysis. Biophys J 2017; 112:901-910. [PMID: 28297649 DOI: 10.1016/j.bpj.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
The Escherichia coli RNA polymerase (RNAP) is a multisubunit protein complex containing the smallest subunit, ω. Despite the evolutionary conservation of ω and its role in assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of RNAP with the global chaperone protein GroEL. With an aim to get better insight into the structure and functional role of ω, we isolated a dominant negative mutant of ω (ω6), which is predominantly α-helical, in contrast to largely unstructured native ω, and then studied its assembly with reconstituted core1 (α2ββ') by a biophysical approach. The mutant showed higher binding affinity compared to native ω. We observed that the interaction between core1 and ω6 is driven by highly negative enthalpy and a small but unfavorable negative entropy term. Extensive structural alteration in ω6 makes it more rigid, the plasticity of the interacting domain formed by ω6 and core1 is compromised, which may be responsible for the entropic cost. Such tight binding of the structured mutant (ω6) affects initiation of transcription. However, once preinitiated, the complex elongates the RNA chain efficiently. The initiation of transcription requires recognition of appropriate σ-factors by the core enzyme (core2: α2ββ'ω). We found that the altered core enzyme (α2ββ'ω6) with mutant ω showed a decrease in binding affinity to the σ-factors (σ70, σ32 and σ38) compared to that of the core enzyme containing native ω. In the absence of unstructured ω, the association of σ-factors to the core is less efficient, suggesting that the flexible native ω plays a direct role in σ-factor recruitment.
Collapse
Affiliation(s)
- Debipreeta Bhowmik
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Neerupma Bhardwaj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
8
|
An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor. J Bacteriol 2017; 199:JB.00277-17. [PMID: 28507241 DOI: 10.1128/jb.00277-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the β' subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the β' coiled coil that is specifically detrimental for interaction with σH This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis β' subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.
Collapse
|
9
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
10
|
Ma C, Yang X, Lewis PJ. Bacterial Transcription Inhibitor of RNA Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in Silico Screening to Validation. ACS Infect Dis 2016; 2:39-46. [PMID: 27622946 DOI: 10.1021/acsinfecdis.5b00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial transcription is a proven target for antibacterial research. However, most of the known inhibitors targeting transcription are from natural extracts or are hits from screens where the binding site remains unidentified. Using an RNA polymerase holoenzyme homology structure from the model Gram-positive organism Bacillus subtilis, we created a pharmacophore model and used it for in silico screening of a publicly available library for compounds able to inhibit holoenzyme formation. The hits demonstrated specific affinity to bacterial RNA polymerase and excellent activity using in vitro assays and showed no binding to the equivalent structure from human RNA polymerase II. The target specificity in live cells and antibacterial activity was demonstrated in microscopy and growth inhibition experiments. This is the first example of targeted inhibitor development for a bacterial RNA polymerase, outlining a complete discovery process from virtual screening to biochemical validation. This approach could serve as an appropriate platform for the future identification of inhibitors of bacterial transcription.
Collapse
Affiliation(s)
- Cong Ma
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Xiao Yang
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter J. Lewis
- School of Environmental and Life
Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
11
|
Yang X, Ma C, Lewis PJ. Identification of inhibitors of bacterial RNA polymerase. Methods 2015; 86:45-50. [PMID: 25976836 DOI: 10.1016/j.ymeth.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Very few clinically available antibiotics target bacterial RNA polymerase (RNAP) suggesting it is an underutilized target. The advent of detailed structural information of RNAP holoenzyme (HE) has allowed the design and in silico screening of novel transcription inhibitors. Here, we describe our approach for the design and testing of small molecule transcription inhibitors that work by preventing the interaction between the essential transcription initiation factor σ and RNAP. With the appropriate structural information this approach can be easily modified to other essential protein-protein interactions.
Collapse
Affiliation(s)
- Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cong Ma
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. Bioorg Med Chem 2015; 23:1763-75. [DOI: 10.1016/j.bmc.2015.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
|
13
|
Surface plasmon resonance – more than a screening technology: insights in the binding mode of σ70:core RNAP inhibitors. Future Med Chem 2014; 6:1551-65. [DOI: 10.4155/fmc.14.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Antibiotic resistance has become a major health problem. The σ70:core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β’ subunit has been identified as an inhibition hot spot. Materials & methods & Results: By using surface plasmon resonance-based assays, inhibitors of the protein–protein interaction were identified and competition with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a σ70:core assembly assay. For one hit series, we found a correlation between activity and affinity. Mutant interaction studies suggest the inhibitors’ binding site. Conclusion: Surface plasmon resonance is a valuable technology in drug design, that has been used in this study to identify and evaluate σ70:core RNA polymerase inhibitors.
Collapse
|
14
|
A vector system that allows simple generation of mutant Escherichia coli RNA polymerase. Plasmid 2014; 75:37-41. [PMID: 24992039 DOI: 10.1016/j.plasmid.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/22/2022]
Abstract
We describe a dual vector-based system for overproduction of recombinant Escherichia coli RNA polymerase (RNAP). A cleavable deca-histidine tag (His10) was incorporated into the C-terminus of the β' subunit to facilitate protein purification. Unique restriction sites were introduced into the genes encoding the β and β' subunits (rpoB and rpoC, respectively), facilitating mutation of functionally significant subunit fragments through insertion of modified PCR fragments into the appropriate vector. RNAP with an R275A substitution in the β' subunit, which is essential for interaction with transcription initiation factor σ, was generated and exhibited reduced activity compared to native recombinant RNAP.
Collapse
|
15
|
Maillard AP, Girard E, Ziani W, Petit-Härtlein I, Kahn R, Covès J. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors. J Mol Biol 2014; 426:2313-27. [PMID: 24727125 DOI: 10.1016/j.jmb.2014.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Gene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own.
