1
|
Morris R, Keating N, Tan C, Chen H, Laktyushin A, Saiyed T, Liau NPD, Nicola NA, Tiganis T, Kershaw NJ, Babon JJ. Structure guided studies of the interaction between PTP1B and JAK. Commun Biol 2023; 6:641. [PMID: 37316570 DOI: 10.1038/s42003-023-05020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) is the prototypical protein tyrosine phosphatase and plays an essential role in the regulation of several kinase-driven signalling pathways. PTP1B displays a preference for bisphosphorylated substrates. Here we identify PTP1B as an inhibitor of IL-6 and show that, in vitro, it can dephosphorylate all four members of the JAK family. In order to gain a detailed understanding of the molecular mechanism of JAK dephosphorylation, we undertook a structural and biochemical analysis of the dephosphorylation reaction. We identified a product-trapping PTP1B mutant that allowed visualisation of the tyrosine and phosphate products of the reaction and a substrate-trapping mutant with a vastly decreased off-rate compared to those previously described. The latter mutant was used to determine the structure of bisphosphorylated JAK peptides bound to the enzyme active site. These structures revealed that the downstream phosphotyrosine preferentially engaged the active site, in contrast to the analogous region of IRK. Biochemical analysis confirmed this preference. In this binding mode, the previously identified second aryl binding site remains unoccupied and the non-substrate phosphotyrosine engages Arg47. Mutation of this arginine disrupts the preference for the downstream phosphotyrosine. This study reveals a previously unappreciated plasticity in how PTP1B interacts with different substrates.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Narelle Keating
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Cyrus Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Hao Chen
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
| | - Tamanna Saiyed
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
| | - Nicholas P D Liau
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, VIC, Australia.
| |
Collapse
|
2
|
The Role of the JAK/STAT Signaling Pathway in the Pathogenesis of Alzheimer's Disease: New Potential Treatment Target. Int J Mol Sci 2023; 24:ijms24010864. [PMID: 36614305 PMCID: PMC9821184 DOI: 10.3390/ijms24010864] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, emerging evidence suggests that neuroinflammation, mediated notably by activated neuroglial cells, neutrophils, and macrophages, also plays an important role in the pathogenesis of Alzheimer's disease. Therefore, understanding the interplay between the nervous and immune systems might be the key to the prevention or delay of Alzheimer's disease progression. One of the most important mechanisms determining gliogenic cell fate is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that is influenced by the overactivation of microglia and astrocytes. The JAK/STAT signaling pathway is one of the critical factors that promote neuroinflammation in neurodegenerative diseases such as Alzheimer's disease by initiating innate immunity, orchestrating adaptive immune mechanisms, and finally, constraining neuroinflammatory response. Since a chronic neuroinflammatory environment in the brain is a hallmark of Alzheimer's disease, understanding the process would allow establishing the underlying role of neuroinflammation, then estimating the prognosis of Alzheimer's disease development and finding a new potential treatment target. In this review, we highlight the recent advances in the potential role of JAK/STAT signaling in neurological diseases with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for Alzheimer's disease.
Collapse
|
3
|
Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSONS DISEASE 2020; 2020:8814236. [PMID: 33456749 PMCID: PMC7787797 DOI: 10.1155/2020/8814236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
|
4
|
Byeon HJ, Kim JY, Ko J, Lee EJ, Don K, Yoon JS. Protein tyrosine phosphatase 1B as a therapeutic target for Graves' orbitopathy in an in vitro model. PLoS One 2020; 15:e0237015. [PMID: 32760098 PMCID: PMC7410323 DOI: 10.1371/journal.pone.0237015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
Graves' orbitopathy (GO) is characterised in early stages by orbital fibroblast inflammation, which can be aggravated by oxidative stress and often leads to fibrosis. Protein tyrosine protein 1B (PTP1B) is a regulator of inflammation and a therapeutic target in diabetes. We investigated the role of PTP1B in the GO mechanism using orbital fibroblasts from GO and healthy non-GO subjects. After 24 hours of transfection with PTPN1 siRNA, the fibroblasts were exposed to interleukin (IL)-1β, cigarette smoke extract (CSE), H2O2, and transforming growth factor (TGF)-β stimulations. Inflammatory cytokines and fibrosis-related proteins were analysed using western blotting and/or enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) release was detected using an oxidant-sensitive fluorescent probe. IL-1β, tumor necrosis factor (TNF)-α, bovine thyroid stimulating hormone (bTSH), high-affinity human stimulatory monoclonal antibody of TSH receptor (M22), and insulin-like growth factor-1 (IGF-1) significantly increased PTP1B protein production in GO and non-GO fibroblasts. PTPN1 silencing significantly blocked IL-1β-induced inflammatory cytokine production, CSE- and H2O2-induced ROS synthesis, and TGF-β-induced expression of collagen Iα, α-smooth muscle actin (SMA), and fibronectin in GO fibroblasts. Silencing PTPN1 also decreased phosphorylation levels of Akt, p38, and c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER)-stress response proteins in GO cells. PTP1B may be a potential therapeutic target of anti-inflammatory, anti-oxidant and anti-fibrotic treatment of GO.
Collapse
Affiliation(s)
- Hyeong Ju Byeon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kikkawa Don
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
5
|
Rubio C, Puerto M, García-Rodríquez JJ, Lu VB, García-Martínez I, Alén R, Sanmartín-Salinas P, Toledo-Lobo MV, Saiz J, Ruperez J, Barbas C, Menchén L, Gribble FM, Reimann F, Guijarro LG, Carrascosa JM, Valverde ÁM. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab 2020; 35:100954. [PMID: 32244182 PMCID: PMC7082558 DOI: 10.1016/j.molmet.2020.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice. METHODS Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice. RESULTS We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition. CONCLUSION Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.
Collapse
Affiliation(s)
- Carmen Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Marta Puerto
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain
| | - Juan J García-Rodríquez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Van B Lu
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Irma García-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rosa Alén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | | | - M Val Toledo-Lobo
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jorge Saiz
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coral Barbas
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | - Luis Menchén
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luis G Guijarro
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jose M Carrascosa
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Feng CW, Chen NF, Chan TF, Chen WF. Therapeutic Role of Protein Tyrosine Phosphatase 1B in Parkinson's Disease via Antineuroinflammation and Neuroprotection In Vitro and In Vivo. PARKINSON'S DISEASE 2020. [PMID: 33456749 DOI: 10.1155/2020/8814236.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. However, the currently available treatments could only relieve symptoms. Novel therapeutic targets are urgently needed. Several previous studies mentioned that protein tyrosine phosphatase 1B (PTP1B) acted as a negative regulator of the insulin signal pathway and played a significant role in the inflammation process. However, few studies have investigated the role of PTP1B in the central nervous system. Our study showed that suramin, an inhibitor of PTP1B, could improve neuronal damage. It could significantly attenuate the interferon-gamma-induced upregulation of proinflammatory cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). It enhanced M2 type microglia markers, such as arginase-1 and Ym-1 in BV2 murine microglial cells. PTP1B inhibition also reversed 6-hydroxydopamine- (6-OHDA-) induced downregulation of phospho-cAMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) in SH-SY5Y cells. Besides, we knocked down and overexpressed PTP1B in the SH-SY5Y cells to confirm its role in neuroprotection. We also verified the effect of suramin in the zebrafish PD model. Treatment with suramin could significantly reverse 6-OHDA-induced locomotor deficits and improved tyrosine hydroxylase (TH) via attenuating endoplasmic reticulum (ER) stress biomarkers. These results support that PTP1B could potentially regulate PD via antineuroinflammation and antiapoptotic pathways.
