1
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
2
|
Identification of the Potential Correlation between Tumor Protein 73 and Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:6410113. [PMID: 35756491 PMCID: PMC9217540 DOI: 10.1155/2022/6410113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Background Head and neck squamous cell carcinomas (HNSC) are common malignant tumors with a high occurrence and poor prognosis. Tumor protein P73 (TP73) plays an integral role in a wide range of human malignancies, but its gene expression profile, prognostic value, and potential mechanisms in HNSC remain to be comprehensively explored. Objective This research aimed to elucidate the potential relationship between TP73 and HNSC through bioinformatics analysis. Methods The Cancer Genome Atlas (TCGA) database was queried to investigate the regulatory role of TP73 in HNSC. The survival probabilities linked to TP73 mRNA were determined via the Kaplan-Meier analysis using R packages. Subsequently, the association of TP73 with several clinical subgroups and immunological subtypes was studied using a cohort from the TCGA-HNSC. Functional analyses were used to identify the potential signaling pathways enriched by the correlated genes of TP73. The relationship between TP73 and immunological aspects, including immune cells, immune inhibitor genes, immune stimulator genes, and tumor immune microenvironment, were investigated. Results This study showed that the protein and mRNA levels of TP73 in HNSC patients were significantly higher than those in normal tissues. Elevated TP73 expression was related to a better survival outcome in HNSC patients. The TP73 gene was an independent prognostic factor for overall survival in HNSC samples. TP73 was mainly involved in DNA replication, ribosome, apoptosis, mismatch repair, and folate biosynthesis. TP73 was found to be positively correlated with the majority of tumor infiltrating immune cells and immunoinhibitory genes in HNSC. Conclusions Integrative bioinformatics and statistical analyses displayed that TP73 might serve as a novel marker for the diagnosis and prognosis of HNSC. TP73 modulates immune cells in the tumor microenvironment of HNSC patients, thereby bearing significance for HNSC immunotherapy.
Collapse
|
3
|
Humpton TJ, Hock AK, Kiourtis C, Donatis MD, Fercoq F, Nixon C, Bryson S, Strathdee D, Carlin LM, Bird TG, Blyth K, Vousden KH. A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Sci Signal 2022; 15:eabd9099. [PMID: 35133863 PMCID: PMC7612476 DOI: 10.1126/scisignal.abd9099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Marco De Donatis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Frederic Fercoq
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Sheila Bryson
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Thomas G. Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, EH164TJ, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Karen H Vousden
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
4
|
Raj N, Bam R. Reciprocal Crosstalk Between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Front Cell Dev Biol 2019; 7:159. [PMID: 31448276 PMCID: PMC6695833 DOI: 10.3389/fcell.2019.00159] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The YAP1/Hippo and p53 pathways are critical protectors of genome integrity in response to DNA damage. Together, these pathways secure cellular adaptation and maintain overall tissue integrity through transcriptional re-programing downstream of various environmental and biological cues generated during normal tissue growth, cell proliferation, and apoptosis. Genetic perturbations in YAP1/Hippo and p53 pathways are known to contribute to the cells’ ability to turn rogue and initiate tumorigenesis. The Hippo and p53 pathways cooperate on many levels and are closely coordinated through multiple molecular components of their signaling pathways. Several functional and physical interactions have been reported to occur between YAP1/Hippo pathway components and the three p53 family members, p53, p63, and p73. Primarily, functional status of p53 family proteins dictates the subcellular localization, protein stability and transcriptional activity of the core component of the Hippo pathway, Yes-associated protein 1 (YAP1). In this review, we dissect the critical points of crosstalk between the YAP1/Hippo pathway components, with a focus on YAP1, and the p53 tumor suppressor protein family. For each p53 family member, we discuss the biological implications of their interaction with Hippo pathway components in determining cell fate under the conditions of tissue homeostasis and cancer pathogenesis.
