1
|
Zacchini M. Bismuth interaction with plants: Uptake and transport, toxic effects, tolerance mechanisms - A review. CHEMOSPHERE 2024; 360:142414. [PMID: 38789054 DOI: 10.1016/j.chemosphere.2024.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Bismuth (Bi) is a minor metal whose abundance on Earth is estimated at 0.025 ppm. Known since ancient times for its medical properties, its use in many industrial applications has increased significantly in recent years due to its physical and chemical properties. Considered less toxic than other metals, Bi has been defined as a "green metal" and has been suggested as a replacement for lead in many industrial processes. Although the occurrence of Bi in the environment is predicted to increase, there is still a lack of information on its interaction with biota. Even though it is absorbed by many organisms, Bi has not been directly implicated in the regulation of fundamental metabolic processes. This review summarises the fragmentary knowledge on the interaction between Bi and plants. Toxic effects at the growth, physiological and biochemical levels have been described in Bi-treated plants, with varying degrees and consequences for plant vitality, mostly depending on the chemical formulation of Bi, the concentration of Bi, the growth medium, the time of exposure, and the experimental conditions (laboratory or outdoor conditions). Bismuth has been shown to be readily absorbed and translocated in plants, interfering with plant growth and development, photosynthetic processes, nutrient uptake and accumulation, and metal (especially iron) homeostasis. Like other metals, Bi can induce an oxidative stress state in plant cells, and genotoxic effects have been reported in Bi-treated plants. Tolerance responses to the excess presence of Bi have been poorly described and are mostly referred to as the activation of antioxidant defences involving enzymatic and non-enzymatic molecules. The goal of this review is to offer an overview of the present knowledge on the interaction of Bi and plants, highlighting the gaps to be filled to better understand the role of Bi in affecting key physiological processes in plants. This will help to assess the potential harm of this metal in the environment, where its occurrence is predicted to increase due to the growing demand for medicinal and industrial applications.
Collapse
Affiliation(s)
- Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria Km 29.300, 00015, Monterotondo Scalo Roma, Italy; NBFC, National Biodiversity Future Center S.c.a.r.l., Piazza Marina 61 (c/o Palazzo Steri), 90133, Palermo, Italy.
| |
Collapse
|
2
|
Binding of ruthenium and osmium at non‑iron sites of transferrin accounts for their iron-independent cellular uptake. J Inorg Biochem 2022; 234:111885. [DOI: 10.1016/j.jinorgbio.2022.111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 05/21/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
|
3
|
Sabbioni E, Groppi F, Di Gioacchino M, Petrarca C, Manenti S. Metallobiochemistry of ultratrace levels of bismuth in the rat I. Metabolic patterns of 205+206Bi 3+ in the blood. J Trace Elem Med Biol 2021; 68:126760. [PMID: 33895056 DOI: 10.1016/j.jtemb.2021.126760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The number of the applications of bismuth (Bi) is rapidly and remarkably increasing, enhancing the chance to increase the levels to which humans are normally daily exposed. The interest to Bi comes also from the potential of Bi-based nanoparticles (BiNPs) for industrial and biomedical purposes. Like other metal-based NPs used in nanomedicine, BiNPs may release ultratrace amounts of Bi ions when injected. The metabolic fate and toxicity of these ions still needs to be evaluated. At present, knowledge of Bi metabolism in laboratory animals refers almost solely to studies under unnatural "extreme" exposures, i.e. pharmacologically relevant high-doses (up to thousand mg kg-1) in relation to its medical use, or infinitesimal-doses (pg kg-1 as non-carrier-added Bi radioisotopes) for radiobiology protection, diagnostic and radiotherapeutic purposes. No specific study exists on the "metabolic patterns" in animal models exposed to levels of Bi, i.e. at "environmental dose exposure" that reflect the human daily exposure (μg kg-1). METHODOLOGY Rats were intraperitoneally injected with 0.8 μg Bi kg-1 bw as 205+206Bi(NO)3 alone or in combination with 59Fe for radiolabelling of iron proteins. The use of 205+206Bi radiotracers allowed the detection and measurement down to pg fg-1 of the element in the blood biochemical compartments and protein fractions as isolated by differential centrifugation, size exclusion- and ion exchange chromatography, electrophoresis, solvent extraction, precipitation and dialysis. RESULTS 24 h after the administration, the blood concentration of Bi was 0.18 ng mL-1, with a repartition plasma/red blod cells (RBC) in a ratio of 2:1. Elution profiles of plasma from gel filtration on Sephadex G-150 showed four pools of Bi-binder proteins with different molecular sizes (> 300 kDa, 160 kDa, 70 kDa and < 6.5 kDa). In the 70 kDa fraction transferrin and albumin were identified as biomolecule carriers for Bi. In red blood cells, Bi was distributed between cytosol and membranes (ghosts) in a ratio of about 5:1. In the cytosol, low molecular components (LMWC) and the hemoglobin associated the Bi in a ratio of about 1.8:1. In the hemoglobin molecule, Bi was bound to the beta polypeptide chain of the globin. In the ghosts, Bi was detected at more than one site of the protein fraction, with no binding with lipids. Dialysis experiments and the consistently high recovery (80-90 %) of 206Bi from chromatography of 206Bi-containing biocomponents suggest that Bi was firmly complexed at physiological pH with a low degree of breaking during the applications of experimental protocols for the isolation of the 206Bi-biocomplexes. These latter were sensitive to acid buffer pH 5, and to the presence of complexing agents in the dialysis fluid. CONCLUSIONS On the basis of an environmental biochemical toxicology approach, we have undertaken a study on the metabolic patterns of Bi3+ ions in rats at tissue, subcellular and molecular level with the identification of cellular Bi-binding components. As a first part of the study the present work reports the results concerned with the metabolic fate of ultratrace levels of 205+206Bi(NO)3 in the blood.
