1
|
Zhou P, Xiao M, Li W, Sun X, Bai Y, Meng F, Zhu Z, Yuan W, Sun K. SHP2 Inhibitors Show Anti-Myeloma Activity and Synergize With Bortezomib in the Treatment of Multiple Myeloma. Front Pharmacol 2022; 13:841308. [PMID: 35462913 PMCID: PMC9019471 DOI: 10.3389/fphar.2022.841308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. The protein tyrosine phosphatase SHP2 is a central node regulating RAS/mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) signaling pathway which plays a crucial role in the pathogenesis and proteasome inhibitor (PI) resistance of MM. Several preclinical studies have demonstrated that SHP2 inhibitors exerted antitumor activity in cancer-harboring diverse mutations in the RAS pathway, offering the potential for targeting myeloma. In this study, we showed that pharmacological inhibition of SHP2 activity using SHP099 and RMC-4550 efficiently inhibited the proliferation of MM cells by inducing apoptosis and cell cycle arrest. As per the mechanism, SHP2 inhibitors activated the level of cleaved caspase3, BAK, and P21 and downregulated ERK phosphorylation in MM cells. Moreover, the blockade of SHP2 exhibited anti-myeloma effect in vivo in a mouse xenograft model. In addition, SHP2 inhibitors synergized the antineoplastic effect of bortezomib in bortezomib-sensitive MM cells and showed identical efficacy in targeting bortezomib-resistant MM cells. Overall, our findings suggest that SHP2-specific inhibitors trigger anti-myeloma activity in vitro and in vivo by regulating the ERK pathway and enhancing cytotoxicity of bortezomib, providing therapeutic benefits for both bortezomib naïve and resistant MM.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Mengyu Xiao
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Weiya Li
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiaobai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yanliang Bai
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Feiying Meng
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zunmin Zhu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
2
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Role of 1q21 in Multiple Myeloma: From Pathogenesis to Possible Therapeutic Targets. Cells 2021; 10:cells10061360. [PMID: 34205916 PMCID: PMC8227721 DOI: 10.3390/cells10061360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
Collapse
|
4
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|
5
|
Tao T, Luo D, Gao C, Liu H, Lei Z, Liu W, Zhou C, Qi D, Deng Z, Sun X, Xiao J. Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Promotes Inflammation and Accelerates Osteoarthritis by Activating β-Catenin. Front Cell Dev Biol 2021; 9:646386. [PMID: 33898435 PMCID: PMC8063055 DOI: 10.3389/fcell.2021.646386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation, subchondral bone remodeling and osteophyte formation. Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) has not been fully investigated in the pathogenesis of OA. In this study, we found that SHP2 expression was significantly increased after interleukin-1β (IL-1β) treatment in primary mouse chondrocytes. Inhibition of SHP2 using siRNA reduced MMP3, MMP13 levels, but increased AGGRECAN, COL2A1, SOX9 expression in vitro. On the contrary, overexpression of SHP2 exerted the opposite results and promoted cartilage degradation. Mechanistically, SHP2 activated Wnt/β-catenin signaling possibly through directly binding to β-catenin. SHP2 also induced inflammation through activating Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways. Our in vivo studies showed that SHP2 knockdown effectively delayed cartilage destruction and reduced osteophyte formation in the mouse model of OA induced by destabilization of the medial meniscus (DMM). Altogether, our study identifies that SHP2 is a novel and potential therapeutic target of OA.
Collapse
Affiliation(s)
- Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
He S, Li G, Schätzlein AG, Humphrey PA, Weiss RM, Uchegbu IF, Martin DT. Down-regulation of GP130 signaling sensitizes bladder cancer to cisplatin by impairing Ku70 DNA repair signaling and promoting apoptosis. Cell Signal 2021; 81:109931. [PMID: 33529758 DOI: 10.1016/j.cellsig.2021.109931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Chemoresistance is one of the barriers for the development of bladder cancer treatments. Previously, we showed that glycoprotein-130 (GP130) is overexpressed in chemoresistant bladder cancer cells and that knocking down GP130 expression reduced cell viability. In our current work, we showed that down-regulation of GP130 sensitized bladder cancer cells to cisplatin-based chemotherapy by activating DNA repair signaling. We performed immunohistochemistry and demonstrated a positive correlation between the levels of Ku70, an initiator of canonical non-homologous end joining repair (c-NHEJ) and suppressor of apoptosis, and GP130 in human bladder cancer specimens. GP130 knockdown by SC144, a small molecule inhibitor, in combination with cisplatin, increased the number of DNA lesions, specifically DNA double-stranded breaks, with a subsequent increase in apoptosis and reduced cell viability. Furthermore, GP130 inhibition attenuated Ku70 expression in bladder and breast cancer cells as well as in transformed kidney cells. In addition, we fabricated a novel polymer-lipid hybrid delivery system to facilitate GP130 siRNA delivery that had a similar efficiency when compared with Lipofectamine, but induced less toxicity.
Collapse
Affiliation(s)
- Shanshan He
- Department of Urology, Yale University, New Haven, CT, USA
| | - Gang Li
- Department of Urology, Yale University, New Haven, CT, USA
| | | | | | - Robert M Weiss
- Department of Urology, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
7
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
8
|
Savage SR, Zhang B. Using phosphoproteomics data to understand cellular signaling: a comprehensive guide to bioinformatics resources. Clin Proteomics 2020; 17:27. [PMID: 32676006 PMCID: PMC7353784 DOI: 10.1186/s12014-020-09290-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based phosphoproteomics is becoming an essential methodology for the study of global cellular signaling. Numerous bioinformatics resources are available to facilitate the translation of phosphopeptide identification and quantification results into novel biological and clinical insights, a critical step in phosphoproteomics data analysis. These resources include knowledge bases of kinases and phosphatases, phosphorylation sites, kinase inhibitors, and sequence variants affecting kinase function, and bioinformatics tools that can predict phosphorylation sites in addition to the kinase that phosphorylates them, infer kinase activity, and predict the effect of mutations on kinase signaling. However, these resources exist in silos and it is challenging to select among multiple resources with similar functions. Therefore, we put together a comprehensive collection of resources related to phosphoproteomics data interpretation, compared the use of tools with similar functions, and assessed the usability from the standpoint of typical biologists or clinicians. Overall, tools could be improved by standardization of enzyme names, flexibility of data input and output format, consistent maintenance, and detailed manuals.