Collapse
Affiliation(s)
- Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Neurosurgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
8
|
Prognostic and therapeutic significance of phosphorylated STAT3 and protein tyrosine phosphatase-6 in peripheral-T cell lymphoma. Blood Cancer J 2018; 8:110. [PMID: 30420593 PMCID: PMC6232096 DOI: 10.1038/s41408-018-0138-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
Peripheral T cell lymphomas (PTCL) is a heterogenous group of non-Hodgkin lymphoma and many patients remain refractory to the frontline therapy. Identifying new prognostic markers and treatment is an unmet need in PTCL. We analyzed phospho-STAT3 (pSTAT3) expression in a cohort of 169 PTCL tumors and show overall 38% positivity with varied distribution among PTCL subtypes with 27% (16/59) in PTCL-NOS; 29% (11/38) in AITL, 57% (13/28) in ALK-negative ALCL, and 93% in ALK-pos ALCL (14/15), respectively. Correlative analysis indicated an adverse correlation between pSTAT3 and overall survival (OS). PTPN6, a tyrosine phosphatase and potential negative regulator of STAT3 activity, was suppressed in 62% of PTCL-NOS, 42% of AITL, 60% ALK-neg ALCL, and 86% of ALK-pos ALCL. Loss of PTPN6 combined with pSTAT3 positivity predicted an infwere considered significantferior OS in PTCL cases. In vitro treatment of TCL lines with azacytidine (aza), a DNA methyltransferase inhibitor (DNMTi), restored PTPN6 expression and decreased pSTAT3. Combining DNMTi with JAK3 inhibitor resulted in synergistic antitumor activity in SUDHL1 cell line. Overall, our results suggest that PTPN6 and activated STAT3 can be developed as prognostic markers, and the combination of DNMTi and JAK3 inhibitors as a novel treatment for patients with PTCL subtypes.
Collapse
|
9
|
Mojena M, Pimentel-Santillana M, Povo-Retana A, Fernández-García V, González-Ramos S, Rada P, Tejedor A, Rico D, Martín-Sanz P, Valverde AM, Boscá L. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B. Redox Biol 2018; 17:213-223. [PMID: 29705509 PMCID: PMC6006913 DOI: 10.1016/j.redox.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant.
Collapse
Affiliation(s)
- Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Alberto Tejedor
- Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, United Kingdom
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain; Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Spain.
| |
Collapse
|
10
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
11
|
Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Mol Metab 2017; 7:132-146. [PMID: 29126873 PMCID: PMC5784331 DOI: 10.1016/j.molmet.2017.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. Protein tyrosine phosphatase 1B (PTP1B), a negative modulator of insulin and cytokine signaling, is a therapeutic target for type 2 diabetes and obesity. We investigated the impact of PTP1B deficiency during NAFLD, particularly in non-alcoholic steatohepatitis (NASH). Methods NASH features were evaluated in livers from wild-type (PTP1BWT) and PTP1B-deficient (PTP1BKO) mice fed methionine/choline-deficient diet (MCD) for 8 weeks. A recovery model was established by replacing MCD to chow diet (CHD) for 2–7 days. Non-parenchymal liver cells (NPCs) were analyzed by flow cytometry. Oval cells markers were measured in human and mouse livers with NASH, and in oval cells from PTP1BWT and PTP1BKO mice. Results PTP1BWT mice fed MCD for 8 weeks exhibited NASH, NPCs infiltration, and elevated Fgf21, Il6 and Il1b mRNAs. These parameters decreased after switching to CHD. PTP1B deficiency accelerated MCD-induced NASH. Conversely, after switching to CHD, PTP1BKO mice rapidly reverted NASH compared to PTP1BWT mice in parallel to the normalization of serum triglycerides (TG) levels. Among NPCs, a drop in cytotoxic natural killer T (NKT) subpopulation was detected in PTP1BKO livers during recovery, and in these conditions M2 macrophage markers were up-regulated. Oval cells markers (EpCAM and cytokeratin 19) significantly increased during NASH only in PTP1B-deficient livers. HGF-mediated signaling and proliferative capacity were enhanced in PTP1BKO oval cells. In NASH patients, oval cells markers were also elevated. Conclusions PTP1B elicits a dual role in NASH progression and reversion. Additionally, our results support a new role for PTP1B in oval cell proliferation during NAFLD. PTP1B deficiency accelerates MCD-induced NASH. The liver inflammatory responses during NASH are enhanced in PTP1B-deficient mice. PTP1B deficiency accelerates the reversion of NASH in a recovery dietary model. In a DCC model PTP1BKO livers increased oval cells markers and proliferative capacity. PTP1B deficiency enhances HGF-mediated signaling and proliferation of oval cells.
Collapse
|
12
|
Siavash H, Nikitakis N, Sauk J. Signal Transducers and Activators of Transcription: Insights into the Molecular Basis of Oral Cancer. ACTA ACUST UNITED AC 2016; 15:298-307. [DOI: 10.1177/154411130401500505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent efforts on developing more direct and effective targets for cancer therapy have revolved around a family of transcription factors known as STATs (signal transducers and activators of transcription). STAT proteins are latent cytoplasmic transcription factors that become activated in response to extracellular signaling proteins. STAT proteins have been convincingly reported to possess oncogenic properties in a plethora of human cancers, including oral and oropharyngeal cancer. Signal transduction pathways mediated by these oncogenic transcription factors and their regulation in oral cancer are the focus of this review.
Collapse
Affiliation(s)
- H. Siavash
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - N.G. Nikitakis
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - J.J. Sauk
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
13
|
Doiron B, Hu W, DeFronzo RA. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice. Curr Pharm Biotechnol 2016; 17:376-88. [PMID: 26696016 PMCID: PMC5421132 DOI: 10.2174/1389201017666151223124031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022]
Abstract
Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40-50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ’s adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) long-term normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Bruno Doiron
- Diabetes Division University of Texas Health Science Center 7703 Floyd Curl Drive San Antonio, Texas, 78231.
| | | | | |
Collapse
|
14
|
Lee S, Kelleher SL. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am J Physiol Endocrinol Metab 2016; 311:E405-22. [PMID: 27354238 PMCID: PMC5005964 DOI: 10.1152/ajpendo.00495.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants.