Collapse
Affiliation(s)
- Antoine P Maillard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France.
| | - Eric Girard
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Widade Ziani
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Isabelle Petit-Härtlein
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Richard Kahn
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Jacques Covès
- Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, and Institut de Biologie Structurale, F-38000 Grenoble, France
| |
Collapse
|
16
|
Yu ACS, Yim AKY, Mat WK, Tong AHY, Lok S, Xue H, Tsui SKW, Wong JTF, Chan TF. Mutations enabling displacement of tryptophan by 4-fluorotryptophan as a canonical amino acid of the genetic code. Genome Biol Evol 2014; 6:629-41. [PMID: 24572018 PMCID: PMC3971595 DOI: 10.1093/gbe/evu044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/26/2022] Open
Abstract
The 20 canonical amino acids of the genetic code have been invariant over 3 billion years of biological evolution. Although various aminoacyl-tRNA synthetases can charge their cognate tRNAs with amino acid analogs, there has been no known displacement of any canonical amino acid from the code. Experimental departure from this universal protein alphabet comprising the canonical amino acids was first achieved in the mutants of the Bacillus subtilis QB928 strain, which after serial selection and mutagenesis led to the HR23 strain that could use 4-fluorotryptophan (4FTrp) but not canonical tryptophan (Trp) for propagation. To gain insight into this displacement of Trp from the genetic code by 4FTrp, genome sequencing was performed on LC33 (a precursor strain of HR23), HR23, and TR7 (a revertant of HR23 that regained the capacity to propagate on Trp). Compared with QB928, the negative regulator mtrB of Trp transport was found to be knocked out in LC33, HR23, and TR7, and sigma factor sigB was mutated in HR23 and TR7. Moreover, rpoBC encoding RNA polymerase subunits were mutated in three independent isolates of TR7 relative to HR23. Increased expression of sigB was also observed in HR23 and in TR7 growing under 4FTrp. These findings indicated that stabilization of the genetic code can be provided by just a small number of analog-sensitive proteins, forming an oligogenic barrier that safeguards the canonical amino acids throughout biological evolution.
Collapse
Affiliation(s)
- Allen Chi-Shing Yu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aldrin Kay-Yuen Yim
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Amy Hin-Yan Tong
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Si Lok
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Xue
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - J. Tze-Fei Wong
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Mielczarek M, Devakaram RV, Ma C, Yang X, Kandemir H, Purwono B, Black DS, Griffith R, Lewis PJ, Kumar N. Synthesis and biological activity of novel bis-indole inhibitors of bacterial transcription initiation complex formation. Org Biomol Chem 2014; 12:2882-94. [DOI: 10.1039/c4ob00460d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel bis-indole amides and glyoxylamides as bacterial transcription complex formation inhibitors and their structure–activity relationships are discussed.
Collapse
Affiliation(s)
- Marcin Mielczarek
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - Ruth V. Devakaram
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - Cong Ma
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan, Australia
| | - Xiao Yang
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan, Australia
| | - Hakan Kandemir
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - Bambang Purwono
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - David StC. Black
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| | - Renate Griffith
- School of Medical Sciences
- Department of Pharmacology
- The University of New South Wales
- Sydney, Australia
| | - Peter J. Lewis
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan, Australia
| | - Naresh Kumar
- School of Chemistry
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
18
|
Ma C, Yang X, Kandemir H, Mielczarek M, Johnston EB, Griffith R, Kumar N, Lewis PJ. Inhibitors of bacterial transcription initiation complex formation. ACS Chem Biol 2013; 8:1972-80. [PMID: 23751807 DOI: 10.1021/cb400231p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibiotic resistance is a growing global problem, with very few new compounds in development. Bacterial transcription is an underutilized target for antibiotics, which has been attributed to the similarity of the active site of RNA polymerases (RNAPs) across all domains of life and the ease with which resistance can arise through point mutation at multiple sites within this conserved region. In this study we have taken a rational approach to design a novel set of compounds that specifically target the formation of transcription initiation complexes by preventing the unique bacterial σ initiation factor from binding to RNAP. We have identified the region of RNAP to which these compounds bind and demonstrate that one compound, GKL003, has an inhibition constant in the low nanomolar range. This compound has activity against both Gram-positive and -negative organisms, including a community acquired methicillin-resistant strain of the major pathogen Staphylococcus aureus.
Collapse
Affiliation(s)
- Cong Ma
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | - Elecia B Johnston
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | - Peter J. Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Decker KB, Hinton DM. Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases. Annu Rev Microbiol 2013; 67:113-39. [DOI: 10.1146/annurev-micro-092412-155756] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly B. Decker
- Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
20
|
Cabrera-Ostertag IJ, Cavanagh AT, Wassarman KM. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res 2013; 41:7501-11. [PMID: 23761441 PMCID: PMC3753640 DOI: 10.1093/nar/gkt517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 6S RNA is a non-coding small RNA that binds within the active site of housekeeping forms of RNA polymerases (e.g. Eσ70 in Escherichia coli, EσA in Bacillus subtilis) and regulates transcription. Efficient release of RNA polymerase from 6S RNA regulation during outgrowth from stationary phase is dependent on use of 6S RNA as a template to generate a product RNA (pRNA). Interestingly, B. subtilis has two 6S RNAs, 6S-1 and 6S-2, but only 6S-1 RNA appears to be used efficiently as a template for pRNA synthesis during outgrowth. Here, we demonstrate that the identity of the initiating nucleotide is particularly important for the B. subtilis RNA polymerase to use RNA templates. Specifically, initiation with guanosine triphosphate (GTP) is required for efficient pRNA synthesis, providing mechanistic insight into why 6S-2 RNA does not support robust pRNA synthesis as it initiates with adenosine triphosphate (ATP). Intriguingly, E. coli RNA polymerase does not have a strong preference for initiating nucleotide identity. These observations highlight an important difference in biochemical properties of B. subtilis and E. coli RNA polymerases, specifically in their ability to use RNA templates efficiently, which also may reflect the differences in GTP and ATP metabolism in these two organisms.