Collapse
Affiliation(s)
- Sara R. Savage
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
9
|
Rastogi M, Singh SK. Zika virus NS1 affects the junctional integrity of human brain microvascular endothelial cells. Biochimie 2020; 176:52-61. [PMID: 32640279 DOI: 10.1016/j.biochi.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infection leads to microcephaly in newborns. Flaviviruses are known to secrete NS1 protein extracellularly and its concentration in serum directly co-relate to disease severity. The presence of ZIKV-NS1 near the brain microvascular endothelial cells (BMVECs) affects blood-brain-barrier, which is composed of tight junctions (TJs) and adherens junctions (AJs). Viruses utilize different strategies to circumvent this barrier to enter in brain. The present study demonstrated the mechanism of junctional integrity disruption in BMVECs by ZIKV-NS1 protein exposure. The Transendothelial Electrical Resistance and sodium fluorescein migration assays revealed the endothelial barrier disruption in BMVECs exposed to ZIKV-NS1 at different time (12hr and 24hr) and doses (500 ng/mL, 1000 ng/mL and 1500 ng/mL). The exposure of ZIKV-NS1 on BMVECs led to the phosphorylation of AJs and suppression of TJs through secreted ZIKV-NS1 in a bystander fashion. The activation of NADPH dependent reactive oxygen species activity and redox sensitive tyrosine kinase further increased the phosphorylation of AJs. The reduced expression of the phosphatase led to the increased phosphorylation of the AJs. The treatment with Diphenyleneiodonium chloride rescued the phosphatase and TJs expression and suppressed the expression of kinase and AJs in BMVECs exposed to ZIKV-NS1.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
10
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
11
|
Liu DM, Cao ZX, Yan HL, Li W, Yang F, Zhao WJ, Diao QC, Tan YZ. A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2. Fitoterapia 2020; 141:104484. [DOI: 10.1016/j.fitote.2020.104484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
|
12
|
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One 2019; 14:e0223300. [PMID: 31574128 PMCID: PMC6773211 DOI: 10.1371/journal.pone.0223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) plays essential roles in tumorigenesis and tumor progression. Pyk2 serves as a non-receptor tyrosine kinase regulating tumor cell survival, proliferation, migration, invasion, metastasis, and chemo-resistance, and is associated with poor prognosis and shortened survival in various cancer types. Thus, Pyk2 has been traditionally regarded as an oncogene and potential therapeutic target for cancers. However, a few studies have also demonstrated that Pyk2 exerts tumor-suppressive effects in some cancers, and anti-cancer treatment of Pyk2 inhibitors may only achieve marginal benefits in these cancers. Therefore, more detailed knowledge of the contradictory functions of Pyk2 is needed. In this review, we summarized the tissue distribution, expression, interactive molecules of Pyk2 in the signaling pathway, and roles of Pyk2 in cancers, and focused on regulation of the interconnectivity between Pyk2 and its downstream targets. The potential use of inhibitors of Pyk2 and its related pathways in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qiang Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
14
|
Myeloid-restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal promotion of CXCL9 and IFN-γ production in tumor microenvironment. Oncogene 2018; 37:5088-5100. [PMID: 29795405 DOI: 10.1038/s41388-018-0337-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp2) is generally considered to be an oncogene owing to its ability in enhancing the malignancy of multiple types of tumor cells; however, its role in modulating tumor immunity remains largely elusive. Here, we reported that myeloid-restricted ablation of Shp2 suppressed melanoma growth. Mechanistically, loss of Shp2 potentiates macrophage production of CXCL9 in response to IFN-γ and tumor cell-derived cytokines, thereby facilitating the tumor infiltration of IFN-γ-producing T cells that could in turn support CXCL9 production within tumor microenvironment. Collectively, our findings highlight a causative role of myeloid Shp2 in dampening T cell-mediated antitumor immunity by restraining the macrophage/CXCL9-T cell/IFN-γ feedback loop. Thus, targeting macrophage Shp2 may help to create a Th1-dominant tumor immune microenvironment.
Collapse
|
15
|
CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol Cancer 2018; 17:47. [PMID: 29455640 PMCID: PMC5817856 DOI: 10.1186/s12943-018-0787-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Minimal residual disease is the main issue of advanced ovarian cancer treatment. According to the literature and previous results, we hypothesized that Mesenchymal Stromal Cells (MSC) could support this minimal residual disease by protecting ovarian cancer cells (OCC) from chemotherapy. In vitro study confirmed that MSC could induce OCC chemoresistance without contact using transwell setting. Further experiments showed that this induced chemoresistance was dependent on IL-6 OCC stimulation. METHODS We combined meticulous in vitro profiling and tumor xenograft models to study the role of IL-6 in MSC/OCC intereactions. RESULTS We demonstrated that Tocilizumab® (anti-IL-6R therapy) in association with chemotherapy significantly reduced the peritoneal carcinosis index (PCI) than chemotherapy alone in mice xenografted with OCCs+MSCs. Further experiments showed that CCL2 and CCL5 are released by MSC in transwell co-culture and induce OCCs IL-6 secretion and chemoresistance. Finally, we found that IL-6 induced chemoresistance was dependent on PYK2 phosphorylation. CONCLUSIONS These findings highlight the potential key role of the stroma in protecting minimal residual disease from chemotherapy, thus favoring recurrences. Future clinical trials targeting stroma could use anti-IL-6 therapy in association with chemotherapy.
Collapse
|
16
|
Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol 2018; 15:219-233. [PMID: 29311715 DOI: 10.1038/nrclinonc.2017.197] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several haematological malignancies, including multiple myeloma (MM) and acute myeloid leukaemia (AML), have well-defined precursor states that precede the development of overt cancer. MM is almost always preceded by monoclonal gammopathy of undetermined significance (MGUS), and at least a quarter of all patients with myelodysplastic syndromes (MDS) have disease that evolves into AML. In turn, MDS are frequently anteceded by clonal haematopoiesis of indeterminate potential (CHIP). The acquisition of additional genetic and epigenetic alterations over time clearly influences the increasingly unstable and aggressive behaviour of neoplastic haematopoietic clones; however, perturbations in the bone-marrow microenvironment are increasingly recognized to have key roles in initiating and supporting oncogenesis. In this Review, we focus on the concept that the haematopoietic neoplasia-microenvironment relationship is an intimate rapport between two partners, provide an overview of the evidence supporting a role for the bone-marrow niche in promoting neoplasia, and discuss the potential for niche-specific therapeutic targets.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Alexandre Detappe
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Kenneth C Anderson
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Xu J, Tao B, Guo X, Zhou S, Li Y, Zhang Y, Zhou Z, Cheng H, Zhang X, Ke Y. Macrophage-Restricted Shp2 Tyrosine Phosphatase Acts as a Rheostat for MMP12 through TGF-β Activation in the Prevention of Age-Related Emphysema in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:2323-2332. [PMID: 28814604 DOI: 10.4049/jimmunol.1601696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/24/2017] [Indexed: 11/19/2022]
Abstract
Persistent activation of macrophages in lungs plays a critical role in the production of matrix metalloproteinases (MMPs) that contributes to the destruction of alveolar walls, a hallmark for pulmonary emphysema. Dysregulated TGF-β1 signaling has been an essential determinant in the elevation of MMPs during the development of emphysema. Nevertheless, the mechanism for this MMP-dependent pathogenesis has yet to be clearly investigated. Recently, we identified an important role for tyrosine phosphatase Src homology domain-containing protein tyrosine phosphatase 2 (Shp2) in regulating the activation of alveolar macrophages. Over a long-term observation period, mice with Shp2 deletion in macrophages (LysMCre:Shp2fl/fl ) develop spontaneous, progressive emphysema-like injury in the lungs, characterized by massive destruction of alveolar morphology, interstitial extracellular matrix degradation, and elevated levels of MMPs, particularly, significant increases of macrophage elastase (MMP12) in aged mice. Further analysis demonstrated that MMP12 suppression by TGF-β1 activation was apparently abrogated in LysMCre:Shp2fl/fl mice, whereas the TGF-β1 concentration in the lungs was relatively the same. Mechanistically, we found that loss of Shp2 resulted in attenuated SMAD2/3 phosphorylation and nuclear translocation in response to TGF-β activation, thereby upregulating MMP12 expression in macrophages. Together, our findings define a novel physiological function of Shp2 in TGF-β1/MMP12-dependent emphysema, adding insights into potential etiologies for this chronic lung disorder.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Tao
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shiyi Zhou
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yongda Li
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqin Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zanhua Zhou
- College of Medicine and Health, Lishui University, Lishui, Zhejiang 323000, China; and
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
18
|
Krishnan SR, Jaiswal R, Brown RD, Luk F, Bebawy M. Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review). Int J Oncol 2016; 49:33-50. [PMID: 27175906 DOI: 10.3892/ijo.2016.3516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure. The introduction of the immunomodulatory agents and proteasome inhibitors has seen an increase in overall patient survival, however, for the majority of patients, relapse remains inevitable with evidence that these agents, like the conventional chemotherapeutics are also subject to the development of MDR. Clinical management of patients with MM is currently compromised by lack of a suitable procedure to monitor the development of clinical drug resistance in individual patients. The current MM prognostic measures fail to pick the clonotypic tumor cells overexpressing drug efflux pumps, and invasive biopsy is insufficient in detecting sporadic tumors in the skeletal system. This review summarizes the challenges associated with treating the complex disease spectrum of myeloma, with an emphasis on the role of deleterious multidrug resistant clones orchestrating relapse.