Collapse
Affiliation(s)
- Sooyeon Lee
- Departments of Cellular and Molecular Physiology
| | - Shannon L Kelleher
- Departments of Cellular and Molecular Physiology, Pharmacology, and Surgery, Pennsylvania State Hershey College of Medicine, Hershey, Pennsylvania; and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
15
|
Yang T, Xie Z, Li H, Yue L, Pang Z, MacNeil AJ, Tremblay ML, Tang JT, Lin TJ. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo. Cell Immunol 2016; 306-307:9-16. [PMID: 27311921 DOI: 10.1016/j.cellimm.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 01/23/2023]
Abstract
Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo.
Collapse
Affiliation(s)
- Ting Yang
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Zhongping Xie
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Hua Li
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China
| | - Zheng Pang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Adam J MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Michel L Tremblay
- Goodman Cancer Research Centre and the Department of Biochemistry, McGill University, 1160 Pine Ave. West, Montréal, QC H3A 1A3, Canada
| | - Jin-Tian Tang
- Institute of Medical Physics and Engineering, Tsinghua University, Beijing 100084, China
| | - Tong-Jun Lin
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan 650118, China; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia B3K 6R8, Canada.
| |
Collapse
|
16
|
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH, Chen KF. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology 2016; 63:1528-43. [PMID: 26840794 DOI: 10.1002/hep.28478] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED The effective therapeutic targets for hepatocellular carcinoma remain limited. Pituitary homeobox 1 (PITX1) functions as a tumor suppressor in hepatocarcinogenesis by regulating the expression level of Ras guanosine triphosphatase-activating protein. Here, we report that protein tyrosine phosphatases 1B (PTP1B) directly dephosphorylated PITX1 at Y160, Y175, and Y179 to further weaken the protein stability of PITX. The PTP1B-dependent decline of PITX1 reduced its transcriptional activity for p120RasGAP (RASA1), a Ras guanosine triphosphatase-activating protein. Both silencing of PTP1B and PTP1B inhibitor up-regulated the PITX1-p120RasGAP axis through hyperphosphorylation of PITX1. Sorafenib, the first and only targeted drug approved for hepatocellular carcinoma, directly decreased PTP1B activity and promoted the expression of PITX1 and p120RasGAP by PITX1 hyperphosphorylation. Molecular docking also supported the potential interaction between PTP1B and sorafenib. PTP1B overexpression impaired the sensitivity of sorafenib in vitro and in vivo, implying that PTP1B has a significant effect on sorafenib-induced apoptosis. In sorafenib-treated tumor samples, we further found inhibition of PTP1B activity and up-regulation of the PITX1-p120RasGAP axis, suggesting that PTP1B inhibitor may be effective for the treatment of hepatocellular carcinoma. By immunohistochemical staining of hepatic tumor tissue from 155 patients, the expression of PTP1B was significantly in tumor parts higher than nontumor parts (P = 0.02). Furthermore, high expression of PTP1B was significantly associated with poor tumor differentiation (P = 0.031). CONCLUSION PTP1B dephosphorylates PITX1 to weaken its protein stability and the transcriptional activity for p120RasGAP gene expression and acts as a determinant of the sorafenib-mediated drug effect; targeting the PITX1-p120RasGAP axis with a PTP1B inhibitor may provide a new therapy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jui-Wen Huang
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Buonfiglio DC, Ramos-Lobo AM, Freitas VM, Zampieri TT, Nagaishi VS, Magalhães M, Cipolla-Neto J, Cella N, Donato J. Obesity impairs lactation performance in mice by inducing prolactin resistance. Sci Rep 2016; 6:22421. [PMID: 26926925 PMCID: PMC4772384 DOI: 10.1038/srep22421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/15/2016] [Indexed: 12/30/2022] Open
Abstract
Obesity reduces breastfeeding success and lactation performance in women. However, the mechanisms involved are not entirely understood. In the present study, female C57BL/6 mice were chronically exposed to a high-fat diet to induce obesity and subsequently exhibited impaired offspring viability (only 15% survival rate), milk production (33% reduction), mammopoiesis (one-third of the glandular area compared to control animals) and postpartum maternal behaviors (higher latency to retrieving and grouping the pups). Reproductive experience attenuated these defects. Diet-induced obese mice exhibited high basal pSTAT5 levels in the mammary tissue and hypothalamus, and an acute prolactin stimulus was unable to further increase pSTAT5 levels above basal levels. In contrast, genetically obese leptin-deficient females showed normal prolactin responsiveness. Additionally, we identified the expression of leptin receptors specifically in basal/myoepithelial cells of the mouse mammary gland. Finally, high-fat diet females exhibited altered mRNA levels of ERBB4 and NRG1, suggesting that obesity may involve disturbances to mammary gland paracrine circuits that are critical in the control of luminal progenitor function and lactation. In summary, our findings indicate that high leptin levels are a possible cause of the peripheral and central prolactin resistance observed in obese mice which leads to impaired lactation performance.
Collapse
Affiliation(s)
- Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa S Nagaishi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Magna Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
18
|
Abstract
Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly homologous proteins that are encoded by 2 separate genes and are activated by Janus-activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signalling pathway as their main mode of signal transduction. STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival. The physiological importance of STAT5 proteins is underscored by the plethora of primary human tumors that have aberrant constitutive activation of these proteins, which significantly contributes to tumor cell survival and malignant progression of disease. STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (γ(c)) in their receptor complex. STAT5 critically mediates the biological actions of members of the γ(c) family of cytokines in the immune system. Essentially, STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells. Thus, therapeutic targeting of STAT5 is promising in cancer.
Collapse
Affiliation(s)
- Aradhana Rani
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| | - John J Murphy
- Department of Biomedical Sciences, University of Westminster , London, United Kingdom
| |
Collapse
|
19
|
Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization. PLoS One 2015; 10:e0145880. [PMID: 26710253 PMCID: PMC4692422 DOI: 10.1371/journal.pone.0145880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability.
Collapse
|
20
|
Berger A, Sexl V, Valent P, Moriggl R. Inhibition of STAT5: a therapeutic option in BCR-ABL1-driven leukemia. Oncotarget 2014; 5:9564-76. [PMID: 25333255 PMCID: PMC4259420 DOI: 10.18632/oncotarget.2465] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/06/2014] [Indexed: 01/10/2023] Open
Abstract
The two transcription factors STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases and they fulfill all criteria of drug targets. STAT5A and STAT5B display unique nuclear shuttling mechanisms and they have a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). Moreover, STAT5A and STAT5B promote survival of leukemic stem cells. We here discuss the possibility of targeting up-stream kinases with TKI, direct STAT5 inhibition via SH2 domain obstruction and blocking nuclear translocation of STAT5. All discussed options will result in a stop of STAT5 transport to the nucleus to block STAT5-mediated transcriptional activity. In summary, recently described shuttling functions of STAT5 are discussed as potentially druggable pathways in leukemias.