Collapse
|
21
|
Hüsecken K, Negri M, Fruth M, Boettcher S, Hartmann RW, Haupenthal J. Peptide-based investigation of the Escherichia coli RNA polymerase σ(70):core interface as target site. ACS Chem Biol 2013; 8:758-66. [PMID: 23330640 DOI: 10.1021/cb3005758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The number of bacterial strains that are resistant against antibiotics increased dramatically during the past decades. This fact stresses the urgent need for the development of new antibacterial agents with novel modes of action targeting essential enzymes such as RNA polymerase (RNAP). Bacterial RNAP is a large multi-subunit complex consisting of a core enzyme (subunits: α(2)ββ'ω) and a dissociable sigma factor (σ(70); holo enzyme: α(2)ββ'ωσ(70)) that is responsible for promoter recognition and transcription initiation. The interface between core RNAP and σ(70) represents a promising binding site. Nevertheless, detailed studies investigating its druggability are rare. Compounds binding to this region could inhibit this protein-protein interaction and thus holo enzyme formation, resulting in inhibition of transcription initiation. Sixteen peptides covering different regions of the Escherichia coli σ(70):core interface were designed; some of them-all derived from σ(70) 2.2 region-led to a strong RNAP inhibition. Indeed, an ELISA-based experiment confirmed the most active peptide P07 to inhibit the σ(70):core interaction. Furthermore, an abortive transcription assay revealed that P07 impedes transcription initiation. In order to study the mechanism of action of P07 in more detail, molecular dynamics simulations and a rational amino acid replacement study were performed, leading to the conclusion that P07 binds to the coiled-coil region in β' and that its flexible N-terminus inhibits the enzyme by interaction with the β' lid-rudder-system (LRS). This work revisits the β' coiled-coil as a hot spot for the protein-protein interaction inhibition and expands it by introduction of the LRS as target site.
Collapse
Affiliation(s)
- Kristina Hüsecken
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Martina Fruth
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Stefan Boettcher
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| | - Joerg Haupenthal
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Department
of Drug Design and Optimization and ‡Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2_3, D-66123
Saarbrücken, Germany
| |
Collapse
|
22
|
Ganguly A, Chatterji D. A comparative kinetic and thermodynamic perspective of the σ-competition model in Escherichia coli. Biophys J 2013; 103:1325-33. [PMID: 22995505 DOI: 10.1016/j.bpj.2012.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022] Open
Abstract
Transcription is the most fundamental step in gene expression in any living organism. Various environmental cues help in the maturation of core RNA polymerase (RNAP; α(2)ββ'ω) with different σ-factors, leading to the directed recruitment of RNAP to different promoter DNA sequences. Thus it is essential to determine the σ-factors that affect the preferential partitioning of core RNAP among various σ-actors, and the role of σ-switching in transcriptional gene regulation. Further, the macromolecular assembly of holo RNAP takes place in an extremely crowded environment within a cell, and thus far the kinetics and thermodynamics of this molecular recognition process have not been well addressed. In this study we used a site-directed bioaffinity immobilization method to evaluate the relative binding affinities of three different Escherichia coli σ-factors to the same core RNAP with variations in temperature and ionic strength while emulating the crowded cellular milieu. Our data indicate that the interaction of core RNAP-σ is susceptible to changes in external stimuli such as osmolytic and thermal stress, and the degree of susceptibility varies among different σ-factors. This allows for a reversible σ-switching from housekeeping factors to alternate σ-factors when the organism senses a change in its physiological conditions.
Collapse
Affiliation(s)
- Abantika Ganguly
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
23
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
24
|
Cavanagh AT, Sperger JM, Wassarman KM. Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res 2011; 40:2234-46. [PMID: 22102588 PMCID: PMC3299989 DOI: 10.1093/nar/gkr1003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ70 in Escherichia coli, EσA in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ70 during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ70 to generate product RNAs (pRNAs). Here, we demonstrate that not only does pRNA synthesis occur, but it is an important mechanism for regulation of 6S RNA function that is required for cells to exit stationary phase efficiently in both E. coli and B. subtilis. Bacillus subtilis has two 6S RNAs, 6S-1 and 6S-2. Intriguingly, 6S-2 RNA does not direct pRNA synthesis under physiological conditions and its non-release from EσA prevents efficient outgrowth in cells lacking 6S-1 RNA. The behavioral differences in the two B. subtilis RNAs clearly demonstrate that they act independently, revealing a higher than anticipated diversity in 6S RNA function globally. Overexpression of a pRNA-synthesis-defective 6S RNA in E. coli leads to decreased cell viability, suggesting pRNA synthesis-mediated regulation of 6S RNA function is important at other times of growth as well.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
25
|
Bonocora RP, Decker PK, Glass S, Knipling L, Hinton DM. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues. J Biol Chem 2011; 286:39290-6. [PMID: 21911499 DOI: 10.1074/jbc.m111.278762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sigma factors, the specificity subunits of RNA polymerase, are involved in interactions with promoter DNA, the core subunits of RNA polymerase, and transcription factors. The bacteriophage T4-encoded activator, MotA, is one such factor, which engages the C terminus of the Escherichia coli housekeeping sigma factor, σ(70). MotA functions in concert with a phage-encoded co-activator, AsiA, as a molecular switch. This process, termed sigma appropriation, inhibits host transcription while activating transcription from a class of phage promoters. Previous work has demonstrated that MotA contacts the C terminus of σ(70), H5, a region that is normally bound within RNA polymerase by its interaction with the β-flap tip. To identify the specific σ(70) residues responsible for interacting with MotA and the β-flap tip, we generated single substitutions throughout the C terminus of σ(70). We find that MotA targets H5 residues that are normally engaged by the β-flap. In two-hybrid assays, the interaction of σ(70) with either the β-flap tip or MotA is impaired by alanine substitutions at residues Leu-607, Arg-608, Phe-610, Leu-611, and Asp-613. Transcription assays identify Phe-610 and Leu-611 as the key residues for MotA/AsiA-dependent transcription. Phe-610 is a crucial residue in the H5/β-flap tip interaction using promoter clearance assays with RNA polymerase alone. Our results show how the actions of small transcriptional factors on a defined local region of RNA polymerase can fundamentally change the specificity of polymerase.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Khodak YA, Koroleva ON, Drutsa VL. Purification of core enzyme of Escherichia coli RNA polymerase by affinity chromatography. BIOCHEMISTRY (MOSCOW) 2010; 75:769-76. [DOI: 10.1134/s000629791006012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
A two-subunit bacterial sigma-factor activates transcription in Bacillus subtilis. Proc Natl Acad Sci U S A 2009; 106:21323-8. [PMID: 19940246 DOI: 10.1073/pnas.0910006106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sigma-like factor YvrI and coregulator YvrHa activate transcription from a small set of conserved promoters in Bacillus subtilis. We report here that these two proteins independently contribute sigma-region 2 and sigma-region 4 functions to a holoenzyme-promoter DNA complex. YvrI binds RNA polymerase (RNAP) through a region 4 interaction with the beta-subunit flap domain and mediates specific promoter recognition but cannot initiate DNA melting at the -10 promoter element. Conversely, YvrHa possesses sequence similarity to a conserved core-binding motif in sigma-region 2 and binds to the N-terminal coiled-coil element in the RNAP beta'-subunit previously implicated in interaction with region 2 of sigma-factors. YvrHa plays an essential role in stabilizing the open complex and interacts specifically with the N-terminus of YvrI. Based on these results, we propose that YvrHa is situated in the transcription complex proximal to the -10 element of the promoter, whereas YvrI is responsible for -35 region recognition. This system presents an unusual example of a two-subunit bacterial sigma-factor.