Collapse
Affiliation(s)
- Sabna Rajeev Krishnan
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Ritu Jaiswal
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Ross D Brown
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Frederick Luk
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| | - Mary Bebawy
- Graduate School of Health, Discipline of Pharmacy, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
19
|
Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma. Oncogene 2015; 35:2723-34. [PMID: 26387544 DOI: 10.1038/onc.2015.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/22/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting.
Collapse
|
20
|
Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med 2015; 19:2075-83. [PMID: 26088100 PMCID: PMC4568912 DOI: 10.1111/jcmm.12618] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 01/13/2023] Open
Abstract
Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer-related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruifang Niu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
21
|
Matthes T, Manfroi B, Zeller A, Dunand-Sauthier I, Bogen B, Huard B. Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia 2015; 29:1882-90. [DOI: 10.1038/leu.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
|
22
|
Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015; 125:3049-58. [PMID: 25838343 DOI: 10.1182/blood-2014-11-568881] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past 4 decades, basic research has provided crucial information regarding the cellular and molecular biology of cancer. In particular, the relevance of cancer microenvironment (including both cellular and noncellular elements) and the concept of clonal evolution and heterogeneity have emerged as important in cancer pathogenesis, immunologic escape, and resistance to therapy. Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is emblematic of the impact of cancer microenvironment and the role of clonal evolution. Although genetic and epigenetic aberrations occur in MM and evolve over time under the pressure of exogenous stimuli, they are also largely present in premalignant plasma cell dyscrasia such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), suggesting that genetic mutations alone are necessary, but not sufficient, for myeloma transformation. The role of bone marrow microenvironment in mediating survival, proliferation, and resistance to therapy in myeloma is well established; and although an appealing speculation, its role in fostering the evolution of MGUS or SMM into MM is yet to be proven. In this review, we discuss MM pathogenesis with a particular emphasis on the role of bone marrow microenvironment.
Collapse
|
23
|
Mayer CL, Xie L, Bandekar R, Qi M, van de Velde H, Reddy M, Qin X, Davis HM, Puchalski TA. Dose selection of siltuximab for multicentric Castleman's disease. Cancer Chemother Pharmacol 2015; 75:1037-45. [PMID: 25784388 DOI: 10.1007/s00280-015-2720-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Siltuximab is a monoclonal antibody that binds to interleukin (IL)-6 with high affinity and specificity; C-reactive protein (CRP) is an acute-phase protein induced by IL-6. CRP suppression is an indirect measurement of IL-6 activity. Here, modeling and simulation of the pharmacokinetic (PK)/pharmacodynamic (PD) relationship between siltuximab and CRP were used to support dose selection for multicentric Castleman's disease (CD). METHODS PK/PD modeling was applied to explore the relationship between siltuximab PK and CRP suppression following intravenous siltuximab infusion in 47 patients with B cell non-Hodgkin's lymphoma (n = 17), multiple myeloma (n = 13), or CD (n = 17). Siltuximab was administered as 2.8, 5.5, or 11 mg/kg q2wks, 11 mg/kg q3wks, or 5.5 mg/kg weekly. Simulations of studied or hypothetical siltuximab dosage regimens (15 mg/kg q4wks) were also performed to evaluate maintenance of CRP suppression below the cutoff value of 1 mg/L. RESULTS A two-compartment PK model and an inhibitory indirect response PD model adequately described the serum siltuximab and CRP concentration-time profiles simultaneously. PD parameter estimates were physiologically plausible. For all disease types, simulations showed that 11 mg/kg q3wks or 15 mg/kg q4wks would reduce serum CRP to below 1 mg/L after the second dose and throughout the treatment period. CONCLUSIONS PK/PD modeling was used to select doses for further development of siltuximab in multicentric CD. The dosing recommendation was also supported by the observed efficacy dose-response relationship. CRP suppression in the subsequent randomized multicentric CD study was in agreement with the modeling predictions.
Collapse
|
24
|
Suzuki K, Ogura M, Abe Y, Suzuki T, Tobinai K, Ando K, Taniwaki M, Maruyama D, Kojima M, Kuroda J, Achira M, Iizuka K. Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. Int J Hematol 2015; 101:286-94. [PMID: 25655379 DOI: 10.1007/s12185-015-1743-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Siltuximab, a chimeric monoclonal antibody with high affinity and specificity for interleukin-6, has been shown to enhance anti-multiple myeloma activity of bortezomib and corticosteroid in vitro. We evaluated the safety, pharmacokinetics, immunogenicity, and antitumor effect of siltuximab in combination with bortezomib and dexamethasone in Japanese patients with relapsed or refractory multiple myeloma. This open-label, phase 1, dose-escalating study used two doses of siltuximab: 5.5 and 11.0 mg/kg (administered on day 1 of each 21-day cycle). In total, nine patients were treated. The most common grade 3/4 adverse events, lymphopenia (89 %) and thrombocytopenia (44 %), occurred in patients receiving both doses of siltuximab; however, no dose-limiting toxicities (DLTs) were observed. Following intravenous administration of siltuximab at 5.5 and 11.0 mg/kg, the maximum serum concentration and the area under the curve from 0 to 21 days and from 0 to infinity increased in an approximately dose-proportional manner. Mean half-life, total systemic clearance, and volume of distribution were similar at doses of 5.5 and 11.0 mg/kg. Across both doses, six of the nine patients had complete or partial response (22 and 44 %, respectively). In conclusion, as no DLT was observed, the recommended dose for this combination is 11.0 mg/kg once every 3 weeks. The study is registered at http://www.clinicaltrials.gov as NCT01309412.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Hiroo 4-1-22 Shibuya-ku, Tokyo, 1508935, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Moschetta M, Huynh D, Tai YT, Zhang Y, Zhang W, Mishima Y, Ring JE, Tam WF, Xu Q, Maiso P, Reagan M, Sahin I, Sacco A, Manier S, Aljawai Y, Glavey S, Munshi NC, Anderson KC, Pachter J, Roccaro AM, Ghobrial IM. Pyk2 promotes tumor progression in multiple myeloma. Blood 2014; 124:2675-86. [PMID: 25217697 PMCID: PMC4208283 DOI: 10.1182/blood-2014-03-563981] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family that has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) biology and disease progression remains unexplored. We first demonstrated that patients with MM present with higher expression of Pyk2 compared with healthy individuals. By using loss-of-function approaches, we found that Pyk2 inhibition led to reduction of MM tumor growth in vivo as well as decreased cell proliferation, cell-cycle progression, and adhesion ability in vitro. In turn, overexpression of Pyk2 promoted the malignant phenotype, substantiated by enhanced tumor growth and reduced survival. Mechanistically, inhibition of Pyk2 reduced activation of Wnt/β-catenin signaling by destabilizing β-catenin, leading to downregulation of c-Myc and Cyclin D1. Furthermore, treatment of MM cells with the FAK/Pyk2 inhibitor VS-4718 effectively inhibited MM cell growth both in vitro and in vivo. Collectively, our findings describe the tumor-promoting role of Pyk2 in MM, thus providing molecular evidence for a novel tyrosine kinase inhibitor as a new therapeutic option in MM.