Collapse
Affiliation(s)
- Angelika Berger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Richard Moriggl
- Ludwig-Boltzmann Institute for Cancer Research, University of Veterinary Medicine, Medical University Vienna, Austria
| |
Collapse
|
21
|
Abstract
The hormonal milieu influences immune tolerance and the immune response against viruses and cancer, but the direct effect of androgens on cellular immunity remains largely uncharacterized. We therefore sought to evaluate the effect of androgens on murine and human T cells in vivo and in vitro. We found that murine androgen deprivation in vivo elicited RNA expression patterns conducive to IFN signaling and T-cell differentiation. Interrogation of mechanism showed that testosterone regulates T-helper 1 (Th1) differentiation by inhibiting IL-12-induced Stat4 phosphorylation: in murine models, we determined that androgen receptor binds a conserved region within the phosphatase, Ptpn1, and consequent up-regulation of Ptpn1 then inhibits IL-12 signaling in CD4 T cells. The clinical relevance of this mechanism, whereby the androgen milieu modulates CD4 T-cell differentiation, was ascertained as we found that androgen deprivation reduced expression of Ptpn1 in CD4 cells from patients undergoing androgen deprivation therapy for prostate cancer. Our findings, which demonstrate a clinically relevant mechanism by which androgens inhibit Th1 differentiation of CD4 T cells, provide rationale for targeting androgens to enhance CD4-mediated immune responses in cancer or, conversely, for modulating androgens to mitigate CD4 responses in disorders of autoimmunity.
Collapse
|
22
|
Owen C, Lees EK, Mody N, Delibegović M. Regulation of growth hormone induced JAK2 and mTOR signalling by hepatic protein tyrosine phosphatase 1B. DIABETES & METABOLISM 2014; 41:95-101. [PMID: 24948418 DOI: 10.1016/j.diabet.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 01/25/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) regulates various signalling pathways including insulin, leptin, IGF-1 and growth hormone (GH) signalling. Transmission of the GH signal depends on Janus kinase 2 (JAK2), which is how PTP1B is thought to modulate GH signalling in the liver, based on studies utilising global PTP1B knockout mice (Ptp1b(-/-)). Here, we investigated the liver-specific role of PTP1B in GH signalling, using liver-specific Ptp1b(-/-) mice (alb-crePtp1b(-/-)), under physiological (chow) or insulin resistant (high-fat diet [HFD]) feeding conditions. Body weight and adiposity were comparable between female alb-crePtp1b(-/-) and Ptp1b(fl/fl) control mice. On chow diet, under 48-hour fasting GH-resistant conditions, GH stimulation in vivo led to a robust stimulation of the JAK-STAT signalling pathway. Alb-crePtp1b(-/-) mice exhibited significantly higher GH-induced JAK2 phosphorylation and SOCS3 gene expression post-GH stimulation. However, STAT3, STAT5 and ERK1/2 phosphorylation and SOCS2 gene expression were similar between groups. Interestingly, GH-induced mTOR phosphorylation was significantly higher in alb-crePtp1b(-/-) mice 5-min post-GH stimulation compared to controls, revealing this part of the pathway under direct control of PTP1B. Under ad lib HFD-fed conditions, GH-induced STAT5 phosphorylation significantly increased in alb-crePtp1b(-/-) mice only, with no alterations in the controls. Overall, our data demonstrate that liver-specific PTP1B deletion leads to significant alterations in GH signalling with increased JAK2, STAT5 and mTOR phosphorylation and SOCS3 gene expression.
Collapse
Affiliation(s)
- C Owen
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - E K Lees
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - N Mody
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - M Delibegović
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| |
Collapse
|
23
|
Través PG, Pardo V, Pimentel-Santillana M, González-Rodríguez Á, Mojena M, Rico D, Montenegro Y, Calés C, Martín-Sanz P, Valverde AM, Boscá L. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis 2014; 5:e1125. [PMID: 24625984 PMCID: PMC3973223 DOI: 10.1038/cddis.2014.90] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.
Collapse
MESH Headings
- Animals
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Galactosamine
- Gene Expression Profiling/methods
- Humans
- Immunity, Innate
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Lipopolysaccharides
- Macrophage Activation
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- RNA Interference
- Signal Transduction
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- P G Través
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - V Pardo
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Á González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
| | - M Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - D Rico
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Center (CNIO), ISCIII, Madrid, Spain
| | - Y Montenegro
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - C Calés
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - P Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
| | - A M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), ISCIII, Madrid, Spain
- IB-Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. Tel: +34 91585400; Fax: +34 915854401; E-mail: (AMV) or Tel/Fax: +34 914972747; E-mail: (LB)
| | - L Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), ISCIII, Madrid, Spain
- IB-Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. Tel: +34 91585400; Fax: +34 915854401; E-mail: (AMV) or Tel/Fax: +34 914972747; E-mail: (LB)
| |
Collapse
|
24
|
Böhmer FD, Friedrich K. Protein tyrosine phosphatases as wardens of STAT signaling. JAKSTAT 2014; 3:e28087. [PMID: 24778927 DOI: 10.4161/jkst.28087] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023] Open
Abstract
Signaling by signal transducers and activators of transcription (STATs) is controlled at many levels of the signaling cascade. Protein tyrosine phosphatases (PTPs) regulate STAT activation at several layers, including direct pSTAT dephosphorylation in both cytoplasm and nucleus. Despite the importance of this regulation mode, many aspects are still incompletely understood, e.g., the identity of PTPs acting on certain members of the STAT family. After a brief introduction into the STAT and PTP families, we discuss here the current knowledge on PTP mediated regulation of STAT activity, focusing on the interaction of individual STATs with specific PTPs. Finally, we highlight open questions and propose important tasks of future research.