Collapse
|
28
|
Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 2009; 395:686-704. [PMID: 19895816 DOI: 10.1016/j.jmb.2009.10.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 11/17/2022]
Abstract
Comprehensive multiple sequence alignments of the multisubunit DNA-dependent RNA polymerase (RNAP) large subunits, including the bacterial beta and beta' subunits and their homologs from archaebacterial RNAPs, eukaryotic RNAPs I-III, nuclear-cytoplasmic large double-stranded DNA virus RNAPs, and plant plastid RNAPs, were created [Lane, W. J. and Darst, S. A. (2009). Molecular evolution of multisubunit RNA polymerases: sequence analysis. In press]. The alignments were used to delineate sequence regions shared among all classes of multisubunit RNAPs, defining common, fundamental RNAP features as well as identifying highly conserved positions. Here, we present a systematic, detailed structural analysis of these shared regions and highly conserved positions in terms of the RNAP structure, as well as the RNAP structure/function relationship, when known.
Collapse
Affiliation(s)
- William J Lane
- The Rockefeller University, Box 224, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
29
|
Klocko AD, Wassarman KM. 6S RNA binding to Esigma(70) requires a positively charged surface of sigma(70) region 4.2. Mol Microbiol 2009; 73:152-64. [PMID: 19538447 DOI: 10.1111/j.1365-2958.2009.06758.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
6S RNA is a small, non-coding RNA that interacts with sigma(70)-RNA polymerase and downregulates transcription at many promoters during stationary phase. When bound to sigma(70)-RNA polymerase, 6S RNA is engaged in the active site of sigma(70)-RNA polymerase in a manner similar enough to promoter DNA that the RNA can serve as a template for RNA synthesis. It has been proposed that 6S RNA mimics the conformation of DNA during transcription initiation, suggesting contacts between RNA polymerase and 6S RNA or DNA may be similar. Here we demonstrate that region 4.2 of sigma(70) is critical for the interaction between 6S RNA and RNA polymerase. We define an expanded binding surface that encompasses positively charged residues throughout the recognition helix of the helix-turn-helix motif in region 4.2, in contrast to DNA binding that is largely focused on the N-terminal region of this helix. Furthermore, negatively charged residues in region 4.2 weaken binding to 6S RNA but do not similarly affect DNA binding. We propose that the binding sites for promoter DNA and 6S RNA on region 4.2 of sigma(70) are overlapping but distinct, raising interesting possibilities for how core promoter elements contribute to defining promoters that are sensitive to 6S RNA regulation.
Collapse
Affiliation(s)
- Andrew D Klocko
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
30
|
The YvrI alternative sigma factor is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilis. J Bacteriol 2008; 191:931-9. [PMID: 19047353 DOI: 10.1128/jb.01435-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YvrI is a recently identified alternative sigma factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated promoters preceding the yvrI-yvrHa, yvrJ, and oxdC-yvrL operons. Independently, proteome analyses identified OxdC as a highly abundant, cell wall-associated protein that accumulated under acidic growth conditions. We show here that the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI and is correlated with enhanced transcription of both the yvrI-yvrHa and the oxdC-yvrL operons. Conversely, OxdC accumulates to a high level even under nonacidic growth conditions in cells lacking YvrL, a negative regulator of YvrI/YvrHa-dependent transcription. These results indicate that YvrI and its associated coregulators YvrHa and YvrL are required for the regulation of OxdC expression by acid stress. The high-level accumulation of OxdC depends, in part, on a strong oxdC promoter. A regulatory sequence with similarity to an upstream promoter element (UP) was identified upstream of the oxdC promoter and is required for high-level promoter activity. Conservation of the YvrI/YvrHa/YvrL regulatory system among related species allowed us to deduce an expanded consensus sequence for the compositionally unusual promoters recognized by this new sigma factor.