Collapse
Affiliation(s)
- Yu Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; The First People's Hospital of Yunnan Province, Department of Gastroenterology, Kunming, China
| | | | - Daisy Huynh
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yong Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Wenjing Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Yuji Mishima
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | | | - Patricia Maiso
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Michaela Reagan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ilyas Sahin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Antonio Sacco
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Salomon Manier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yosra Aljawai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Siobhan Glavey
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Multiple myeloma is a plasma cell malignancy that remains incurable with current treatment approaches including high-dose therapy and autologous stem cell transplantation. Thalidomide represents a major advance in the treatment of this disorder, having demonstrated significant activity in all phases of the disease. Thalidomide exerts its antimyeloma effect through multiple mechanisms including antiangiogenesis, immunomodulation and induction of apoptosis in tumor cells, as well as its effect on the tumor microenvironment. Corticosteroids have formed the mainstay of myeloma therapy for decades along with the alkylating agents and have demonstrated synergy when used in combination with thalidomide. The combination of thalidomide and dexamethasone has demonstrated remarkable activity in the treatment of both newly diagnosed as well as relapsed myeloma, and has become an important addition to the armamentarium of myeloma therapies. Overall responses of approximately 70% have been seen with this combination in patients with newly diagnosed myeloma. The combination is associated with an increased risk of deep vein thrombosis necessitating routine prophylactic anticoagulation. Other drugs have been added to this combination that also result in improved response rates. Currently, this combination is used in newly diagnosed patients as an induction therapy prior to stem cell transplant, for those who fail to achieve adequate response to dexamethasone alone or in whom a relatively rapid response is desired based on clinical presentation. Thalidomide analogs with a better safety profile are currently undergoing evaluation in the clinic.
Collapse
Affiliation(s)
- Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | |
Collapse
|
28
|
Liu T, Fei Z, Gangavarapu KJ, Agbenowu S, Bhushan A, Lai JCK, Daniels CK, Cao S. Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells. Leuk Res 2013; 37:1322-8. [PMID: 23871159 DOI: 10.1016/j.leukres.2013.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
Abstract
We previously reported the establishment and characteristics of a DXM-resistant cell line (7TD1-DXM) generated from the IL6-dependent mouse B cell hybridoma, 7TD1 cell line. After withdrawing DXM from 7TD1-DXM cells over 90 days, DXM significantly inhibited the cell growth and induced apoptosis in the cells (7TD1-WD) compared with 7TD1-DXM cells. Additionally, IL-6 reversed while IL-6 antibody and AG490 enhanced the effects of growth inhibition and apoptosis induced by DXM in 7TD1-WD cells. Our study demonstrates that 7TD1-DXM cells become resensitized to DXM after DXM withdrawal, and IL-6 and JAK2/STAT3 pathways may regulate the phenomenon.
Collapse
Affiliation(s)
- Tuoen Liu
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Salem K, Brown CO, Schibler J, Goel A. Combination chemotherapy increases cytotoxicity of multiple myeloma cells by modification of nuclear factor (NF)-κB activity. Exp Hematol 2013; 41:209-18. [PMID: 23063726 PMCID: PMC3565034 DOI: 10.1016/j.exphem.2012.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway is critical in myeloma cell proliferation, inhibition of apoptosis, and emergence of therapy resistance. The chemotherapeutic drugs, dexamethasone (Dex) and bortezomib (BTZ), are widely used in clinical protocols for multiple myeloma (MM) and inhibit the NF-κB signaling pathway by distinct mechanisms. This study evaluates the efficacy of combination therapy with Dex and BTZ and investigates the mechanistic underpinning of endogenous and therapy-induced NF-κB activation in MM. Human myeloma cells and bone marrow stromal cells (BMSCs) were used in monocultures and cocultures to determine the cytotoxic effects of Dex and/or BTZ. Our results show that combined treatment of Dex with BTZ enhanced direct apoptosis of drug-sensitive and drug-resistant myeloma cells. In the presence of BMSCs, Dex plus BTZ combination inhibited ionizing radiation-induced interleukin 6 secretion from BMSCs and induced myeloma cytotoxicity. Mechanistically, Dex treatment increased IκBα protein and mRNA expression and compensated for BTZ-induced IκBα degradation. Dex plus BTZ combination inhibited basal and therapy-induced NF-κB activity with cytotoxicity in myeloma cells resistant to BTZ. Furthermore, combination therapy downregulated the NF-κB-targeted gene expression of interleukin 6 and manganese superoxide dismutase, which can induce chemo- and radio-resistance in MM. This study provides a mechanistic rationale for combining the NF-κB-targeting drugs Dex and BTZ in myeloma therapy and supports potential combinations of these drugs with radiotherapy and additional chemotherapeutic drugs for clinical benefit in MM.