Collapse
Affiliation(s)
- Frank-D Böhmer
- Institute of Molecular Cell Biology; CMB; Jena University Hospital; Jena, Germany
| | | |
Collapse
|
25
|
Joshi CS, Khan SA, Khole VV. Regulation of acrosome reaction by Liprin α3, LAR and its ligands in mouse spermatozoa. Andrology 2013; 2:165-74. [PMID: 24327330 DOI: 10.1111/j.2047-2927.2013.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
Zona pellucida-based induction of acrosome reaction (AR) is a popular and well-accepted hypothesis. However, this hypothesis is being challenged in recent years and it has been proposed that the cumulus cells might be the site of AR. In our previous study, we reported the presence of a synaptic protein Liprin α3 on sperm acrosome, and proposed its role in AR. This study was designed to understand the role of Liprin α3 and its interacting proteins in regulation of AR. It is observed that the presence of anti-Liprin α3 antibody inhibits the process of AR. Colocalization experiments demonstrate the coexistence of leucocyte antigen related (LAR) protein, Rab-interacting molecule (RIM) and Liprin α3 on sperm acrosome thereby completing the identification of all the members of RIM/MUNC/Rab3A/liprinα complex required for membrane fusion. This study demonstrates the effect of LAR ligands such as Syndecans, Nidogens and LAR wedge domain peptide on AR. We could see an increase in AR in presence of these ligands. On the basis of these data, we speculate that in presence of ligands or wedge peptide, LAR undergoes dimerization leading to inhibition of phosphatase activity and increase in AR. The presence of one of the ligands Syndecan-1 on cumulus cells led us to hypothesize that it is Syndecan which induces AR in vivo and thus another site of AR could lie in cumulus.
Collapse
Affiliation(s)
- C S Joshi
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | | | | |
Collapse
|
26
|
Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One 2013; 8:e70828. [PMID: 23951017 PMCID: PMC3739765 DOI: 10.1371/journal.pone.0070828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS)-induced murine experimental colitis via expanding CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM), peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.
Collapse
|
27
|
Differential expression of proteins in naïve and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J Proteomics 2013; 91:151-163. [PMID: 23806757 DOI: 10.1016/j.jprot.2013.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and increasing NK cell activity, little is known about the alterations in the global NK cell proteome following IL-2 activation. To compare the proteomes of naïve and IL-2-activated primary NK cells and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve and IL-2-activated NK cells from healthy donors, the proteins were trypsinized and the resulting peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2 regulated proteins revealed potential targets for future investigation of IL-2 signaling in human primary NK cells. A pathway analysis was performed and revealed several pathways that were not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway, integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway and Wnt signaling pathway. BIOLOGICAL SIGNIFICANCE The development and functional activity of natural killer (NK) cells is regulated by interleukin (IL)-2 which stimulates the proliferation of NK cells and increases NK cell activity. With the development of IL-2-based immunotherapeutic strategies that rely on the IL-2-mediated activation of NK cells to target human cancers, it is important to understand the global molecular events triggered by IL-2 in human NK cells. The differentially expressed proteins in human primary NK cells following IL-2 activation identified in this study confirmed the activation of JAK-STAT signaling pathway and cell proliferation by IL-2 as expected, but also led to the discovery and identification of other factors that are potentially important in IL-2 signaling. These new factors warrant further investigation on their potential roles in modulating NK cell biology. The results from this study suggest that the activation of NK cells by IL-2 is a dynamic process through which proteins with various functions are regulated. Such findings will be important for the elucidation of molecular pathways involved in IL-2 signaling in NK cells and provide new targets for future studies in NK cell biology.
Collapse
|
28
|
Shin HY, Reich NC. Dynamic trafficking of STAT5 depends on an unconventional nuclear localization signal. J Cell Sci 2013; 126:3333-43. [PMID: 23704351 DOI: 10.1242/jcs.123042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays reveal that STAT5 nuclear import is mediated by the importin-α3/β1 system independently of STAT5 activation by tyrosine phosphorylation. The integrity of the coiled-coil domain is essential for STAT5 transcriptional induction of the β-casein gene following prolactin stimulation as well as its ability to synergize with the glucocorticoid receptor. The glucocorticoid receptor accumulates in the nucleus in response to prolactin and this nuclear import is dependent on STAT5 nuclear import. STAT5 continually shuttles in and out of the nucleus and live cell imaging demonstrates that STAT5 nuclear export is mediated by both chromosome region maintenance 1 (Crm1)-dependent and Crm1-independent pathways. A Crm1-dependent nuclear export signal was identified within the STAT5 N-terminus. These findings provide insight into the fundamental mechanisms that regulate STAT5 nuclear trafficking and cooperation with the glucocorticoid receptor and provide a basis for clinical intervention of STAT5 function in disease.
Collapse
Affiliation(s)
- Ha Youn Shin
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
29
|
Martinez CS, Piazza VG, Ratner LD, Matos MN, González L, Rulli SB, Miquet JG, Sotelo AI. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period. Growth Horm IGF Res 2013; 23:19-28. [PMID: 23245546 DOI: 10.1016/j.ghir.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/31/2022]
Abstract
Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.
Collapse
Affiliation(s)
- Carolina S Martinez
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
31
|
Huang CY, Lin YC, Hsiao WY, Liao FH, Huang PY, Tan TH. DUSP4 deficiency enhances CD25 expression and CD4+ T-cell proliferation without impeding T-cell development. Eur J Immunol 2011; 42:476-88. [PMID: 22101742 DOI: 10.1002/eji.201041295] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 12/26/2022]
Abstract
The differentiation and activation of T cells are critically modulated by MAP kinases, which are in turn feed-back regulated by dual-specificity phosphatases (DUSPs) to determine the duration and magnitude of MAP kinase activation. DUSP4 (also known as MKP2) is a MAP kinase-induced DUSP member that is dynamically expressed during thymocyte differentiation. We generated DUSP4-deficient mice to study the function of DUSP4 in T-cell development and activation. Our results show that thymocyte differentiation and activation-induced MAP kinase phosphorylation were comparable between DUSP4-deficient and WT mice. Interestingly, activated DUSP4(-/-) CD4(+) T cells were hyperproliferative while DUSP4(-/-) CD8(+) T cells proliferated normally. Further mechanistic studies suggested that the hyperproliferation of DUSP4(-/-) CD4(+) T cells resulted from enhanced CD25 expression and IL-2 signaling through increased STAT5 phosphorylation. Immunization of DUSP4(-/-) mice recapitulated the T-cell hyperproliferation phenotype in antigen recall responses, while the profile of Th1/Th2-polarized antibody production was not altered. Overall, these results suggest that other DUSPs may compensate for DUSP4 deficiency in T-cell development, MAP kinase regulation, and Th1/Th2-mediated antibody responses. More importantly, our data indicate that DUSP4 suppresses CD4(+) T-cell proliferation through novel regulations in STAT5 phosphorylation and IL-2 signaling.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | | | | | | | | | | |
Collapse
|
32
|
Tsou PS, Talia NN, Pinney AJ, Kendzicky A, Piera-Velazquez S, Jimenez SA, Seibold JR, Phillips K, Koch AE. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. ACTA ACUST UNITED AC 2011; 64:1978-89. [PMID: 22161819 DOI: 10.1002/art.34336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA, Bence KK, Zhang S, Zhang ZY, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 2011; 14:684-99. [PMID: 22000926 PMCID: PMC3263335 DOI: 10.1016/j.cmet.2011.09.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/20/2011] [Accepted: 09/21/2011] [Indexed: 01/03/2023]
Abstract
In obesity, anorectic responses to leptin are diminished, giving rise to the concept of "leptin resistance." Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high-fat-diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity.