Collapse
Affiliation(s)
- Enrico Sabbioni
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, Pescara, Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11 Torrevecchia Teatina, CH, Italy
| | - Claudia Petrarca
- Center for Advanced Studies and Technology (C.A.S.T.), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, Chieti, I-66100, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, via Luigi Polacchi 11, Chieti, I-66100, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy.
| |
Collapse
|
4
|
Zaid NRR, Kletting P, Winter G, Beer AJ, Glatting G. A Whole-Body Physiologically Based Pharmacokinetic Model for Alpha Particle Emitting Bismuth in Rats. Cancer Biother Radiopharm 2021; 37:41-46. [PMID: 34185608 DOI: 10.1089/cbr.2021.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction/Aim: α particle emitting bismuth (212Bi) as decay product of 212Pb-labeled pharmaceuticals has been effective in targeted α particle therapy (TAT). Estimating the contribution of 212Bi released from its chelator to the absorbed doses in nontarget tissues is challenging in TAT. Physiologically based pharmacokinetic (PBPK) modeling can help overcome this limitation. Therefore, a whole-body 212Bi-PBPK model was developed to describe the pharmacokinetics (PKs) of 212Bi in rats. Materials and Methods: The rat 212Bi-PBPK model was implemented using the modeling software SAAM II with data and parameter values from the literature. Besides other mechanisms, 212Bi interactions with red blood cells, high molecular weight plasma protein, and intracellular biological thiols are described. Important PK parameters were fitted to time-activity data. Absorbed dose coefficients (ADCs) were calculated for injecting 0.774 fmol of 212Bi. Results: 212Bi uptake rates of liver, bone, small intestine, bone marrow, skin, and muscle were (0.86 ± 0.13), (3.85 ± 0.63), (0.27 ± 0.05), (1.44 ± 0.29), (0.04 ± 0.01), and (0.007 ± 0.007) per min with corresponding ADCs of 0.09, 0.03, 0.03, 0.07, 0.01, and 0.003 mGy/kBq, respectively. An ADC of 0.70 mGy/kBq was determined for kidneys. Conclusion: Kidneys are the dose-limiting organs in 212Bi-based TAT. The 212Bi-PBPK model is an effective tool to investigate the 212Bi biodistribution in murine models. Integrating the 212Bi-PBPK model into other murine and human PBPK models of α particle generators can help study the efficacy and safety of TAT.
Collapse
Affiliation(s)
- Nouran R R Zaid
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.,Department of Biomedical Sciences, Biophysics and Medical Imaging Program, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.,Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.,Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
6
|
Imam HT, Jarvis AG, Celorrio V, Baig I, Allen CCR, Marr AC, Kamer PCJ. Catalytic and biophysical investigation of rhodium hydroformylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01679a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh-Containing artificial metalloenzymes based on two mutants of sterol carrier protein_2L (SCP_2L) have been shown to act as hydroformylases, exhibiting significant activity and unexpectedly high selectivity in the hydroformylation of alkenes.