Collapse
Affiliation(s)
- Kelley Salem
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
30
|
De P, Dey N, Terakedis B, Bergsagel PL, Li ZH, Mahadevan D, Garlich JR, Trudel S, Makale MT, Durden DL. An integrin-targeted, pan-isoform, phosphoinositide-3 kinase inhibitor, SF1126, has activity against multiple myeloma in vivo. Cancer Chemother Pharmacol 2013; 71:867-81. [PMID: 23355037 DOI: 10.1007/s00280-013-2078-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Multiple reports point to an important role for the phosphoinositide-3 kinase (PI3K) and AKT signaling pathways in tumor survival and chemoresistance in multiple myeloma (MM). The goals of our study were: (1) to generate the preclinical results necessary to justify a Phase I clinical trial of SF1126 in hematopoietic malignancies including MM and (2) to begin combining pan-PI3K inhibitors with other agents to augment antitumor activity of this class of agent in preparation for combination therapy in Phase I/II trials. METHODS We determined the in vitro activity of SF1126 with 16 human MM cell lines. In vivo tumor growth suppression was determined with human myeloma (MM.1R) xenografts in athymic mice. In addition, we provide evidence that SF1126 has pharmacodynamic activity in the treatment of patients with MM. RESULTS SF1126 was cytotoxic to all tested MM lines, and potency was augmented by the addition of bortezomib. SF1126 affected MM.1R cell line signaling in vitro, inhibiting phospho-AKT, phospho-ERK, and the hypoxic stabilization of HIF1α. Tumor growth was 94 % inhibited, with a marked decrease in both cellular proliferation (PCNA immunostaining) and angiogenesis (tumor microvessel density via CD31 immunostaining). Our clinical results demonstrate pharmacodynamic knockdown of p-AKT in primary patient-derived MM tumor cells in vivo. CONCLUSIONS Our results establish three important points: (1) SF1126, a pan-PI3K inhibitor has potent antitumor activity against MM in vitro and in vivo, (2) SF1126 displays augmented antimyeloma activity when combined with proteasome inhibitor, bortezomib/Velcade(®), and (3) SF1126 blocks the IGF-1-induced activation of AKT in primary MM tumor cells isolated from SF1126-treated patients The results support the ongoing early Phase I clinical trial in MM and suggest a future Phase I trial in combination with bortezomib in hematopoietic malignancies.
Collapse
Affiliation(s)
- Pradip De
- Department of Hematology/Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Interleukin-6, osteopontin and Raf/MEK/ERK signaling modulate the sensitivity of human myeloma cells to alkylphosphocholines. Leuk Res 2012; 36:764-72. [PMID: 22421411 DOI: 10.1016/j.leukres.2012.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022]
Abstract
Alkylphosphocholines are highly active against multiple myeloma (MM) cells in vitro and are devoid of myelotoxicity. Little is known about the determinants of MM cell responsiveness or resistance to these drugs. In this study we investigated the effects of disease-relevant cytokines, such as interleukin-6 (IL-6) and osteopontin (OPN), on the in vitro antimyeloma activity of erufosine and perifosine. The role of the Raf/MEK/ERK pathway was also studied. Exogenous IL-6 reduced the cytotoxicity of erufosine against OPM-2 cells and, to a smaller extent, against U-266 cells. This was accompanied by inhibition of apoptosis in OPM-2 cells. The efficacy of perifosine was similarly affected, but to a greater extent. IL-6 slightly enhanced the sensitivity of RPMI-8226 cells to erufosine, thus emphasizing the heterogeneity of MM. Induced overexpression of OPN isoforms made OPM-2 cells less sensitive to erufosine. In all cases of IL-6- or OPN-induced resistance, the effective concentrations of erufosine were still within the clinically achievable range. Like other alkylphosphocholines, erufosine enhanced Raf/MEK/ERK signaling in MM cells but in some cases this contributed to cytotoxicity.
Collapse
|
32
|
Zhang X, Zhang Y, Tao B, Teng L, Li Y, Cao R, Gui Q, Ye M, Mou X, Cheng H, Hu H, Zhou R, Wu X, Xie Q, Ning W, Lai M, Shen H, Feng GS, Ke Y. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J 2012; 26:2338-50. [PMID: 22362894 DOI: 10.1096/fj.11-200139] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type II alveolar epithelial (AT-II) cells produce pulmonary surfactant proteins that are essential for alveolar function. AT-II is a major target in lung injury, and ineffective repair of damaged alveolar epithelia has been postulated to cause pulmonary fibrosis. Previous studies have shown that tyrosine phosphatase Shp2 is expressed highly in the embryonic lung epithelial buds, and Shp2 activity is required for FGF-induced lung branching morphogenesis. To investigate in vivo function of pulmonary Shp2, we generated alveoli epithelia-specific Shp2-knockout (Shp2(Δ/Δ)) mice. Shp2(Δ/Δ) mice exhibit marked reduction in surfactant proteins, disorganized lamellar bodies, increased alveolar epithelial apoptosis, and interstitial pulmonary fibrosis without preceding inflammation. Mechanistically, Shp2 acts to mediate expression of thyroid transcription factor 1 (TTF1) and ATP-binding cassette subfamily A member 3 (ABCA3). Shp2 also plays a central role in mediating FGF/GAB/ERK activity, required for epithelial repair program. Together, our results identify a novel role of tyrosine phosphatase Shp2 in surfactant homeostasis, and deregulation of Shp2 triggers spontaneous pulmonary fibrosis with minimal inflammation.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, P.O. Box 59, 866 Yuhangtang Rd., Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Queiroz Crusoe E, Maiso P, Fernandez-Lazaro D, San-Segundo L, Garayoa M, Garcia-Gomez A, Gutierrez NC, Delgado M, Colado E, Martin-Sanchez J, Lee FY, Ocio EM. Transcriptomic rationale for the synergy observed with dasatinib + bortezomib + dexamethasone in multiple myeloma. Ann Hematol 2011; 91:257-69. [PMID: 21720745 DOI: 10.1007/s00277-011-1287-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022]
Abstract
Despite the advantage observed with novel drugs such as bortezomib, thalidomide, or lenalidomide, multiple myeloma (MM) remains incurable and there is a clear need for new drugs or combinations based on the pathogenetic mechanism of MM. One of the proposed mechanisms in MM pathogenesis is the involvement of kinase molecules in the growth and survival of myelomatous cells. In this study, we have explored the optimal combination for dasatinib, a tyrosine kinase inhibitor, in MM cells. A clear synergistic effect was observed with the triple combination of dasatinib with bortezomib and dexamethasone which was evident even in the presence of bone marrow microenvironment. Experiments performed on freshly isolated patients' cells also demonstrated potentiation of response in the triple as compared with the agents alone or in double combinations. Gene expression profiling experiments provided some clues on the transcriptional rationale underlying this potentiation, as the triple combination led to significant deregulation of genes involved in cell death, cell growth, proliferation, DNA replication, repair and recombination, and cell-cell signaling. Some of these results were further confirmed by apoptosis and cell cycle experiments and also by Western blot and PCR. These data provide the rationale for the use of this novel combination in MM patients.
Collapse
|
34
|
Dexamethasone-induced oxidative stress enhances myeloma cell radiosensitization while sparing normal bone marrow hematopoiesis. Neoplasia 2011; 12:980-92. [PMID: 21170263 DOI: 10.1593/neo.101146] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/20/2022] Open
Abstract
Dexamethasone (Dex) and radiation therapy are established modalities in multiple myeloma. In this study, we propose a novel combination of Dex plus radiation that shows superior clonogenic cell killing and apoptosis of myeloma cells and selectively eliminates myeloma cells when cocultured with bone marrow stromal cells (BMSCs). Dex was found to inhibit the release of interleukin-6 from irradiated BMSCs, which is an established myeloma cell proproliferative cytokine. In 5TGM1 model, the combination of Dex with skeletal targeted radiotherapy (153-Sm-EDTMP) prolonged median survival time and inhibited radiation-induced myelosuppression. A two-cycle treatment of Dex plus 153-Sm-EDTMP was well tolerated and further improved median survival time. Mechanistically, Dex increased superoxide and hydrogen peroxide production and augmented radiation-induced oxidative stress and cell death of myeloma cells. In contrast, Dex inhibited radiation-induced increase in pro-oxidant levels and enhanced the clonogenic survival in normal hematopoietic stem and progenitor cells. Treatment with either N-acetylcysteine or the combination of polyethylene glycol (PEG)-conjugated copper, zinc-superoxide dismutase, and PEG-catalase significantly protected myeloma cells from Dex-induced clonogenic death. Overall, these results demonstrate that Dex in combination with radiotherapy enhances the killing of myeloma cells while protecting normal bone marrow hematopoiesis through a mechanism that involves selective increases in oxidative stress.