Collapse
Affiliation(s)
- Kim Loh
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Radin MJ, Holycross BJ, McCune SA, Altschuld RA. Crosstalk between leptin and interleukin-1β abrogates negative inotropic effects in a model of chronic hyperleptinemia. Exp Biol Med (Maywood) 2011; 236:1263-73. [DOI: 10.1258/ebm.2011.011144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Interleukin 1 beta (IL-1 β) is a proinflammatory cytokine with potent cardiosuppressive effects. Previous studies have shown that leptin blunts the negative inotropic effects of IL-1 β in isolated adult rat cardiac myocytes. However, the interactions between leptin and IL-1 β in the heart have not been examined on a background of chronic hyperleptinemia. To study this interaction, we have chosen the SHHF rat, a model of spontaneous hypertension that ultimately develops congestive heart failure. SHHF that are heterozygous for a null mutation of the leptin receptor (+/ fa cp, HET) are phenotypically lean but chronically hyperleptinemic and develop heart failure earlier than their normoleptinemic true lean (+/+, LN) littermates. Simultaneous cell shortening and calcium transients were measured in isolated ventricular cardiac myocytes from LN and HET SHHF in response to leptin, IL-1 β or IL-1 β following one hour pretreatment with leptin. Despite evidence of metabolic leptin resistance, HET myocytes were sensitive to the negative inotropic effect of leptin, similar to LN. Contractility returned to control levels in myocytes from HET that were pretreated with leptin prior to IL-1 β, while contractility remained depressed compared with control and similar to leptin alone in LN. Chronic hyperleptinemia resulted in altered JAK/STAT signaling in response to leptin and IL-1 β in isolated perfused hearts from HET compared with LN SHHF. Phosphorylated STAT3 (pSTAT3) and STAT5 (pSTAT5) decreased when HET hearts were treated with leptin followed by IL-1 β. While decreases in pSTAT3 and pSTAT5 may be associated with abrogation of the acute negative inotropic effects of IL-1 β in the presence of leptin in HET, long-term consequences remain to be explored. This study demonstrates that the heart remains sensitive to leptin in a hyperleptinemic state. Crosstalk between leptin and IL-1 β can influence cardiac function and cytokine signaling and these interactions are moderated by the presence of long-term hyperleptinemia.
Collapse
Affiliation(s)
- M Judith Radin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210
| | - Bethany J Holycross
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210
| | - Sylvia A McCune
- Department of Integrative Physiology, University of Colorado Cardiovascular Institute, University of Colorado at Boulder, Boulder, CO 80309
| | - Ruth A Altschuld
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range. Mol Syst Biol 2011; 7:516. [PMID: 21772264 PMCID: PMC3159971 DOI: 10.1038/msb.2011.50] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/10/2011] [Indexed: 02/06/2023] Open
Abstract
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
Collapse
|
36
|
Abstract
Type 2 Diabetes mellitus (T2D) is the most common endocrine disorder associated to metabolic syndrome (MS) and occurs when insulin secretion can no compensate peripheral insulin resistance. Among peripheral tissues, the liver controls glucose homeostasis due to its ability to consume and produce glucose. The molecular mechanism underlying hepatic insulin resistance is not completely understood; however, it involves the impairment of the insulin signalling network. Among the critical nodes of hepatic insulin signalling, insulin receptor substrate 2 (IRS2) and protein tyrosine phosphatase 1B (PTP1B) modulate the phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 pathway that controls the suppression of gluconeogenic genes. In this review, we will focus on recent findings regarding the molecular mechanism by which IRS2 and PTP1B elicit opposite effects on carbohydrate metabolism in the liver in response to insulin. Finally, we will discuss the involvement of the critical nodes of insulin signalling in non-alcoholic fatty liver disease (NAFLD) in humans.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
37
|
Shen JM, Wang J, Liu XY, Zhao CD, Zhang HX. Study of mangiferin-receptor affinity by cell membrane chromatography using rat pancreas. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9697-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Knecht H, Mai S. 3D imaging of telomeres and nuclear architecture: An emerging tool of 3D nano-morphology-based diagnosis. J Cell Physiol 2011; 226:859-67. [PMID: 20857414 DOI: 10.1002/jcp.22425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patient samples are evaluated by experienced pathologists whose diagnosis guides treating physicians. Pathological diagnoses are complex and often assisted by the application of specific tissue markers. However, cases still exist where pathologists cannot distinguish between closely related entities or determine the aggressiveness of the disease they identify under the microscope. This is due to the absence of reliable markers that define diagnostic subgroups in several cancers. Three-dimensional (3D) imaging of nuclear telomere signatures is emerging as a new tool that may change this situation offering new opportunities to the patients. This article will review current and future avenues in the assessment of diagnostic patient samples.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Haematology/Oncology, Department of Medicine, CHUS, University of Sherbrooke, Sherbrooke, QC, Canada.
| | | |
Collapse
|
39
|
Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50:2339-56. [PMID: 21291263 DOI: 10.1021/bi1014453] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.
Collapse
Affiliation(s)
- Lige Ren
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Calcium as a mediator between erythropoietin and protein tyrosine phosphatase 1B. Arch Biochem Biophys 2011; 505:242-9. [DOI: 10.1016/j.abb.2010.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 01/09/2023]
|
41
|
Knecht H, Brüderlein S, Wegener S, Lichtensztejn D, Lichtensztejn Z, Lemieux B, Möller P, Mai S. 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps". BMC Cell Biol 2010; 11:99. [PMID: 21144060 PMCID: PMC3018409 DOI: 10.1186/1471-2121-11-99] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 12/14/2010] [Indexed: 01/04/2023] Open
Abstract
Background In cancer cells the three-dimensional (3D) telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH) reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H) to diagnostic multinuclear Reed-Sternberg (RS) cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Results Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1) stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p < 0.0001) and a fourfold increased number of apoptotic cells. As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p < 0.0001), the number of telomeres (p < 0.0001) and the increase in telomere aggregates (p < 0.003). Surprisingly, U-HO1-RS cells differ from U-HO1-PTPN1-RS-cells by a highly significant increase of very short telomeres including "t-stumps" (p < 0.0001). Conclusion Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.