Collapse
Affiliation(s)
- Hasan T. Imam
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
- School of Chemistry and Chemical Engineering
| | | | | | - Irshad Baig
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Andrew C. Marr
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Paul C. J. Kamer
- Bioinspired Homo- & Heterogeneous Catalysis
- Leibniz Institute for Catalysis
- Rostock
- Germany
| |
Collapse
|
7
|
Abstract
Bismuth salts exert their activity within the upper gastrointestinal tract through action of luminal bismuth. Bismuth exerts direct bactericidal effect on Helicobacter pylori by different ways: forms complexes in the bacterial wall and periplasmic space, inhibits different enzymes, ATP synthesis, and adherence of the bacteria to the gastric mucosa. Bismuth also helps ulcer healing by acting as a barrier to the aggressive factors and increasing mucosal protective factors such as prostaglandin, epidermal growth factor, and bicarbonate secretion. To date, no resistance to bismuth has been reported. Also synergism between bismuth salts and antibiotics was present. It was shown that metronidazole and clarithromycin resistant H. pylori strains become susceptible if they are administered together with bismuth. Bismuth-containing quadruple therapy was recommended both by the Second Asia-Pacific Consensus Guidelines and by the Maastricht IV/Florence Consensus Report as an alternative first choice regimen to standard triple therapy, in areas with low clarithromycin resistance, and it is recommended as the first-line therapeutic option in areas with a high prevalence of clarithromycin resistance. Greater than 90% eradication success can be obtained by bismuth-containing quadruple therapy. Choosing bismuth as an indispensable part of first-line therapy is logical as both metronidazole and clarithromycin resistances can be overcome by adding bismuth to the regimen.
Collapse
|
8
|
Wang L, Liang K, Jiang X, Yang M, Liu YN. Dynamic Protein-Metal Ion Networks: A Unique Approach to Injectable and Self-Healable Metal Sulfide/Protein Hybrid Hydrogels with High Photothermal Efficiency. Chemistry 2018; 24:6557-6563. [DOI: 10.1002/chem.201705841] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Liqiang Wang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| | - Kaixin Liang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - Xingxing Jiang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| |
Collapse
|
9
|
Güette-Fernández JR, Meléndez E, Maldonado-Rojas W, Ortega-Zúñiga C, Olivero-Verbel J, Parés-Matos EI. A molecular docking study of the interactions between human transferrin and seven metallocene dichlorides. J Mol Graph Model 2017; 75:250-265. [PMID: 28609757 DOI: 10.1016/j.jmgm.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023]
Abstract
Human Transferrin (hTf) is a metal-binding protein found in blood plasma and is well known for its role in iron delivery. With only a 30% of its capacity for Fe+3 binding, this protein has the potential ability to transport other metal ions or organometallic compounds from the blood stream to all cell tissues. In this perspective, recent studies have described seven metallocene dichlorides (Cp2M(IV)Cl2, M(IV)=V, Mo, W, Nb, Ti, Zr, Hf) suitable as anticancer drugs and less secondary effects than cisplatin. However, these studies have not provided enough data to clearly explain how hTf binds and transports these organometallic compounds into the cells. Thus, a computational docking study with native apo-hTf using Sybyl-X 2.0 program was conducted to explore the binding modes of these seven Cp2M(IV)Cl2 after their optimization and minimization using Gaussian 09. Our model showed that the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) can interact with apo-hTf on a common binding site with the amino acid residues Leu-46, Ile-49, Arg-50, Leu-66, Asp-69, Ala-70, Leu-72, Ala-73, Pro-74 and Asn-75, while the next four Cp2M(IV)Cl2 (M(IV)=Nb, Ti, Zr, Hf) showed different binding sites, unknown until now. A decreasing order in the total score (equal to -log Kd) was observed from these docking studies: W (5.4356), Mo (5.2692), Nb (5.1672), V (4.5973), Ti (3.6529), Zr (2.0054) and Hf (1.8811). High and significant correlation between the affinity of these seven ligands (metallocenes) for apo-hTf and their bond angles CpMCp (r=0.94, p<0.01) and Cl-M-Cl (r=0.95, p<0.01) were observed, thus indicating the important role that these bond angles can play in ligand-protein interactions. Fluorescence spectra of apo-hTf, measured at pH 7.4, had a decrease in the fluorescence emission spectrum with increasing concentration of Cp2M(IV)Cl2. Experimental data has a good correlation between KA (r=0.84, p=0.027) and Kd (r=0.94, p=0.0014) values and the calculated total scores obtained from our docking experiments. In conclusion, these results suggest that the seven Cp2M(IV)Cl2 used for this study can interact with apo-hTf, and their affinity was directly and inversely proportional to their bond angles CpMCp and ClMCl, respectively. Our docking studies also suggest that the binding of the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) to hTf could abrogate the formation of the hTf-receptor complex, and as a consequence the metallocene-hTf complex might require another transport mechanism in order to get into the cell.