Collapse
|
31
|
Cavanagh AT, Klocko AD, Liu X, Wassarman KM. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol Microbiol 2008; 67:1242-56. [PMID: 18208528 DOI: 10.1111/j.1365-2958.2008.06117.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6S RNA binds sigma70-RNA polymerase and downregulates transcription at many sigma70-dependent promoters, but others escape regulation even during stationary phase when the majority of the transcription machinery is bound by the RNA. We report that core promoter elements determine this promoter specificity; a weak -35 element allows a promoter to be 6S RNA sensitive, and an extended -10 element similarly determines 6S RNA inhibition except when a consensus -35 element is present. These two features together predicted that hundreds of mapped Escherichia coli promoters might be subject to 6S RNA dampening in stationary phase. Microarray analysis confirmed 6S RNA-dependent downregulation of expression from 68% of the predicted genes, which corresponds to 49% of the expressed genes containing mapped E. coli promoters and establishes 6S RNA as a global regulator in stationary phase. We also demonstrate a critical role for region 4.2 of sigma70 in RNA polymerase interactions with 6S RNA. Region 4.2 binds the -35 element during transcription initiation; therefore we propose one mechanism for 6S RNA regulation of transcription is through competition for binding region 4.2 of sigma70.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
32
|
The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex. Proc Natl Acad Sci U S A 2008; 105:865-70. [PMID: 18195372 DOI: 10.1073/pnas.0708432105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase is a target for numerous regulatory events in all living cells. Recent studies identified a few "hot spots" on the surface of bacterial RNA polymerase that mediate its interactions with diverse accessory proteins. Prominent among these hot spots, the beta' subunit clamp helices serve as a major binding site for the initiation factor sigma and for the elongation factor RfaH. Furthermore, the two proteins interact with the nontemplate DNA strand in transcription complexes and thus may interfere with each other's activity. We show that RfaH does not inhibit transcription initiation but, once recruited to RNA polymerase, abolishes sigma-dependent pausing. We argue that this apparent competition is due to a steric exclusion of sigma by RfaH that is stably bound to the nontemplate DNA and clamp helices, both of which are necessary for the sigma recruitment to the transcription complex. Our findings highlight the key regulatory role played by the clamp helices during both initiation and elongation stages of transcription.
Collapse
|
33
|
Glaser BT, Bergendahl V, Thompson NE, Olson B, Burgess RR. LRET-Based HTS of a Small-Compound Library for Inhibitors of Bacterial RNA Polymerase. Assay Drug Dev Technol 2007; 5:759-68. [DOI: 10.1089/adt.2007.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bryan T. Glaser
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison WI
| | - Veit Bergendahl
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison WI
- Genomics Center of Wisconsin, Madison, WI
| | - Nancy E. Thompson
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison WI
| | - Brian Olson
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, WI
| | - Richard R. Burgess
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison WI
| |
Collapse
|
34
|
Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV, Vassylyev DG, Artsimovitch I. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 2007; 26:117-29. [PMID: 17434131 PMCID: PMC3116145 DOI: 10.1016/j.molcel.2007.02.021] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/16/2007] [Accepted: 02/14/2007] [Indexed: 11/24/2022]
Abstract
RfaH, a paralog of the general transcription factor NusG, is recruited to elongating RNA polymerase at specific regulatory sites. The X-ray structure of Escherichia coli RfaH reported here reveals two domains. The N-terminal domain displays high similarity to that of NusG. In contrast, the alpha-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the beta barrel of NusG. To our knowledge, such an all-beta to all-alpha transition of the entire domain is the most extreme example of protein fold evolution known to date. Both N domains possess a vast hydrophobic cavity that is buried by the C domain in RfaH but is exposed in NusG. We propose that this cavity constitutes the RNA polymerase-binding site, which becomes unmasked in RfaH only upon sequence-specific binding to the nontemplate DNA strand that triggers domain dissociation. Finally, we argue that RfaH binds to the beta' subunit coiled coil, the major target site for the initiation sigma factors.
Collapse
Affiliation(s)
- Georgiy A. Belogurov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Marina N. Vassylyeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Vladimir Svetlov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Sergiy Klyuyev
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Nick V. Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
35
|
McDowell JV, Harlin ME, Rogers EA, Marconi RT. Putative coiled-coil structural elements of the BBA68 protein of Lyme disease spirochetes are required for formation of its factor H binding site. J Bacteriol 2005; 187:1317-23. [PMID: 15687195 PMCID: PMC545637 DOI: 10.1128/jb.187.4.1317-1323.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Factor H and factor H like-protein 1 (FHL-1) are complement regulatory proteins that serve as cofactors for the factor I-mediated cleavage of C3b. Some Lyme disease and relapsing fever spirochete species bind factor H to their surface to facilitate immune evasion. The Lyme disease spirochetes produce several factor H binding proteins (FHBPs) that form two distinct classes. Class I FHBPs (OspE orthologs and paralogs) bind only factor H, while class II FHBPs (BBA68) bind both factor H and FHL-1. BBA68 belongs to a large paralogous protein family, and of these paralogs, BBA69 is the member most closely related to BBA68. To determine if BBA69 can also bind factor H, recombinant protein was generated and tested for factor H binding. BBA69 did not exhibit factor H binding ability, suggesting that among family 54 paralogs, factor H binding is unique to BBA68. To identify the determinants of BBA68 that are involved in factor H binding, truncation and site-directed mutational analyses were performed. These analyses revealed that the factor H binding site is discontinuous and provide strong evidence that coiled-coil structural elements are involved in the formation of the binding site.
Collapse
Affiliation(s)
- John V McDowell
- Department of Microbiology and Immunology, Medical College of Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
36
|
Berghöfer-Hochheimer Y, Lu CZ, Gross CA. Altering the interaction between sigma70 and RNA polymerase generates complexes with distinct transcription-elongation properties. Proc Natl Acad Sci U S A 2005; 102:1157-62. [PMID: 15650048 PMCID: PMC545856 DOI: 10.1073/pnas.0408973102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We compare the elongation behavior of native Escherichia coli RNA polymerase holoenzyme assembled in vivo, holoenzyme reconstituted from sigma70 and RNA polymerase in vitro, and holoenzyme with a specific alteration in the interface between sigma70 and RNA polymerase. Elongating RNA polymerase from each holoenzyme has distinguishable properties, some of which cannot be explained by differential retention or rebinding of sigma70 during elongation, or by differential presence of elongation factors. We suggest that interactions between RNA polymerase and sigma70 may influence the ensemble of conformational states adopted by RNA polymerase during initiation. These states, in turn, may affect the conformational states adopted by the elongating enzyme, thereby physically and functionally imprinting RNA polymerase.
Collapse
Affiliation(s)
- Yvonne Berghöfer-Hochheimer
- Department of Microbiology and Immunology and Stomatology, Genentech Hall, 600 16th Street, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
37
|
Abstract
Promoter recognition in eubacteria is carried out by the initiation factor sigma, which binds RNA polymerase and initiates transcription. Cells have one housekeeping factor and a variable number of alternative sigma factors that possess different promoter-recognition properties. The cell can choose from its repertoire of sigmas to alter its transcriptional program in response to stress. Recent structural information illuminates the process of initiation and also shows that the two key sigma domains are structurally conserved, even among diverse family members. We use the sigma repertoire of Escherichia coli, Bacillus subtilis, Streptomyces coelicolor, and cyanobacteria to illustrate the different strategies utilized to organize transcriptional space using multiple sigma factors.