Collapse
Affiliation(s)
- Hans Knecht
- CHUS, Université de Sherbrooke, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Johnson KJ, Peck AR, Liu C, Tran TH, Utama FE, Sjolund AB, Schaber JD, Witkiewicz AK, Rui H. PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2971-83. [PMID: 20952588 PMCID: PMC2993292 DOI: 10.2353/ajpath.2010.090399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 12/29/2022]
Abstract
Basal levels of nuclear localized, tyrosine phosphorylated Stat5 are present in healthy human breast epithelia. In contrast, Stat5 phosphorylation is frequently lost during breast cancer progression, a finding that correlates with loss of histological differentiation and poor patient prognosis. Identifying the mechanisms underlying loss of Stat5 phosphorylation could provide novel targets for breast cancer therapy. Pervanadate, a general tyrosine phosphatase inhibitor, revealed marked phosphatase regulation of Stat5 activity in breast cancer cells. Lentiviral-mediated shRNA allowed specific examination of the regulatory role of five tyrosine phosphatases (PTP1B, TC-PTP, SHP1, SHP2, and VHR), previously implicated in Stat5 regulation in various systems. Enhanced and sustained prolactin-induced Stat5 tyrosine phosphorylation was observed in T47D and MCF7 breast cancer cells selectively in response to PTP1B depletion. Conversely, PTP1B overexpression suppressed prolactin-induced Stat5 tyrosine phosphorylation. Furthermore, PTP1B knockdown increased Stat5 reporter gene activity. Mechanistically, PTP1B suppression of Stat5 phosphorylation was mediated, at least in part, through inhibitory dephosphorylation of the Stat5 tyrosine kinase, Jak2. PTP1B knockdown enhanced sensitivity of T47D cells to prolactin phosphorylation of Stat5 by reducing the EC(50) from 7.2 nmol/L to 2.5 nmol/L. Immunohistochemical analyses of two independent clinical breast cancer materials revealed significant negative correlations between levels of active Stat5 and PTP1B, but not TC-PTP. Collectively, our data implicate PTP1B as an important negative regulator of Stat5 phosphorylation in invasive breast cancer.
Collapse
Affiliation(s)
- Kevin J Johnson
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dhennin-Duthille I, Nyga R, Yahiaoui S, Gouilleux-Gruart V, Régnier A, Lassoued K, Gouilleux F. The tumor suppressor hTid1 inhibits STAT5b activity via functional interaction. J Biol Chem 2010; 286:5034-42. [PMID: 21106534 DOI: 10.1074/jbc.m110.155903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT5a and -5b (signal transducers and activators of transcription 5a and 5b) proteins play an essential role in hematopoietic cell proliferation and survival and are frequently constitutively active in hematologic neoplasms and solid tumors. Because STAT5a and STAT5b differ mainly in the carboxyl-terminal transactivation domain, we sought to identify new proteins that bind specifically to this domain by using a bacterial two-hybrid screening. We isolated hTid1, a human DnaJ protein that acts as a tumor suppressor in various solid tumors. hTid1 interacts specifically with STAT5b but not with STAT5a in hematopoietic cell lines. This interaction involves the cysteine-rich region of the hTid1 DnaJ domain. We also demonstrated that hTid1 negatively regulates the expression and transcriptional activity of STAT5b and suppresses the growth of hematopoietic cells transformed by an oncogenic form of STAT5b. Our findings define hTid1 as a novel partner and negative regulator of STAT5b.
Collapse
Affiliation(s)
- Isabelle Dhennin-Duthille
- INSERM, U925, Université de Picardie Jules Verne, UFR de Médecine, 3 Rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Knecht H, Brüderlein S, Mai S, Möller P, Sawan B. 3D structural and functional characterization of the transition from Hodgkin to Reed-Sternberg cells. Ann Anat 2010; 192:302-8. [PMID: 20810259 DOI: 10.1016/j.aanat.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 01/02/2023]
Abstract
Recent research using an innovative 3D quantitative FISH approach of nuclear remodelling associated with the transition from mononuclear Hodgkin to diagnostic multinuclear Reed-Sternberg cells revealed profound changes in the 3D nuclear organization of telomeres. Analogous 3D telomere dynamics were identified in Hodgkin's lymphoma derived cell-lines and diagnostic patient biopsies. These changes were observed in both, EBV positive and EBV-negative Hodgkin's lymphoma and independent of the age of the patients at presentation. Compared to mononuclear Hodgkin cells, multinuclear Reed-Sternberg cells are characterized by a highly significant increase of telomere aggregates, often composed of very short telomeres, telomere shortening and loss. RS-cells with telomere free "ghost" nuclei are regularly observed. The telomere protecting shelterin complex appears to be disrupted and deregulation of DNA-repair mechanisms is observed. Our findings are consistent with the hypothesis that distinct 3D telomere changes and shelterin disruption represent a common pathogenetic denominator in the generation of Reed-Sternberg cells.
Collapse
Affiliation(s)
- Hans Knecht
- Division d'Hématologie, CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | | | | | |
Collapse
|
45
|
Ruela-de-Sousa RR, Queiroz KCS, Peppelenbosch MP, Fuhler GM. Reversible phosphorylation in haematological malignancies: potential role for protein tyrosine phosphatases in treatment? Biochim Biophys Acta Rev Cancer 2010; 1806:287-303. [PMID: 20659529 DOI: 10.1016/j.bbcan.2010.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023]
Abstract
Most aspects of leukocyte physiology are under the control of reversible tyrosine phosphorylation. It is clear that excessive phosphorylation of signal transduction elements is a pivotal element of many different pathologies including haematological malignancies and accordingly, strategies that target such phosphorylation have clinically been proven highly successful for treatment of multiple types of leukemias and lymphomas. Cellular phosphorylation status is dependent on the resultant activity of kinases and phosphatases. The cell biology of the former is now well understood; for most cellular phosphoproteins we now know the kinases responsible for their phosphorylation and we understand the principles of their aberrant activity in disease. With respect to phosphatases, however, our knowledge is much patchier. Although the sequences of whole genomes allow us to identify phosphatases using in silico methodology, whereas transcription profiling allows us to understand how phosphatase expression is regulated during disease, most functional questions as to substrate specificity, dynamic regulation of phosphatase activity and potential for therapeutic intervention are still to a large degree open. Nevertheless, recent studies have allowed us to make meaningful statements on the role of tyrosine phosphatase activity in the three major signaling pathways that are commonly affected in leukemias, i.e. the Ras-Raf-ERK1/2, the Jak-STAT and the PI3K-PKB-mTOR pathways. Lessons learned from these pathways may well be applicable elsewhere in leukocyte biology as well.