Collapse
|
35
|
Li F, Rajendran P, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 2011; 161:541-54. [PMID: 20880395 DOI: 10.1111/j.1476-5381.2010.00874.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) pathway is frequently encountered in several human cancers including multiple myeloma (MM). Thus, agents that suppress STAT3 phosphorylation have a potential for treatment of MM. In the present report, we investigated whether thymoquinone (TQ), the main component isolated from the medicinal plant Nigella sativa, modulated the STAT3 signalling pathway in MM cells. EXPERIMENTAL APPROACH The effect of TQ on both constitutive and IL-6-induced STAT3 activation, associated protein kinases, STAT3-regulated gene products involved in proliferation, survival and angiogenesis, cellular proliferation and apoptosis in MM cells, was investigated. KEY RESULTS We found that TQ inhibited both constitutive and IL-6-inducible STAT3 phosphorylation which correlated with the inhibition of c-Src and JAK2 activation. Vanadate reversed the TQ-induced down-regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that TQ can induce the expression of Src homology-2 phosphatase 2 that correlated with suppression of STAT3 activation. TQ also down-regulated the expression of STAT3-regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1 and vascular endothelial growth factor. Finally, TQ induced the accumulation of cells in sub-G1 phase, inhibited proliferation and induced apoptosis, as indicated by poly ADP ribose polymerase cleavage. TQ also significantly potentiated the apoptotic effects of thalidomide and bortezomib in MM cells. CONCLUSIONS AND IMPLICATIONS Our study has identified STAT3 signalling as a target of TQ and has thus raised its potential application in the prevention and treatment of MM and other cancers.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
36
|
Meng S, Gui Q, Xu Q, Lu K, Jiao X, Fan J, Ge B, Ke Y, Zhang S, Wu J, Wang C. Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP kinase activation. J Mol Cell Biol 2010; 2:223-30. [PMID: 20671117 DOI: 10.1093/jmcb/mjq017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines produced by activated T cells and is involved in several tissue responses. IL-22 signals through a heterodimeric receptor composed of IL-22 receptor 1 (IL-22R1) and IL-10R2, and the intracellular signaling pathways mediated by IL-22 receptor are not completely known. Here we investigate the effect of Src homology-2 containing protein-tyrosine phosphatase (Shp2) on IL-22 signaling pathway using SW480 colon cancer cells as a model. The results show that IL-22 induces IL-22R1 phosphorylation, and Shp2 is recruited to the tyrosine phosphorylated IL-22R1 upon IL-22 stimulation. Furthermore, Tyr251 and Tyr301 of IL-22R1 are required for Shp2 binding to the IL-22R1. Shp2 binding to IL-22R1 and Shp2 protein tyrosine phosphatase activity are required for activation of MAP kinases and signal transducer and activator of transcription (STAT3) phosphorylation by IL-22. These results reveal a critical role of Shp2 in IL-22 mediated signal transduction pathways.
Collapse
Affiliation(s)
- Songshu Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
38
|
Nakaya A, Sagawa M, Muto A, Uchida H, Ikeda Y, Kizaki M. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Leuk Res 2010; 35:243-9. [PMID: 20542334 DOI: 10.1016/j.leukres.2010.05.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/14/2010] [Accepted: 05/14/2010] [Indexed: 01/29/2023]
Abstract
Constitutive activation of NF-κB and STAT3 plays an important role in the cellular proliferation and survival of multiple myeloma cells. We first found that auranofin (AF), a coordinated gold compound, induced a significant level of cell cycle arrest at G1 phase and subsequent apoptosis of myeloma cells. Further, AF inhibited constitutive and IL-6-induced activation of JAK2 and phosphorylation of STAT3 followed by the decreased expression of Mcl-1. AF down-regulated the activation of NF-κB, and the combination of AF and a specific NF-κB inhibitor resulted in a marked decrease of Mcl-1 expression. These results suggest that AF inhibits both IL-6 induced-JAK/STAT pathway and NF-κB activation in myeloma cells.
Collapse
Affiliation(s)
- Aya Nakaya
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 2010; 292:197-207. [PMID: 20053498 DOI: 10.1016/j.canlet.2009.12.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022]
Abstract
Constitutive activation of STAT3 has been shown in several human cancers and transformed cell lines including hepatocellular carcinoma (HCC). In the present report, we investigated whether diosgenin, a steroidal saponin isolated from fenugreek can modulate the STAT3 signaling pathway. We found that diosgenin inhibited both constitutive and inducible activation of STAT3 with no effect on STAT5. The activation of c-Src, JAK1 and JAK2 implicated in STAT3 activation, were also suppressed by this saponin. Pervanadate reversed the diosgenin-induced downregulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that diosgenin can induce the expression of Src homology 2 phosphatase 2 (SH-PTP2) that correlated with downregulation of constitutive STAT3 activation. Diosgenin also downregulated the expression of various STAT3-regulated gene products, inhibited proliferation and potentiated the apoptotic effects of paclitaxel and doxorubicin. Overall, these results suggest that diosgenin is a novel blocker of the STAT3 activation pathway, with a potential role in the treatment of HCC and other cancers.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | | | | | | | | |
Collapse
|
41
|
Fulciniti M, Hideshima T, Vermot-Desroches C, Pozzi S, Nanjappa P, Shen Z, Patel N, Smith ES, Wang W, Prabhala R, Tai YT, Tassone P, Anderson KC, Munshi NC. A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res 2009; 15:7144-52. [PMID: 19934301 DOI: 10.1158/1078-0432.ccr-09-1483] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE We investigated the in vitro and in vivo anti-multiple myeloma activity of monoclonal antibody (mAb) 1339, a high-affinity fully humanized anti-interleukin 6 mAb (immunoglobulin G1), alone and in combination with conventional and novel anti-multiple myeloma agents, as well as its effect on bone turnover. EXPERIMENTAL DESIGN We examined the growth inhibitory effect of 1339 against multiple myeloma cell lines in the absence and in the presence of bone marrow stromal cells, alone or in combination with dexamethasone, bortezomib, perifosine, and Revlimid. Using the severe combined immunodeficient (SCID)-hu murine model of multiple myeloma, we also examined the effect of 1339 on multiple myeloma cell growth and multiple myeloma bone disease. RESULTS mAb 1339 significantly inhibited growth of multiple myeloma cell in the presence of bone marrow stromal cell in vitro, associated with inhibition of phosphorylation of signal transducer and activator of transcription 3, extracellular signal-regulated kinase 1/2, and Akt. In addition, mAb 1339 enhanced cytotoxicity induced by dexamethasone, as well as bortezomib, lenalidomide, and perifosine, in a synergistic fashion. Importantly mAb 1339 significantly enhanced growth inhibitory effects of dexamethasone in vivo in SCID-hu mouse model of multiple myeloma. mAb 1339 treatment also resulted in inhibition of osteoclastogenesis in vitro and bone remodeling in SCID-hu model. CONCLUSIONS Our data confirm in vitro and in vivo anti-multiple myeloma activity of, as well as inhibition of bone turnover by, fully humanized mAb 1339, as a single agent and in combination with conventional and novel agents, providing a rationale for its clinical evaluation in multiple myeloma.