Collapse
Affiliation(s)
- Tanja M Gruber
- Department of Microbiology and Immunology, University of California, Genentech Hall, 600 16th St., San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
38
|
Abstract
The past three years have marked the breakthrough in our understanding of the structural and functional organization of RNA polymerase. The latest major advance was the high-resolution structures of bacterial RNA polymerase holoenzyme and the holoenzyme in complex with promoter DNA. Together with an array of genetic, biochemical and biophysical data accumulated to date, the structures provide a comprehensive view of dynamic interactions between the major components of transcription machinery during the early stages of the transcription cycle. They include the binding of sigma factor to the core enzyme, and the recognition of promoter sequences and DNA melting by holoenzyme, transcription initiation and promoter clearance.
Collapse
Affiliation(s)
- Sergei Borukhov
- Department of Microbiology and Immunology, SUNY Health Sciences Center, 450 Clarkson Avenue, Room BSB 3-27, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
39
|
Mahren S, Braun V. The FecI extracytoplasmic-function sigma factor of Escherichia coli interacts with the beta' subunit of RNA polymerase. J Bacteriol 2003; 185:1796-802. [PMID: 12618442 PMCID: PMC150148 DOI: 10.1128/jb.185.6.1796-1802.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the ferric citrate transport system of Escherichia coli K-12 is mediated by the extracytoplasmic-function (ECF) sigma factor FecI, which is activated by ferric citrate in the growth medium. By using a bacterial two-hybrid system, it was shown in vivo that FecI binds to the beta' subunit of RNA polymerase. The inactive mutant protein FecI(K155E) displayed reduced binding to beta', and small deletions along the entire FecI protein led to total impairment of beta' binding. In vitro, FecI was retained on Ni(2+)-nitrilotriacetic acid agarose loaded with a His-tagged beta'(1-313) fragment and coeluted with beta'(1-313). Binding of FecI to beta' and beta'(1-313) was enhanced by FecR(1-85), which represents the cytoplasmic portion of the FecR protein that transmits the inducing signal across the cytoplasmic membrane. Interaction of FecR with FecI was demonstrated by showing that isolated FecR inhibited degradation of FecI by trypsin. This is the first demonstration of binding of an ECF sigma factor of the FecI type to the beta' subunit of RNA polymerase and of binding being enhanced by the protein that activates the ECF sigma factor.
Collapse
Affiliation(s)
- Susanne Mahren
- Mikrobiologie/Membranphysiologie, Universität Tübingen, D-72076 Tübingen, Germany
| | | |
Collapse
|
40
|
Bergendahl V, Heyduk T, Burgess RR. Luminescence resonance energy transfer-based high-throughput screening assay for inhibitors of essential protein-protein interactions in bacterial RNA polymerase. Appl Environ Microbiol 2003; 69:1492-8. [PMID: 12620834 PMCID: PMC150103 DOI: 10.1128/aem.69.3.1492-1498.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of sigma factors to core RNA polymerase is essential for the specific initiation of transcription in eubacteria and is thus critical for cell growth. Since the responsible protein-binding regions are highly conserved among all eubacteria but differ significantly from eukaryotic RNA polymerases, sigma factor binding is a promising target for drug discovery. A homogeneous assay for sigma binding to RNA polymerase (Escherichia coli) based on luminescence resonance energy transfer (LRET) was developed by using a europium-labeled sigma70 and an IC5-labeled fragment of the beta' subunit of RNA polymerase (amino acid residues 100 through 309). Inhibition of sigma binding was measured by the loss of LRET through a decrease in IC5 emission. The technical advances offered by LRET resulted in a very robust assay suitable for high-throughput screening, and LRET was successfully used to screen a crude natural-product library. We illustrate this method as a powerful tool to investigate any essential protein-protein interaction for basic research and drug discovery.
Collapse
Affiliation(s)
- Veit Bergendahl
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Wong K, Kassavetis GA, Leonetti JP, Geiduschek EP. Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 2003; 278:7073-80. [PMID: 12496274 DOI: 10.1074/jbc.m211447200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 late promoters, which consist of a simple 8-base pair TATA box, are recognized by the gene 55 protein (gp55), a small, highly diverged member of the sigma family proteins that replaces sigma(70) during the final phase of the T4 multiplication cycle. A 16-amino acid segment of gp55 that is proposed to be homologous to the sigma(70) region 2.2 has been subjected to alanine scanning and other mutagenesis. The corresponding proteins have been examined in vitro for binding to Escherichia coli RNA polymerase core enzyme and for the ability to generate accurately initiating basal as well as sliding clamp-activated T4 late transcription. Mutations in the amino acid 68-83 segment of gp55 generate a wide range of effects on these functions. The changes are interpreted in terms of the multiple steps of involvement of gp55, like other sigma proteins, in transcription. Effects of mutations on RNA polymerase core binding are consistent with the previously proposed homology of amino acids 68-82 of gp55 with sigma(70) region 2.2 and the recently determined structures of the Thermus thermophilus and Thermus aquaticus sigma(70)-RNA polymerase holoenzymes.