Collapse
Affiliation(s)
- Roberta R Ruela-de-Sousa
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
Escrivá F, González-Rodriguez Á, Fernández-Millán E, Rondinone CM, Álvarez C, Valverde ÁM. PTP1B deficiency enhances liver growth during suckling by increasing the expression of insulin-like growth factor-I. J Cell Physiol 2010; 225:214-22. [DOI: 10.1002/jcp.22246] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Nakatani H, Aoki N, Okajima T, Nadano D, Flint D, Matsuda T. Establishment of a mammary stromal fibroblastic cell line for in vitro studies in mice of mammary adipocyte differentiation. Biol Reprod 2010; 82:44-53. [PMID: 19684333 DOI: 10.1095/biolreprod.109.077958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Mammary stromal adipose tissue remodeling is important for appropriate mammary gland development during pregnancy, lactation, and involution. However, the precise mechanisms underlying mammary stromal adipose tissue remodeling remain unclear. We have established a mammary stromal, fibroblastlike cell line (MSF) from primary mouse mammary culture by introducing a temperature-sensitive simian virus-40 large tumor antigen. Among several hormones related to mammary gland development, hydrocortisone was found to commit MSF cells to a preadipocyte lineage, whereas insulin was found to induce extracellular matrix-dependent adipogenic differentiation of the cells, as assessed by lipid accumulation and marker gene expression. Interestingly, such hormone-induced adipogenic differentiation of MSF cells, but not 3T3-L1 cells, was suppressed by prolactin through its receptor and downstream STAT5. Furthermore, coculture of MSF cells with mammary epithelial HC11 cells and culture in HC11-conditioned medium also suppressed adipogenic differentiation of MSF cells. We have demonstrated that adipogenic differentiation of at least some populations of mammary stromal cells is modulated by lactogenic hormones and humoral factors from epithelial cells, suggesting that the response of these mammary cells may differ from adipocytes at other sites. We believe that the MSF cell line will prove a useful model to elucidate mammary stromal adipose development in vitro as well as represent an important first step toward developing stable adipocyte cell lines that faithfully represent their site of origin.
Collapse
Affiliation(s)
- Hajime Nakatani
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Liao Z, Lutz J, Nevalainen MT. Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer. Int J Biochem Cell Biol 2009; 42:186-92. [PMID: 19914392 DOI: 10.1016/j.biocel.2009.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Prostate cancer is the most common non-cutaneous cancer in Western males. The majority of prostate cancer fatalities are caused by development of castration-resistant growth and metastatic spread of the primary tumor. The average duration of the response of primary prostate cancer to hormonal ablation is less than 3 years, and 75% of prostate cancers in the United States progress to castration-resistant disease. The existing pharmacological therapies for metastatic and/or castration-resistant prostate cancer do not provide significant survival benefit. This review summarizes the importance of transcription factor Stat5 signaling in the pathogenesis of prostate cancer and discusses the molecular basis of Stat5a/b inhibition as a therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
49
|
Blanchette J, Abu-Dayyeh I, Hassani K, Whitcombe L, Olivier M. Regulation of macrophage nitric oxide production by the protein tyrosine phosphatase Src homology 2 domain phosphotyrosine phosphatase 1 (SHP-1). Immunology 2009; 127:123-33. [PMID: 18793215 DOI: 10.1111/j.1365-2567.2008.02929.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide (NO) is a potent molecule involved in the cytotoxic effects mediated by macrophages (MØ) against microorganisms. We previously reported that Src homology 2 domain phosphotyrosine phosphatase 1 (SHP-1)-deficient cells generate a greater amount of NO than wild-type cells in response to interferon-gamma (IFN-gamma). We also reported that the Leishmania-induced MØ SHP-1 activity is needed for the survival of the parasite within phagocytes through the attenuation of NO-dependent and NO-independent mechanisms. In the present study, we investigated the role of SHP-1 in regulating key signalling molecules important in MØ NO generation. Janus tyrosine kinase 2 (JAK2), mitogen-activated extracellular signal-regulated protein kinase kinase (MEK), extracellular signal-regulated kinases 1 and 2 (Erk1/Erk2) mitogen-activated protein kinases, p38 and stress-activated mitogen-activated protein kinases/c-Jun NH(2)-terminal kinase (SAPK/JNK) were examined in immortalized bone marrow-derived MØ (BMDM) from both SHP-1-deficient motheaten mice (me-3) and their respective littermates (LM-1). The results indicated that Erk1/Erk2 and SAPK/JNK are the main kinases regulated by SHP-1 because the absence of SHP-1 caused an increase in their phosphorylation. Moreover, only Apigenin, the specific inhibitor of Erk1/Erk2, was able to block IFN-gamma-induced inducible nitric oxide synthase (iNOS) transcription and translation in me-3 cells. Transcription factor analyses revealed that in the absence of SHP-1, activator protein-1 (AP-1) was activated. The activation of AP-1, and not nuclear factor-kappaB (NF-kappaB) or signal transducer and activator of transcription-1 alpha (STAT-1 alpha), may explain the enhanced NO generation in SHP-1-deficient cells. These observations emphasize the involvement of the MAPKs Erk1/Erk2 and SAPK/JNK in NO generation via AP-1 activation. Collectively, our findings suggest that SHP-1 plays a pivotal role in the negative regulation of signalling events leading to iNOS expression and NO generation. Furthermore, our observations underline the importance of SHP-1-mediated negative regulation in maintaining NO homeostasis and thus preventing the abnormal generation of NO that can be detrimental to the host.
Collapse
|
50
|
Erbe DV, Klaman LD, Wilson DP, Wan ZK, Kirincich SJ, Will S, Xu X, Kung L, Wang S, Tam S, Lee J, Tobin JF. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling. Diabetes Obes Metab 2009; 11:579-88. [PMID: 19383031 DOI: 10.1111/j.1463-1326.2008.01022.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A growing percentage of the population is resistant to two key hormones - insulin and leptin - as a result of increased obesity, often leading to significant health consequences such as type 2 diabetes. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of signalling by both of these hormones, so that inhibitors of this enzyme may provide promise for correcting endocrine abnormalities in both diabetes and obesity. As with other tyrosine phosphatases, identification of viable drug candidates targeting PTP1B has been elusive because of the nature of its active site. Beginning with novel phosphotyrosine mimetics, we have designed some of the most potent PTP1B inhibitors. However, their highly acidic structures limit intrinsic permeability and pharmacokinetics. Ester prodrugs of these inhibitors improve their drug-like properties with the goal of delivering these nanomolar inhibitors to the cytoplasm of cells within target tissues. In addition to identifying prodrugs that is able to deliver active drugs into cells to inhibit PTP1B and increase insulin signalling, these compounds were further modified to gain a variety of cleavage properties for targeting activity in vivo. One such prodrug candidate improved insulin sensitivity in ob/ob mice, with lowered fasting blood glucose levels seen in the context of lowered fasting insulin levels following 4 days of intraperitoneal dosing. The results presented in this study highlight the potential for design of orally active drug candidates targeting PTP1B, while also delineating the considerable challenges remaining.
Collapse
Affiliation(s)
- D V Erbe
- Departments of Metabolic Diseases and Chemical Sciences, Wyeth Research, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|