Collapse
Affiliation(s)
- Jorge R Güette-Fernández
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Enrique Meléndez
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681
| | - Wilson Maldonado-Rojas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Carlos Ortega-Zúñiga
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Elsie I Parés-Matos
- Department of Chemistry at Mayagüez, University of Puerto Rico, Mayagüez, PR 00681.
| |
Collapse
|
10
|
Wang M, Lai TP, Wang L, Zhang H, Yang N, Sadler PJ, Sun H. “Anion clamp” allows flexible protein to impose coordination geometry on metal ions. Chem Commun (Camb) 2015; 51:7867-70. [DOI: 10.1039/c4cc09642h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray crystal structures of human serum transferrin (77 kDa) with YbIII or FeIII bound to the C-lobe and malonate as the synergistic anion show that the large YbIII ion causes the expansion of the metal binding pocket while octahedral metal coordination geometry is preserved, an unusual geometry for a lanthanide ion.
Collapse
Affiliation(s)
- Minji Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| | - Tsz Pui Lai
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| | - Li Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Chemistry
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment
- South University of Science and Technology of China
- Shenzhen 518055
- P. R. China
- Department of Chemistry
| | - Nan Yang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Physiology
| | - Peter J. Sadler
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Chemistry
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| |
Collapse
|
11
|
Keogan DM, Griffith DM. Current and potential applications of bismuth-based drugs. Molecules 2014; 19:15258-97. [PMID: 25251194 PMCID: PMC6271281 DOI: 10.3390/molecules190915258] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
: Bismuth compounds have been used extensively as medicines and in particular for the treatment of gastrointestinal ailments. In addition to bismuth's well known gastroprotective effects and efficacy in treating H. pylori infection it also has broad anti-microbial, anti-leishmanial and anti-cancer properties. Aspects of the biological chemistry of bismuth are discussed and biomolecular targets associated with bismuth treatment are highlighted. This review strives to provide the reader with an up to date account of bismuth-based drugs currently used to treat patients and discuss potential medicinal applications of bismuth drugs with reference to recent developments in the literature. Ultimately this review aims to encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Donal M Keogan
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Darren M Griffith
- Centre for Synthesis & Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
12
|
Biological evaluation of bismuth non-steroidal anti-inflammatory drugs (BiNSAIDs): Stability, toxicity and uptake in HCT-8 colon cancer cells. J Inorg Biochem 2014; 135:28-39. [DOI: 10.1016/j.jinorgbio.2014.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/22/2022]
|
13
|
Miersch L, Rüffer T, Schaarschmidt D, Lang H, Troff RW, Schalley CA, Mehring M. Synthesis and Characterization of Polynuclear Oxidobismuth Sulfonates. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linda Miersch
- Technische Universität Chemnitz, Institut für Chemie, Koordinationschemie, Straße der Nationen 62, 09111 Chemnitz, Germany, http://www.tu‐chemnitz.de/chemie/koord/
| | - Tobias Rüffer
- Technische Universität Chemnitz, Institut für Chemie, Anorganische Chemie, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Dieter Schaarschmidt
- Technische Universität Chemnitz, Institut für Chemie, Anorganische Chemie, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Heinrich Lang
- Technische Universität Chemnitz, Institut für Chemie, Anorganische Chemie, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Ralf W. Troff
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
| | - Michael Mehring
- Technische Universität Chemnitz, Institut für Chemie, Koordinationschemie, Straße der Nationen 62, 09111 Chemnitz, Germany, http://www.tu‐chemnitz.de/chemie/koord/
| |
Collapse
|
14
|
Main-Group Medicinal Chemistry Including Li and Bi*. COMPREHENSIVE INORGANIC CHEMISTRY II 2013. [PMCID: PMC7152213 DOI: 10.1016/b978-0-08-097774-4.00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Main-group element compounds were among the first developed in the modern era as pharmaceutical preparations for the treatment of a wide variety of human ailments; it is now recognized that many of these elements exist in traditional medicine of many societies, for example, arsenic. The use of main-group element compounds in contemporary medicine continues for the treatment of, for example, depression (Li), stomach ulcers (Bi), cancer (As and Ga), and leishmaniasis (Sb). Not surprisingly, new compounds of these elements, and other main-group elements, continue to be investigated for their potential use in new therapies. In this chapter, the use of main-group elements as therapeutic agents is outlined and also, where understood, comments on biological targets and mechanisms of action. Further, key advances in new potential applications of main-group element compounds in medicine are evaluated.