Collapse
Affiliation(s)
- Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rakesh Bam
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Meister MT, Boedicker C, Klingebiel T, Fulda S. Hedgehog signaling negatively co-regulates BH3-only protein Noxa and TAp73 in TP53-mutated cells. Cancer Lett 2018; 429:19-28. [PMID: 29702195 DOI: 10.1016/j.canlet.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
In the present study, we show that pharmacological repression by the Hedgehog (Hh) pathway inhibitor (HPI) GANT61 induces expression of the proapoptotic protein Noxa in TP53-mutated embryonal pediatric tumor cells driven by Hh signaling (i.e. rhabdomyosarcoma (RMS) and medulloblastoma (MB)). Similarly, genetic silencing of Gli1 by siRNA causes increased Noxa mRNA and protein levels, while overexpression of Gli1 results in decreased Noxa expression. Furthermore, TAp73 mRNA and protein levels are increased upon Gli1 knockdown, while Gli1 overexpression reduces TAp73 mRNA and protein levels. However, knockdown of TAp73 fails to block Noxa induction in GANT61-treated cells, suggesting that Noxa is not primarily regulated by TAp73. Interestingly, mRNA levels of the transcription factor EGR1 correlate with those of Noxa and TAp73. Silencing of EGR1 results in decreased Noxa and TAp73 mRNA levels, indicating that EGR1 is involved in regulating transcriptional activity of Noxa and TAp73. These findings suggest that Gli1 represses Noxa and TAp73, possibly via EGR1. These findings could be exploited for the treatment of Hh-driven tumors, e.g. for their sensitization to chemotherapeutic agents.
Collapse
Affiliation(s)
- Michael Torsten Meister
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Klingebiel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
7
|
Chequer FM, Venancio VP, Almeida MR, Aissa AF, Bianchi MLP, Antunes LM. Erythrosine B and quinoline yellow dyes regulate DNA repair gene expression in human HepG2 cells. Toxicol Ind Health 2017; 33:765-774. [PMID: 28893156 DOI: 10.1177/0748233717715186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythrosine B (ErB) is a cherry pink food colorant and is widely used in foods, drugs, and cosmetics. Quinoline yellow (QY) is a chinophthalon derivative used in cosmetic compositions for application to the skin, lips, and/or body surface. Previously, ErB and QY synthetic dyes were found to induce DNA damage in HepG2 cells. The aim of this study was to investigate the molecular basis underlying the genotoxicity attributed to ErB and QY using the RT2 Profiler polymerase chain reaction array and by analyzing the expression profile of 84 genes involved in cell cycle arrest, apoptosis, and DNA repair in HepG2 cells. ErB (70 mg/L) significantly decreased the expression of two genes ( FEN1 and REV1) related to DNA base repair. One gene ( LIG1) was downregulated and 20 genes related to ATR/ATM signaling ( ATR, RBBP8, RAD1, CHEK1, CHEK2, TOPB1), nucleotide excision repair ( ERCC1, XPA), base excision repair ( FEN1, MBD4), mismatch repair ( MLH1, MSH3, TP73), double strand break repair ( BLM), other DNA repair genes ( BRIP1, FANCA, GADD45A, REV1), and apoptosis ( BAX, PPP1R15A) were significantly increased after treatment with QY (20 mg/L). In conclusion, our data suggest that the genotoxic mechanism of ErB and QY dyes involves the modulation of genes related to the DNA repair system and cell cycle.