Collapse
Affiliation(s)
- Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loot AE, Schreiber JG, Fisslthaler B, Fleming I. Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. ACTA ACUST UNITED AC 2009; 206:2889-96. [PMID: 19934023 PMCID: PMC2806451 DOI: 10.1084/jem.20090449] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proline-rich tyrosine kinase 2 (PYK2) can be activated by angiotensin II (Ang II) and reactive oxygen species. We report that in endothelial cells, Ang II enhances the tyrosine phosphorylation of endothelial NO synthase (eNOS) in an AT1-, H2O2-, and PYK2-dependent manner. Low concentrations (1–100 µmol/liter) of H2O2 stimulated the phosphorylation of eNOS Tyr657 without affecting that of Ser1177, and attenuated basal and agonist-induced NO production. In isolated mouse aortae, 30 µmol/liter H2O2 induced phosphorylation of eNOS on Tyr657 and impaired acetylcholine-induced relaxation. Endothelial overexpression of a dominant-negative PYK2 mutant protected against H2O2-induced endothelial dysfunction. Correspondingly, carotid arteries from eNOS−/− mice overexpressing the nonphosphorylatable eNOS Y657F mutant were also protected against H2O2. In vivo, 3 wk of treatment with Ang II considerably increased levels of Tyr657-phosphorylated eNOS in the aortae of wild-type but not Nox2y/− mice, and this was again associated with a clear impairment in endothelium-dependent vasodilatation in the wild-type but not in the Nox2y/− mice. Collectively, endothelial PYK2 activation by Ang II and H2O2 causes the phosphorylation of eNOS on Tyr657, attenuating NO production and endothelium-dependent vasodilatation. This mechanism may contribute to the endothelial dysfunction observed in cardiovascular diseases associated with increased activity of the renin–angiotensin system and elevated redox stress.
Collapse
Affiliation(s)
- Annemarieke E Loot
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
43
|
Halfter U, Derbyshire Z, Vaillancourt R. Interferon-gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem J 2009; 388:17-28. [PMID: 15601262 PMCID: PMC1186689 DOI: 10.1042/bj20041236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IFNgamma (interferon-gamma) binding to its cognate receptor results, through JAK (Janus kinase), in direct activation of receptor-bound STAT1 (signal transducer and activator of transcription 1), although there is evidence for additional activation of a MAPK (mitogen-activated protein kinase) pathway. In the present paper, we report IFNgamma-dependent activation of the MEKK4 (MAPK/extracellular-signal-regulated kinase kinase kinase 4) pathway in HaCaT human keratinocytes. MEKK4 is tyrosine-phosphorylated and the IFNgamma-dependent phosphorylation requires intracellular calcium. Calcium-dependent phosphorylation of MEKK4 is mediated by Pyk2. Moreover, MEKK4 and Pyk2 co-localize in an IFNgamma-dependent manner in the perinuclear region. Furthermore, the calcium-binding protein, annexin II, and the calcium-regulated kinase, Pyk2, co-immunoprecipitate with MEKK4 after treatment with IFNgamma. Immunofluorescence imaging of HaCaT cells shows an IFNgamma-dependent co-localization of annexin II with Pyk2 in the perinuclear region, suggesting that annexin II mediates the calcium-dependent regulation of Pyk2. Tyrosine phosphorylation of MEKK4 correlates with its activity to phosphorylate MKK6 (MAPK kinase 6) in vitro and subsequent p38 MAPK activation in an IFNgamma-dependent manner. Additional studies demonstrate that the SH2 (Src homology 2)-domain-containing tyrosine phosphatase SHP2 co-immunoprecipitates with MEKK4 in an IFNgamma-dependent manner and co-localizes with MEKK4 after IFNgamma stimulation in the perinuclear region in HaCaT cells. Furthermore, we provide evidence that SHP2 dephosphorylates MEKK4 and Pyk2, terminating the MEKK4-dependent branch of the IFNgamma signalling pathway.
Collapse
Affiliation(s)
- Ursula M. Halfter
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Zachary E. Derbyshire
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
| | - Richard R. Vaillancourt
- Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Fukui T, Kodera Y, Nishio K, Masuda N, Tamura T, Koizumi F. Synergistic interactions between the synthetic retinoid tamibarotene and glucocorticoids in human myeloma cells. Cancer Sci 2009; 100:1137-43. [PMID: 19514122 PMCID: PMC11158995 DOI: 10.1111/j.1349-7006.2009.01155.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tamibarotene (TM411) is a synthetic retinoic acid receptor-alpha/-beta selective retinoid that is chemically more stable than all-trans retinoic acid. This study was designed to evaluate the activity of TM411 in multiple myeloma (MM) and the effects of TM411 combined with a glucocorticoid (GC). In vitro, five human myeloma cells were treated with TM411 alone, GC alone, or TM411 + GC. Cell survival was analyzed by the tetrazolium dye assay and the Hoechst 33342/propidium iodide double-staining method. The effect of TM411 + GC was assessed by the isobologram method. In vivo, the growth-inhibitory effects of the drugs on RPMI-8226 cell xenografts established in SCID mice were examined. The effects of the agents on IL-6-mediated signaling pathways were also analyzed by Western blotting. TM411 was 2- to 10-fold more potent, in terms of its growth-inhibitory effect, than all-trans retinoic acid. The combination of TM411 and GC was found to show a markedly synergistic interaction. While increased expressions of the IL-6 receptor, phosphorylated MAPK, and Akt were observed after exposure to GC, TM411 attenuated this increase in the expressions, suggesting that such modification of the effect of GC by TM411 might be the possible mechanism underlying the synergistic interaction. Furthermore, TM411 + GC showed a supra-additive inhibitory effect in a xenograft model as compared with TM411 or GC alone. These results imply that the combination of TM411 + GC might be highly effective against MM, and suggest the need for clinical evaluation of TM411 + GC for the treatment of MM.