Collapse
|
15
|
Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49:5106-31. [DOI: 10.1039/c3cc41143e] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
He Y, Chen S, Liu Y, Liang Y, Xiang J, Wu D, Zhou F. Coordination of Bi3+ to metal-free metallothionein: spectroscopy and density functional calculation of structure, coordination, and electronic excitations. J Inorg Biochem 2012; 113:9-14. [PMID: 22687489 DOI: 10.1016/j.jinorgbio.2012.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 11/24/2022]
Abstract
Understanding the structure of mammal Bi-containing metallothionein-2 (Bi-MT2) is of great physiological significance due to the importance of Bi-MT2 in alleviating adverse effect of anti-cancer drugs. A unique feature of rabbit liver Bi-MT2 is the metal-oxygen bond (BiO), which is absent in well-characterized Zn-MT2 and Cd-MT2. However, the ligand contributing to the BiO bonding in Bi-MT2 remains unidentified. In this study, the coordination of Bi(3+) to rabbit liver metal-free metallothionein was investigated using both experimental and theoretical methods. UV-visible and circular dichroism spectra indicate that Bi-MT2 has a different secondary structure from those of Zn-MT2 and Cd-MT2. Three possible Bi(3+) coordination structures in Bi(7)-MT2 and relative binding free energies were calculated using the density functional theory. Absorption spectra corresponding to these coordination structures were evaluated by time-dependent density functional theory. Our computation results are consistent with the UV-vis spectroscopic data and strongly suggest that the carboxyl group in the aspartic acid residues contributes to the BiO bond formation.
Collapse
Affiliation(s)
- Yonghui He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
The binding and transport of alternative metals by transferrin. Biochim Biophys Acta Gen Subj 2012; 1820:362-78. [DOI: 10.1016/j.bbagen.2011.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022]
|
18
|
Li H, Sun H. Recent advances in bioinorganic chemistry of bismuth. Curr Opin Chem Biol 2012; 16:74-83. [PMID: 22322154 PMCID: PMC7108238 DOI: 10.1016/j.cbpa.2012.01.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 01/21/2023]
Abstract
Bismuth has been used in medicine for over two centuries for the treatment of various diseases, in particular for gastrointestinal disorders, owing to its antimicrobial activity. Recent structural characterization of bismuth drugs provides an insight into assembly and pharmacokinetic pathway of the drugs. Mining potential protein targets inside the pathogen via metallomic/metalloproteomic approach and further characterization on the interactions of bismuth drugs with these targets laid foundation in understanding the mechanism of action of bismuth drugs. Such studies would be beneficial in rational design of new potential drugs.
Collapse
|
19
|
El Hage Chahine JM, Hémadi M, Ha-Duong NT. Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta Gen Subj 2011; 1820:334-47. [PMID: 21872645 DOI: 10.1016/j.bbagen.2011.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. SCOPE OF THE REVIEW This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. MAJOR CONCLUSIONS The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. GENERAL SIGNIFICANCE A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Jean-Michel El Hage Chahine
- Université Paris Diderot Sorbonne Paris Cité–CNRS, Interfaces, Traitements, Organisation Dynamique des Systèmes–UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf,75205 Paris Cedex 13, France.
| | | | | |
Collapse
|
20
|
Wegner SV, Ertem E, Sunbul M, He C. Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth. Chem Sci 2011. [DOI: 10.1039/c0sc00411a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Li Y, Liu B, Zhao C, Yang B. Common Pathway for K562 Cells Endocytosis and Release of GaC-Tf and Ga2-Tf via a Transferrin Receptor. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Hirner AV, Rettenmeier AW. Methylated Metal(loid) Species in Humans. ORGANOMETALLICS IN ENVIRONMENT AND TOXICOLOGY 2010. [DOI: 10.1039/9781849730822-00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
While the metal(loid)s arsenic, bismuth, and selenium (probably also tellurium) have been shown to be enzymatically methylated in the human body, this has not yet been demonstrated for antimony, cadmium, germanium, indium, lead, mercury, thallium, and tin, although the latter elements can be biomethylated in the environment. Methylated metal(loid)s exhibit increased mobility, thus leading to a more efficient metal(loid) transport within the body and, in particular, opening chances for passing membrane barriers (blood-brain barrier, placental barrier). As a consequence human health may be affected. In this review, relevant data from the literature are compiled, and are discussed with respect to the evaluation of assumed and proven health effects caused by alkylated metal(loid) species.