Collapse
Affiliation(s)
- Farah Md Chequer
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,2 Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Vinicius P Venancio
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,3 Department of Nutrition and Food Science, Texas A&M University, TX, USA
| | - Mara R Almeida
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre F Aissa
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lourdes P Bianchi
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lusânia Mg Antunes
- 1 Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Liu T, Krysiak K, Shirai CL, Kim S, Shao J, Ndonwi M, Walter MJ. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLoS One 2017; 12:e0170470. [PMID: 28178280 PMCID: PMC5298293 DOI: 10.1371/journal.pone.0170470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are the most common adult myeloid blood cancers in the US. Patients have increased apoptosis in their bone marrow cells leading to low peripheral blood counts. The full complement of gene mutations that contribute to increased apoptosis in MDS remains unknown. Up to 25% of MDS patients harbor and acquired interstitial deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes including HSPA9. Knockdown of HSPA9 in primary human CD34+ hematopoietic progenitor cells significantly inhibits growth and increases apoptosis. We show here that HSPA9 knockdown is associated with increased TP53 expression and activity, resulting in increased expression of target genes BAX and p21. HSPA9 protein interacts with TP53 in CD34+ cells and knockdown of HSPA9 increases nuclear TP53 levels, providing a possible mechanism for regulation of TP53 by HSPA9 haploinsufficiency in hematopoietic cells. Concurrent knockdown of TP53 and HSPA9 rescued the increased apoptosis observed in CD34+ cells following knockdown of HSPA9. Reduction of HSPA9 below 50% results in severe inhibition of cell growth, suggesting that del(5q) cells may be preferentially sensitive to further reductions of HSPA9 below 50%, thus providing a genetic vulnerability to del(5q) cells. Treatment of bone marrow cells with MKT-077, an HSPA9 inhibitor, induced apoptosis in a higher percentage of cells from MDS patients with del(5q) compared to non-del(5q) MDS patients and normal donor cells. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to TP53 activation and increased apoptosis observed in del(5q)-associated MDS.
Collapse
Affiliation(s)
- Tuoen Liu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cara Lunn Shirai
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sanghyun Kim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jin Shao
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Ndonwi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
9
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
10
|
Kim SH, Ryu HG, Lee J, Shin J, Harikishore A, Jung HY, Kim YS, Lyu HN, Oh E, Baek NI, Choi KY, Yoon HS, Kim KT. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci Rep 2015; 5:14570. [PMID: 26412148 PMCID: PMC4585938 DOI: 10.1038/srep14570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023] Open
Abstract
Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Hoe-Youn Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunji Oh
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kwan-Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
11
|
Subramanian D, Bunjobpol W, Sabapathy K. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth. J Biol Chem 2015; 290:18636-49. [PMID: 26018080 PMCID: PMC4513121 DOI: 10.1074/jbc.m115.636548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth.
Collapse
Affiliation(s)
- Deepa Subramanian
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Wilawan Bunjobpol
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Kanaga Sabapathy
- From the Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore, Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore, and Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
12
|
Yang JH, Chiou YY, Fu SL, Shih IY, Weng TH, Lin WJ, Lin CH. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation. Nucleic Acids Res 2014; 42:9908-24. [PMID: 25104022 PMCID: PMC4150800 DOI: 10.1093/nar/gku705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Yun Shih
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsai-Hsuan Weng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan Proteomics Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
13
|
Abstract
Protein p73 is a member of the p53 protein family that can induce cell cycle arrest or apoptosis by the activation of p53-responsive genes as well as p53-independent pathways. Alternative promoter usage, together with differential splicing of the C-terminal exons, forms several distinct mRNAs that are translated into corresponding protein isoforms containing different domains. While TAp73 isoforms respond to genotoxic stress in a manner similar to tumor suppressor p53, ΔTAp73 isoforms inhibit apoptosis during normal development and in cancer cell lines. Thus, the impact of p73 on tumorigenesis depends on a subtle balance between tumor-promoting and -suppressing isoforms. Due to the structural homology between p53 and p73, a subtle balance among p53 family members and their isoforms could influence glioma cell evolution toward malignancy. Thus, the p73 status has to be considered when studying the regulatory role of p53 protein in gliomagenesis. The presented review summarizes recent knowledge about the issue of p73 and its isoforms with respect to neuro-oncology research.