Collapse
Affiliation(s)
- Kevin Wong
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | | | |
Collapse
|
42
|
Herrmann RG, Maier RM, Schmitz-Linneweber C. Eukaryotic genome evolution: rearrangement and coevolution of compartmentalized genetic information. Philos Trans R Soc Lond B Biol Sci 2003; 358:87-97; discussion 97. [PMID: 12594919 PMCID: PMC1693106 DOI: 10.1098/rstb.2002.1177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant cell operates with an integrated, compartmentalized genome consisting of nucleus/cytosol, plastids and mitochondria that, in its entirety, is regulated in time, quantitatively, in multicellular organisms and also in space. This genome, as do genomes of eukaryotes in general, originated in endosymbiotic events, with at least three cells, and was shaped phylogenetically by a massive and highly complex restructuring and intermixing of the genetic potentials of the symbiotic partners and by lateral gene transfer. This was accompanied by fundamental changes in expression signals in the entire system at almost all regulatory levels. The gross genome rearrangements contrast with a highly specific compartmental interplay, which becomes apparent in interspecific nuclear-plastid cybrids or hybrids. Organelle exchanges, even between closely related species, can greatly disturb the intracellular genetic balance ("hybrid bleaching"), which is indicative of compartmental coevolution and is of relevance for speciation processes. The photosynthetic machinery of plastids, which is embedded in that genetic machinery, is an appealing model to probe into genomic and organismic evolution and to develop functional molecular genomics. We have studied the reciprocal Atropa belladonna-Nicotiana tabacum cybrids, which differ markedly in their phenotypes, and found that transcriptional and post-transcriptional processes can contribute to genome/plastome incompatibility. Allopolyploidy can influence this phenomenon by providing an increased, cryptic RNA editing potential and the capacity to maintain the integrity of organelles of different taxonomic origins.
Collapse
Affiliation(s)
- Reinhold G Herrmann
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 Munich, Germany.
| | | | | |
Collapse
|
43
|
Anthony LC, Burgess RR. Conformational flexibility in sigma70 region 2 during transcription initiation. J Biol Chem 2002; 277:46433-41. [PMID: 12359719 DOI: 10.1074/jbc.m208205200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prokaryotic RNA polymerase holoenzyme is composed of core subunits (alpha(2)betabeta'omega) plus a sigma factor that confers promoter specificity allowing for regulation of gene expression. Holoenzyme is known to undergo several conformational changes during the multiple steps of transcription initiation. However, the effects of these changes on the functions of specific regions have not been well characterized. In this work, we addressed the role of possible conformational change in region 2 of Escherichia coli sigma(70) by engineering disulfide bonds that "lock" region 2.1 with region 2.2 and region 2.2 with region 2.3. When these mutant holoenzymes were characterized for gross defects in multiple-round transcription, we found that insertion of either disulfide bond did not result in a fundamental block, indicating that the disulfide-containing holoenzymes are active. However, both disulfide-containing holoenzymes exhibited defects in formation and stability of the open complex. Our results suggest that conformational flexibility within sigma(70) region 2 facilitates open complex formation and transcription initiation.
Collapse
Affiliation(s)
- Larry C Anthony
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
44
|
Bergendahl V, Anthony LC, Heyduk T, Burgess RR. On-column tris(2-carboxyethyl)phosphine reduction and IC5-maleimide labeling during purification of a RpoC fragment on a nickel-nitrilotriacetic acid Column. Anal Biochem 2002; 307:368-74. [PMID: 12202256 DOI: 10.1016/s0003-2697(02)00061-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fluorescence labeling of proteins has become increasingly important since fluorescent techniques like FRET and fluorescence polarization are now commonly used in protein binding studies, proteomics, and for high-throughput screening in drug discovery. In our efforts to study the binding of the beta(')-subunit from Escherichia coli RNA polymerase (RNAP) to sigma70, we synthesized a fluorescent-labeled beta(')-fragment (residues 100-309) in a very convenient way, that could be used as a general protocol for hexahistidine-tagged proteins. By performing all the following steps, purification, reduction, derivatization with IC5-maleimide, and free dye removal while the protein was bound to the column, we were able to reduce the procedure time significantly and at the same time achieve better labeling efficiency and quality. The beta(')-fragment with a N-terminal His(6)-tag was purified from inclusion bodies and could be refolded prior to or after binding to a Ni-NTA affinity column. Reduction prior to labeling was achieved with TCEP that does not interfere with Ni-NTA chemistry. The labeled beta(')-fragment was tested with sigma70 that was labeled with an europium-based fluorophore for binding in a electrophoretic mobility-shift assay. The sigma-to-core protein interaction in bacterial RNA polymerase offers a potentially specific target for drug discovery, since it is highly conserved among the eubacteria, but differs significantly from eukaryotes.
Collapse
Affiliation(s)
- Veit Bergendahl
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Wigneshweraraj SR, Nechaev S, Severinov K, Buck M. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation. J Mol Biol 2002; 319:1067-83. [PMID: 12079348 DOI: 10.1016/s0022-2836(02)00330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During transcription initiation by DNA-dependent RNA polymerase (RNAP) promoter DNA has to be melted locally to allow the synthesis of RNA transcript. Localized melting of promoter DNA is a target for genetic regulation and is poorly understood at the molecular level. The Escherichia coli RNAP holoenzyme is a six-subunit (alpha(2)betabeta'omegasigma; Esigma) protein complex. The sigma subunit is directly responsible for promoter recognition and contributes to localized DNA melting. Mutations in the beta subunit have profound effects on promoter melting by Esigma70. The sigma54 subunit is a representative of an unrelated class of the sigma subunits. Here, we determined whether mutations in the beta subunit that affect late stages of promoter complex formation by Esigma70 also influence promoter complex formation by the enhancer-dependent Esigma54. Analyses of in vitro defects in promoter complex formation and transcription initiation exhibited by mutant Esigma54 suggest that during promoter complex formation by Esigma54 and Esigma70 a common set of beta subunit sequences is used. Late stages of promoter complex formation and localized melting of promoter DNA by Esigma70 and Esigma54 thus proceed through a common pathway.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
46
|