Collapse
Affiliation(s)
- Alfred V. Hirner
- Institute of Analytical Chemistry, University of Duisburg-Essen D-45117 Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine, University of Duisburg-Essen D-45122 Essen Germany
| |
Collapse
|
23
|
Sun H, Chai ZF. Metallomics: An integrated science for metals in biology and medicine. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b920672h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Rowinska-Zyrek M, Witkowska D, Valensin D, Kamysz W, Kozlowski H. The C terminus of HspA—a potential target for native Ni(ii) and Bi(iii) anti-ulcer drugs. Dalton Trans 2010; 39:5814-26. [DOI: 10.1039/c0dt00013b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Hémadi M, Ha-Duong NT, Plantevin S, Vidaud C, El Hage Chahine JM. Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1. J Biol Inorg Chem 2009; 15:497-504. [DOI: 10.1007/s00775-009-0618-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/17/2009] [Indexed: 01/16/2023]
|
26
|
|
27
|
|
28
|
Rowinska-Zyrek M, Valensin D, Szyrwiel L, Grzonka Z, Kozlowski H. Specific interactions of Bi(III) with the Cys-Xaa-Cys unit of a peptide sequence. Dalton Trans 2009:9131-40. [DOI: 10.1039/b913430a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Sun X, Tsang CN, Sun H. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 2009. [DOI: 10.1039/b813121j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Larsen A, Stoltenberg M, Søndergaard C, Bruhn M, Danscher G. In vivo distribution of bismuth in the mouse brain: influence of long-term survival and intracranial placement on the uptake and transport of bismuth in neuronal tissue. Basic Clin Pharmacol Toxicol 2006; 97:188-96. [PMID: 16128915 DOI: 10.1111/j.1742-7843.2005.pto_973132.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bismuth is used for a multitude of industrial purposes and has partly replaced toxic heavy metals such as lead and mercury in e.g. lubricants and shotgun pellets. In medicine, bismuth-compounds have long been used to remedy gastrointestinal disorders; lately in combination with antibiotics to treat Helicobacter pylori associated peptic ulcers. An epidemic episode of bismuth-induced encephalopathy in France in the 1970s revealed the neurotoxic potential of bismuth. This incidence, involving almost 1000 patients, remains unexplained and the contribution of other factors besides bismuth has been postulated. Recently an autometallographic technique made it possible to detect bismuth in morphologically intact tissue. In the present study, autometallographicly detectable bismuth was seen throughout the brain following intraperitoneal and intracranial exposure. The neuronal staining pattern seems highly organized with some areas heavily stained and others with low or no staining. Long-term (8 months) intraperitoneal exposure led to higher bismuth uptake than short-term (2 weeks) exposure. Following both intraperitoneal and intracranial exposure, high amounts of bismuth were found in the reticular and hypothalamic nuclei, in the oculomotor and hypoglossal nuclei and in Purkinje cells. Within the central nervous system (CNS) retrograde axonal transport was seen after intracranial bismuth exposure. Axonal transport seems to influence the distribution of bismuth as the highest uptake of bismuth after intraperitoneal exposure was seen in the facial and the trigeminal motor nuclei, i.e. neurones with processes outside the blood-brain barrier, whereas these nuclei contained no bismuth following ic exposure. Ultrastructurally, accumulation of bismuth was seen in lysosomes.
Collapse
Affiliation(s)
- Agnete Larsen
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Jaggi JS, Kappel BJ, McDevitt MR, Sgouros G, Flombaum CD, Cabassa C, Scheinberg DA. Efforts to control the errant products of a targeted in vivo generator. Cancer Res 2005; 65:4888-95. [PMID: 15930310 DOI: 10.1158/0008-5472.can-04-3096] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha-particle immunotherapy by targeted alpha-emitters or alpha-emitting isotope generators is a novel form of extraordinarily potent cancer therapy. A major impediment to the clinical use of targeted actinium-225 (225Ac) in vivo generators may be the radiotoxicity of the systemically released daughter radionuclides. The daughters, especially bismuth-213 (213Bi), tend to accumulate in the kidneys. We tested the efficacy of various pharmacologic agents and the effect of tumor burden in altering the pharmacokinetics of the 225Ac daughters to modify their renal uptake. Pharmacologic treatments in animals were started before i.v. administration of the HuM195-225Ac generator. 225Ac, francium-221 (221Fr), and 213Bi biodistributions were calculated in each animal at different time points after 225Ac generator injection. Oral metal chelation with 2,3-dimercapto-1-propanesulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA) caused a significant reduction (P < 0.0001) in the renal 213Bi uptake; however, DMPS was more effective than DMSA (P < 0.001). The results with DMPS were also confirmed in a monkey model. The renal 213Bi and 221Fr activities were significantly reduced by furosemide and chlorothiazide treatment (P < 0.0001). The effect on renal 213Bi activity was further enhanced by the combination of DMPS with either chlorothiazide or furosemide (P < 0.0001). Competitive antagonism by bismuth subnitrate moderately reduced the renal uptake of 213Bi. The presence of a higher target-tumor burden significantly prevented the renal 213Bi accumulation (P = 0.003), which was further reduced by DMPS treatment (P < 0.0001). Metal chelation, diuresis with furosemide or chlorothiazide, and competitive metal blockade may be used as adjuvant therapies to modify the renal accumulation of 225Ac daughters.