Collapse
Affiliation(s)
- Radim Jancalek
- Department of Neurosurgery and International Clinical Research Center, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
14
|
Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, Felsani A, D'Agnano I. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death Dis 2014; 5:e1081. [PMID: 24556696 PMCID: PMC3944258 DOI: 10.1038/cddis.2014.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 02/08/2023]
Abstract
Neuroblastoma is an embryonic tumour of the sympathetic nervous system and is one of the most common cancers in childhood. A high differentiation stage has been associated with a favourable outcome; however, the mechanisms governing neuroblastoma cell differentiation are not completely understood. The MYCN gene is considered the hallmark of neuroblastoma. Even though it has been reported that MYCN has a role during embryonic development, it is needed its decrease so that differentiation can be completed. We aimed to better define the role of MYCN in the differentiation processes, particularly during the early stages. Considering the ability of MYCN to regulate non-coding RNAs, our hypothesis was that N-Myc protein might be necessary to activate differentiation (mimicking embryonic development events) by regulating miRNAs critical for this process. We show that MYCN expression increased in embryonic cortical neural precursor cells at an early stage after differentiation induction. To investigate our hypothesis, we used human neuroblastoma cell lines. In LAN-5 neuroblastoma cells, MYCN was upregulated after 2 days of differentiation induction before its expected downregulation. Positive modulation of various differentiation markers was associated with the increased MYCN expression. Similarly, MYCN silencing inhibited such differentiation, leading to negative modulation of various differentiation markers. Furthermore, MYCN gene overexpression in the poorly differentiating neuroblastoma cell line SK-N-AS restored the ability of such cells to differentiate. We identified three key miRNAs, which could regulate the onset of differentiation programme in the neuroblastoma cells in which we modulated MYCN. Interestingly, these effects were accompanied by changes in the apoptotic compartment evaluated both as expression of apoptosis-related genes and as fraction of apoptotic cells. Therefore, our idea is that MYCN is necessary during the activation of neuroblastoma differentiation to induce apoptosis in cells that are not committed to differentiate.
Collapse
Affiliation(s)
- L Guglielmi
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - C Cinnella
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - M Nardella
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - G Maresca
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - A Valentini
- PTV, Laboratory Medicine and Internal Medicine Departments, University of Rome 'Tor Vergata', Rome, Italy
| | - D Mercanti
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - A Felsani
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - I D'Agnano
- CNR, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
15
|
The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J Inorg Biochem 2013; 127:24-38. [PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
Abstract
The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
Collapse
|
16
|
Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene 2013; 32:5129-43. [PMID: 23416979 DOI: 10.1038/onc.2012.640] [Citation(s) in RCA: 753] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 11/09/2022]
Abstract
p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.
Collapse
Affiliation(s)
- A Rufini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | |
Collapse
|
17
|
Hong J, Peng D, Chen Z, Sehdev V, Belkhiri A. ABL regulation by AXL promotes cisplatin resistance in esophageal cancer. Cancer Res 2012; 73:331-40. [PMID: 23117882 DOI: 10.1158/0008-5472.can-12-3151] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal adenocarcinoma (EAC) is characterized by resistance to chemotherapy and poor outcome. Although cisplatin (CDDP) has been used as a first-line therapy in patients with EAC, resistance remains a major clinical problem. The AXL receptor tyrosine kinase, originally isolated as a transforming gene from leukemia, is overexpressed in several solid tumors. Herein, we assessed AXL protein expression in human EACs and examined its role in CDDP resistance in human EAC cells. AXL overexpression was detected in more than 50% of tumors examined. Elevating AXL in nonoverexpressing cells doubled the CDDP IC(50) and increased cell survival three-fold, while attenuating AXL in overexpressing cells reduced survival two-fold. The effects of AXL modulation on cell survival were associated with changes in cellular and molecular markers of apoptosis. Mechanistic investigations revealed that AXL blocked CDDP-induced activation of endogenous p73β (TP73), reducing its protein half-life, and inhibited CDDP-induced levels of p-c-ABL(Y412) and p-p73β(Y99). These changes were associated with a disruption of c-ABL/p73β protein interactions due to association with c-ABL in the cytoplasm, thereby blocking nuclear accumulation of c-ABL and phosphorylation of p73β in response to DNA damage. Together, our results establish that AXL promotes CDDP resistance in esophageal adenocarcinoma and argue that therapeutic targeting of AXL may sensitize these cancers to DNA-damaging drugs.