Collapse
Affiliation(s)
- Tomoya Fukui
- Shien-Lab and Support Facility of Project Ward, National Cancer Center Hospital, 5-1-1 Tsukiji, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, Neri P, Podar K, Catley L, Hideshima T, Chauhan D, Caulder E, Neilan CL, Vaddi K, Li J, Gramatzki M, Fridman JS, Anderson KC. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 2009; 8:26-35. [PMID: 19139110 DOI: 10.1158/1535-7163.mct-08-0149] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein tyrosine kinases of the Janus kinase (JAK) family are associated with many cytokine receptors, which, on ligand binding, regulate important cellular functions such as proliferation, survival, and differentiation. In multiple myeloma, JAKs may be persistently activated due to a constant stimulation by interleukin (IL)-6, which is produced in the bone marrow environment. INCB20 is a synthetic molecule that potently inhibits all members of the JAK family with a 100- to 1,000-fold selectivity for JAKs over >70 other kinases. Treatment of multiple myeloma cell lines and patient tumor cells with INCB20 resulted in a significant and dose-dependent inhibition of spontaneous as well as IL-6-induced cell growth. Importantly, multiple myeloma cell growth was inhibited in the presence of bone marrow stromal cells. The IL-6 dependent cell line INA-6 was particularly sensitive to the drug (IC50<1 micromol/L). Growth suppression of INA-6 correlated with an increase in the percentage of apoptotic cells and inhibition of signal transducer and activator of transcription 3 phosphorylation. INCB20 also abrogated the protective effect of IL-6 against dexamethasone by blocking phosphorylation of SHP-2 and AKT. In contrast, AKT phosphorylation induced by insulin-like growth factor-I remained unchanged, showing selectivity of the compound. In a s.c. severe combined immunodeficient mouse model with INA-6, INCB20 significantly delayed INA-6 tumor growth. Our studies show that disruption of JAKs and downstream signaling pathways may both inhibit multiple myeloma cell growth and survival and overcome cytokine-mediated drug resistance, thereby providing the preclinical rationale for the use of JAK inhibitors as a novel therapeutic approach in multiple myeloma.
Collapse
Affiliation(s)
- Renate Burger
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA, Dalton WS. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 2009; 69:1009-15. [PMID: 19155309 DOI: 10.1158/0008-5472.can-08-2419] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bone marrow microenvironmental components interleukin (IL)-6 and fibronectin (FN) individually influence the proliferation and survival of multiple myeloma (MM) cells; however, in vivo, these effectors most likely work together. We examined signaling events, cell cycle progression, and levels of drug response in MM cells either adhered to FN via beta1 integrins, stimulated with IL-6, or treated with the two combined. Although G(1)-S cell cycle arrest associated with FN adhesion was overcome when IL-6 was added, the cell adhesion-mediated drug resistance (CAM-DR) was maintained in the presence of IL-6. Concomitant exposure of MM cells to IL-6 and FN adhesion revealed a dramatic increase in signal transducers and activators of transcription 3 (STAT3) phosphorylation, nuclear translocation, and DNA binding, compared with either IL-6 or FN adhesion alone in four MM cell lines. Importantly, this increase in STAT3 activation correlated with a novel association between STAT3 and gp130 in cells adhered to FN before stimulation with IL-6, relative to nonadherent cells. Taken together, these results suggest a mechanism by which collaborative signaling by beta1 integrin and gp130 confers an increased survival advantage to MM cells.
Collapse
Affiliation(s)
- Kenneth H Shain
- Experimental Therapeutics and Oncologic Sciences Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
48
|
Hov H, Tian E, Holien T, Holt RU, Våtsveen TK, Fagerli UM, Waage A, Børset M, Sundan A. c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur J Haematol 2009; 82:277-87. [PMID: 19187270 PMCID: PMC2704927 DOI: 10.1111/j.1600-0609.2009.01212.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: Hepatocyte growth factor (HGF) is a constituent of the myeloma microenvironment and is elevated in sera from myeloma patients compared to healthy individuals. Increased levels of serum HGF predict a poor prognosis. It has previously been shown by us and others HGF can act as a growth factor to myeloma cells in vitro although these effects have been moderate. We therefore wanted to investigate if HGF could influence the effects of interleukin (IL)-6. Methods: Myeloma cell lines and primary samples were tested for the combined effects of IL-6 and HGF in inducing DNA synthesis and migration. Expression levels of c-Met protein were analysed by Western blotting and flow cytometry. Signaling pathways were examined by Western blotting using phosphospecific antibodies and a Ras-GTP pull down assay. Results: HGF potentiated IL-6-induced growth in human myeloma cell lines and in purified primary myeloma cells. There was also cooperation between HGF and IL-6 in induction of migration. There seemed to be two explanations for this synergy. IL-6-treatment increased the expression of c-Met making cells HGF responsive, and IL-6 was dependent on c-Met signaling in activating both Ras and p44/42 MAPK by a mechanism involving the tyrosine phosphatase Shp2. Conclusions: The results indicate that besides from being a myeloma growth factor alone, HGF can also potentiate the effects of IL-6 in myeloma proliferation and migration. Thus, c-Met signaling could be a target for therapy of multiple myeloma.
Collapse
Affiliation(s)
- Håkon Hov
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meng H, Yang C, Jin J, Zhou Y, Qian W. Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Leuk Lymphoma 2008; 49:1954-62. [PMID: 18949618 DOI: 10.1080/10428190802320368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Involvement of phosphatidylinositol 3-kinase/Akt-1 in cell survival and proliferation of multiple myeloma (MM) has been well established. In this study, we demonstrate that homoharringtonine (HHT), an antileukemic drug first isolated from the Chinese evergreen Cephalotaxus harringtonia, induces significant cytotoxicity in dexamethasone-sensitive and -resistant and chemotherapy-sensitive MM cell lines in a time and dose-dependent manner. HHT also triggers apoptosis in chemotherapy-resistant patient's myeloma cells. Contrary to dexamethasone, the cytotoxicity of HHT on myeloma is independent of interleukin-6. The mechanism of HHT cytotoxicity is related to down-regulation of Akt phosphorylation/activation and various target genes of Akt including nuclear factor kappa B, XIAP, cIAP and cyclin D1. Moreover, in vivo antitumor activity of HHT is demonstrated in RPMI8226 myeloma xenograft model. Importantly, an additive effect of antitumor is confirmed in the myeloma cells treated with HHT and bortezomib concomitantly with inhibition of phosphorylated Akt. Together, these findings obtained with HHT should give useful insights into a novel antimyeloma chemotherapy.
Collapse
Affiliation(s)
- Haitao Meng
- Institute of Hematology, the First Affiliated Hospital, Zhejiang University, Key lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Sánchez-Vega B, Gandhi V. Glucocorticoid resistance in a multiple myeloma cell line is regulated by a transcription elongation block in the glucocorticoid receptor gene (NR3C1). Br J Haematol 2008; 144:856-64. [PMID: 19133980 DOI: 10.1111/j.1365-2141.2008.07549.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoid (GC) effects are mediated by the glucocorticoid receptor (GR). Several studies have demonstrated that a lower number of receptors per cell were associated with poor GC response. The regulation of GR expression is complex; the levels of GR can be autologously regulated by its ligand and also by transcriptional, post-transcriptional and post-translational mechanisms. Using three human myeloma cell lines that parallel the development of GC resistance, this work describes the mechanism involved in the downregulation of GR expression. The decreased expression was neither due to mutations in the gene encoding GR, NR3C1, nor due to methylation of the promoters. A gradual decrease in NR3C1 transcripts was seen during the development of resistance, the level of expression of exon 1 to 2 RNA fragments remained the same in sensitive and resistant cell lines but a chromatin immunoprecipitation assay demonstrated that RNA polymerase II, detectable throughout exon 2 to 3 in the sensitive cells, was undetectable on exon 3 in the resistant variant, suggesting lower or no transcription at this site. These studies demonstrated that downregulation of NR3C1 mRNA in a resistant cell line involves a block to transcriptional elongation within intron B of NR3C1. This block may represent an important element in the regulation of GR expression.
Collapse
Affiliation(s)
- Beatriz Sánchez-Vega
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|