Collapse
Affiliation(s)
- Jaspreet Singh Jaggi
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Magnusson NE, Larsen A, Rungby J, Kruhøffer M, Orntoft TF, Stoltenberg M. Gene expression changes induced by bismuth in a macrophage cell line. Cell Tissue Res 2005; 321:195-210. [PMID: 15912405 DOI: 10.1007/s00441-005-1103-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 02/14/2005] [Indexed: 12/20/2022]
Abstract
We have investigated the effect of bismuth by autometallography, cell viability, TUNEL assay and microarray analysis of a macrophage cell line. The cells accumulate bismuth in their lysosomes in a time- and dose-dependent manner. Cell viability assays show a significant decrease in the number of viable cells related to both bismuth concentrations and exposure time. TUNEL assays after 12 h and 24 h at a bismuth-citrate concentration of 50 microM revealed the presence of 30% and 70% TUNEL-positive cells, respectively, compared with 8% in the controls. We have analysed gene expression profiles for cells exposed to 50 microM bismuth-citrate and for untreated controls at 12 h and 24 h by microarray analysis, which confirmed that bismuth is a powerful metallothionein inducer. A number of glycolytic enzymes are induced by bismuth, suggesting that bismuth is able to induce "hypoxia-like" stress. BCL2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) has been suggested as a regulator of hypoxia-induced cell death independent of caspase-3 activation and cytochrome c release. Bnip3 is up-regulated indicating the involvement of Bnip3 as a possible mechanism for bismuth-induced cell death. Differences have been noticed in cell viability and in the modification of the mRNA expression levels at 12 and 24 h. Only 13 genes are modified at both these times, suggesting a time-dependent molecular cascade in which bismuth-exposed cells enter a dormant stage with mRNA down-regulation being followed by cell death of susceptible cells.
Collapse
Affiliation(s)
- Nils E Magnusson
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
Zhang M, Gumerov DR, Kaltashov IA, Mason AB. Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1658-1664. [PMID: 15519234 DOI: 10.1016/j.jasms.2004.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 08/11/2004] [Accepted: 08/12/2004] [Indexed: 05/24/2023]
Abstract
Transferrins comprise a class of monomeric glycoproteins found in all vertebrates, whose function is iron sequestration and transport. In addition to iron, serum transferrin also binds a variety of other metals and is believed to provide a route for the in vivo delivery of such metals to cells. In the present study, ESI MS is used to investigate interactions between human serum transferrin and two nonferrous metals, indium (a commonly used imaging agent) and bismuth (a component of many antiulcer drugs). While the UV-Vis absorption spectroscopy measurements clearly indicate that both metals bind strongly to transferrin in solution, the metal-protein complex can be detected by ESI MS only for indium, but not for bismuth. Despite the apparently low stability of the transferrin-bismuth complex in the gas phase, presence of such complex in solution can be established by ESI MS indirectly. This is done by monitoring the evolution of charge state distributions of transferrin ions upon acid-induced protein unfolding in the presence and in the absence of the metal in solution. The anomalous instability of the transferrin-bismuth complex in the gas phase is rationalized in terms of conformational differences between this form of transferrin and the holo-forms of this protein produced by binding of metals with smaller ionic radii (e.g., Fe3+ and In3+). The large size of Bi3+ ion is likely to prevent formation of a closed conformation (canonical structure of the holo-protein), resulting in a non-native metal coordination. It is suggested that transferrin retains the open conformation (characteristic of the apo-form) upon binding Bi3+, with only two ligands in the metal coordination sphere provided by the protein itself. This suggestion is corroborated by the results of circular dichroism measurements in the near-UV range. Since the cellular consumption of metals in the transferrin cycle critically depends upon recognition of the holo-protein complex by the transferrin receptor, the noncanonical conformation of the transferrin-bismuth complex may explain very inefficient delivery of bismuth to cells even when a high dosage of bismuth-containing drugs is administered for prolonged periods of time.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
35
|
Pannequin J, Kovac S, Tantiongco JP, Norton RS, Shulkes A, Barnham KJ, Baldwin GS. A novel effect of bismuth ions: selective inhibition of the biological activity of glycine-extended gastrin. J Biol Chem 2003; 279:2453-60. [PMID: 14530269 DOI: 10.1074/jbc.m309806200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although bismuth salts have been used for over two centuries for the treatment of various gastrointestinal disorders, the mechanism of their therapeutic action remains controversial. Because gastrins bind two trivalent ferric ions with high affinity, and because ferric ions are essential for the biological activity of glycine-extended gastrin 17, we have investigated the hypothesis that trivalent bismuth ions influence the biological activity of gastrins. Binding of bismuth ions to gastrins was measured by fluorescence quenching and NMR spectroscopy. The effects of bismuth ions on gastrin-stimulated biological activities were measured in inositol phosphate, cell proliferation, and cell migration assays. Fluorescence quenching experiments indicated that both glycine-extended and amidated gastrin 17 bound two bismuth ions. The NMR spectral changes observed on addition of bismuth ions revealed that Glu-7 acted as a ligand at the first bismuth ion binding site. In the presence of bismuth ions the ability of glycine-extended gastrin 17 to stimulate inositol phosphate production, cell proliferation, and cell migration was markedly reduced. In contrast, bismuth ions had little effect on the affinity of the CCK-2 receptor for amidated gastrin 17, or on the stimulation of inositol phosphate production by amidated gastrin 17. We conclude that bismuth ions may act, at least in part, by blocking the effects of glycine-extended gastrin 17 on cell proliferation and cell migration in the gastrointestinal tract. This is the first report of a specific inhibitory effect of bismuth ions on the action of a gastrointestinal hormone.