Vassylyev DG, Sekine SI, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 2002; 417:712-9. [PMID: 12000971 DOI: 10.1038/nature752] [Citation(s) in RCA: 631] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In bacteria, the binding of a single protein, the initiation factor sigma, to a multi-subunit RNA polymerase core enzyme results in the formation of a holoenzyme, the active form of RNA polymerase essential for transcription initiation. Here we report the crystal structure of a bacterial RNA polymerase holoenzyme from Thermus thermophilus at 2.6 A resolution. In the structure, two amino-terminal domains of the sigma subunit form a V-shaped structure near the opening of the upstream DNA-binding channel of the active site cleft. The carboxy-terminal domain of sigma is near the outlet of the RNA-exit channel, about 57 A from the N-terminal domains. The extended linker domain forms a hairpin protruding into the active site cleft, then stretching through the RNA-exit channel to connect the N- and C-terminal domains. The holoenzyme structure provides insight into the structural organization of transcription intermediate complexes and into the mechanism of transcription initiation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Cellular Signaling Laboratory, RIKEN Harima Institute at Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Saecker RM, Tsodikov OV, McQuade KL, Schlax PE, Capp MW, Record MT. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. J Mol Biol 2002; 319:649-71. [PMID: 12054861 DOI: 10.1016/s0022-2836(02)00293-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The kinetics of interaction of Esigma(70) RNA polymerase (R) with the lambdaP(R) promoter (P) were investigated by filter binding over a broad range of temperatures (7.3-42 degrees C) and concentrations of RNA polymerase (1-123 nM) in large excess over promoter DNA. Under all conditions examined, the kinetics of formation of competitor-resistant complexes (I(2), RP(o)) are single-exponential with first order rate constant beta(CR). Interpretation of the polymerase concentration dependence of beta(CR) in terms of the three step mechanism of open complex formation yields the equilibrium constant K(1) for formation of the first kinetically significant intermediate (I(1)) and the forward rate constant (k(2)) for the conformational change converting I(1) to the second kinetically significant intermediate I(2): R + P-->(K(1))<--I(1)(k(2))-->I(2). Use of rapid quench mixing allows K(1) and k(2) to be individually determined over the entire temperature range investigated, previously not possible at this promoter using manual mixing. Given the large (>60 bp) interface formed in I(1), its relatively small binding constant K(1) at 37 degrees C at this [salt] (approximately 6 x 10(6) M(-1)) strongly argues that binding free energy is used to drive large-scale structural changes in polymerase and/or promoter DNA or other coupled processes. Evidence for coupling of protein folding is provided by the large and negative activation heat capacity of k(a)[DeltaC(o,++)(a)= -1.5(+/-0.2)kcal K(-1)], now shown to originate directly from formation of I(1) [DeltaC(o)(1)= -1.4(+/-0.3)kcal K(-1)] rather than from the formation of I(2) as previously proposed. The isomerization I(1)-->I(2) exhibits relatively slow kinetics and has a very large temperature-independent Arrhenius activation energy [E(act)(2)= 34(+/-2)kcal]. This kinetic signature suggests that formation of the transition state (I(1)-I(2)++ involves large conformational changes dominated by changes in the exposure of polar and/or charged surface to water. Structural and biochemical data lead to the following hypotheses to interpret these results. We propose that formation of I(1) involves coupled folding of unstructured regions of polymerase (beta, beta' and sigma(70)) and bending of promoter DNA (in the -10 region). We propose that interactions with region 2 of sigma(70) and possibly domain 1 of beta induce a kink at the -11/-12 base pairs of the lambdaP(R) promoter which places the downstream DNA (-5 to +20) in the jaws of the beta and beta' subunits of polymerase in I(1). These early interactions of beta and beta' with the DNA downstream of position -5 trigger jaw closing (with coupled folding) and subsequent steps of DNA opening.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
48
|
Murakami KS, Masuda S, Darst SA. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 2002; 296:1280-4. [PMID: 12016306 DOI: 10.1126/science.1069594] [Citation(s) in RCA: 442] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The crystal structure of the initiating form of Thermus aquaticus RNA polymerase, containing core RNA polymerase (alpha2betabeta'omega) and the promoter specificity sigma subunit, has been determined at 4 angstrom resolution. Important structural features of the RNA polymerase and their roles in positioning sigma within the initiation complex are delineated, as well as the role played by sigma in modulating the opening of the RNA polymerase active-site channel. The two carboxyl-terminal domains of sigma are separated by 45 angstroms on the surface of the RNA polymerase, but are linked by an extended loop. The loop winds near the RNA polymerase active site, where it may play a role in initiating nucleotide substrate binding, and out through the RNA exit channel. The advancing RNA transcript must displace the loop, leading to abortive initiation and ultimately to sigma release.
Collapse
MESH Headings
- Amino Acid Motifs
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA, Bacterial/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/metabolism
- Eukaryotic Cells/metabolism
- Holoenzymes/chemistry
- Holoenzymes/metabolism
- Models, Molecular
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- Sigma Factor/metabolism
- Thermus/enzymology
- Transcription, Genetic
Collapse
|
49
|
Anthony LC, Dombkowski AA, Burgess RR. Using disulfide bond engineering to study conformational changes in the beta'260-309 coiled-coil region of Escherichia coli RNA polymerase during sigma(70) binding. J Bacteriol 2002; 184:2634-41. [PMID: 11976292 PMCID: PMC135008 DOI: 10.1128/jb.184.10.2634-2641.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase of Escherichia coli is the sole enzyme responsible for mRNA synthesis in the cell. Upon binding of a sigma factor, the holoenzyme can direct transcription from specific promoter sequences. We have previously defined a region of the beta' subunit (beta'260-309, amino acids 260 to 309) which adopts a coiled-coil conformation shown to interact with sigma(70) both in vitro and in vivo. However, it was not known if the coiled-coil conformation was maintained upon binding to sigma(70). In this work, we engineered a disulfide bond within beta'240-309 that locks the beta' coiled-coil region in the coiled-coil conformation, and we show that this "locked" peptide is able to bind to sigma(70). We also show that the locked coiled-coil is capable of inducing a conformational change within sigma(70) that allows recognition of the -10 nontemplate strand of DNA. This suggests that the coiled-coil does not adopt a new conformation upon binding sigma(70) or upon recognition of the -10 nontemplate strand of DNA.
Collapse
Affiliation(s)
- Larry C Anthony
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706-1599, USA
| | | | | |
Collapse
|
50
|
Mekler V, Kortkhonjia E, Mukhopadhyay J, Knight J, Revyakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 2002; 108:599-614. [PMID: 11893332 DOI: 10.1016/s0092-8674(02)00667-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.
Collapse
Affiliation(s)
- Vladimir Mekler
- Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|