Collapse
Affiliation(s)
- Julie Pannequin
- Department of Surgery, University of Melbourne, Austin Campus, ARMC, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Sun H, Szeto KY. Binding of bismuth to serum proteins: implication for targets of Bi(III) in blood plasma. J Inorg Biochem 2003; 94:114-20. [PMID: 12620681 DOI: 10.1016/s0162-0134(02)00649-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bismuth complexes have been widely used in clinical treatment as antiulcer drugs. However, different adverse effects have been observed and the diagnosis is generally confirmed by the detection of bismuth in blood or blood plasma. In this study, binding of bismuth to human serum albumin was studied by fluorescence spectroscopy with the binding constant logK(a) to be 11.2. Competitive binding of bismuth to human albumin and transferrin was carried out at pH 7.4 by FPLC and ICP-MS. It was found that over 70% of bismuth binds to transferrin even in the presence of a large excess of albumin (albumin/transferrin=13:1) at pH 7.4, 10 mM bicarbonate. The distribution of bismuth between the two proteins was almost unchanged when Cys(34) of albumin was blocked. However, all bismuth binds to albumin when iron-saturated transferrin was used. Almost all of the bismuth was distributed over the fractions containing transferrin (70%) and albumin (<30%) in serum. The percentage of bismuth associated with transferrin was further increased by 15% with elevated transferrin in serum. Binding of bismuth to transferrin is much stronger than human albumin. Transferrin is probably the major target of bismuth in blood plasma, and it may play a role in the pharmacology of bismuth.
Collapse
Affiliation(s)
- Hongzhe Sun
- Department of Chemistry and Open Laboratory of Chemical Laboratory, University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | | |
Collapse
|
37
|
Abstract
Since transferrin was discovered more than half a century ago, a considerable effort has been made towards understanding tranferrin-mediated iron uptake. However, it was not until recently with the identification and characterization of several new genes related to iron homeostasis, such as the hemochromatosis protein HFE and the iron transporter DMT1, that our knowledge has been advanced dramatically. A major pathway for cellular iron uptake is through internalization of the complex of iron-bound transferrin and the transferrin receptor, which is negatively modulated by HFE, a protein related to hereditary hemochromatosis. Iron is released from transferrin as the result of the acidic pH in endosome and then is transported to the cytosol by DMT1. The iron is then utilized as a cofactor by heme and ribonucleotide reductase or stored in ferritin. Apart from iron, many other metal ions of therapeutic and diagnostic interests can also bind to transferrin at the iron sites and their transferrin complexes can be recognized by many cells. Therefore, transferrin has been thought as a "delivery system" for many beneficial and harmful metal ions into the cells. Transferrin has also be widely applied as a targeting ligand in the active targeting of anticancer agents, proteins, and genes to primary proliferating malignant cells that overexpress transferrin receptors. This is achieved by conjugation of transferrin with drugs, proteins, hybride systems with marcomolecules and as liposomal-coated systems. Conjugates of anticancer drugs with transferrin can significantly improve the selectivity and toxicity and overcome drug resistance, thereby leading to a better treatment. The coupling of DNA to transferrin via a polycation such as polylysine or via cationic liposomes can target and transfer of the extrogenous DNA particularly into proliferating cells through receptor-mediated endocytosis. These kinds of non-viral vectors are potential alternatives to viral vectors for gene therapy, if the transfection efficiency can be improved. Moreover, transferrin receptors have shown potentials in delivery of therapeutic drugs or genes into the brain across blood-brain barrier.
Collapse
Affiliation(s)
- Hongyan Li
- Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | |
Collapse
|
38
|
Li H, Sun H, Qian ZM. The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci 2002; 23:206-9. [PMID: 12007993 DOI: 10.1016/s0165-6147(02)01989-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exploration of the potential of site-specific and target-oriented drug delivery systems has gained interest recently. Indeed, the efficient cellular mechanism of transferrin uptake has been exploited for the delivery not only of anticancer drugs and proteins, but also of therapeutic genes into proliferating malignant cells that overexpress transferrin receptors. In particular, the transferrin receptor offers great promise in the delivery of therapeutic agents across the blood-brain barrier to the brain.
Collapse
Affiliation(s)
- Hongyan Li
- Dept of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | |
Collapse
|