Collapse
Affiliation(s)
- Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
18
|
Hanks TS, Gauss KA. Pleomorphic adenoma gene-like 2 regulates expression of the p53 family member, p73, and induces cell cycle block and apoptosis in human promonocytic U937 cells. Apoptosis 2012; 17:236-47. [PMID: 22076304 DOI: 10.1007/s10495-011-0672-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The proto-oncogene, pleomorphic adenoma gene-like 2 (PLAGL2), is implicated in a variety of cancers including acute myeloid leukemia (AML), malignant glioma, colon cancer, and lung adenocarcinoma. There is additional evidence that PLAGL2 can function as a tumor suppressor by initiating cell cycle arrest and apoptosis. Interestingly, PLAGL2 has also been implicated in human myelodysplastic syndrome, a disease that is characterized by ineffective hematopoiesis and can lead to fatal cytopenias (low blood counts) as a result of increased apoptosis in the marrow, or, in about one-third of cases, can progress to AML. To gain a better understanding of the actions of PLAGL2 in human myeloid cells, we generated a stable PLAGL2-inducible cell line, using human promonocytic U937 cells. PLAGL2 expression inhibited cell proliferation which correlated with an accumulation of cells in G1, apoptotic DNA-laddering, an increase in caspase 3, 8, and 9 activity, and a loss of mitochondrial transmembrane potential. There was significant increase in the p53 homologue, p73, with PLAGL2 expression, and consistent with mechanisms of p73-regulated cell cycle control and apoptosis, there was increased expression of known p73 target genes p21, DR5, TRAIL, and Bax. PLAGL2-induced cell cycle block was abolished in the presence of p73 siRNA. Together, these data support a role for PLAGL2 in cell cycle regulation and apoptosis via activation of p73.
Collapse
Affiliation(s)
- Tracey S Hanks
- Department of Immunology and Infectious Diseases, Montana State University, 960 Technology Blvd., Bozeman, MT 59718, USA
| | | |
Collapse
|
19
|
Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV, Conforti F, Velletri T, Mastino A, Mak TW, Melino G, Knight RA. p73 in Cancer. Genes Cancer 2011; 2:491-502. [PMID: 21779517 DOI: 10.1177/1947601911408890] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p73 is a tumor suppressor belonging to the p53 family of transcription factors. Distinct isoforms are transcribed from the p73 locus. The use of 2 promoters at the N-terminus allows the expression of an isoform containing (TAp73) or not containing (ΔNp73) a complete N-terminal transactivation domain, with the latter isoform capable of a dominant negative effect over the former. In addition, both N-terminal variants are alternatively spliced at the C-terminus. TAp73 is a bona fide tumor suppressor, being able to induce cell death and cell cycle arrest; conversely, ΔNp73 shows oncogenic properties, inhibiting TAp73 and p53 functions. Here, we discuss the latest findings linking p73 to cancer. The generation of isoform specific null mice has helped in dissecting the contribution of TA versus ΔNp73 isoforms to tumorigenesis. The activity of both isoforms is regulated transcriptionally and by posttranslational modification. p73 dysfunction, particularly of TAp73, has been associated with mitotic abnormalities, which may lead to polyploidy and aneuploidy and thus contribute to tumorigenesis. Although p73 is only rarely mutated in cancer, the tumor suppressor actions of TAp73 are inhibited by mutant p53, a finding that has important implications for cancer therapy. Finally, we discuss the expression and role of p73 isoforms in human cancer, with a particular emphasis on the neuroblastoma cancer model. Broadly, the data support the hypothesis that the ratio between TAp73 and ΔNp73 is crucial for tumor progression and therapeutic response.
Collapse
Affiliation(s)
- Alessandro Rufini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bisso A, Collavin L, Del Sal G. p73 as a pharmaceutical target for cancer therapy. Curr Pharm Des 2011; 17:578-90. [PMID: 21391908 PMCID: PMC3267157 DOI: 10.2174/138161211795222667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
About half of all human tumors contain an inactivating mutation of p53, while in the remaining tumors, the p53 pathway is frequently abrogated by alterations of other components of its signaling pathway. In humans, the p53 tumor suppressor is part of a small gene family that includes two other members, p73 and p63, structurally and functionally related to p53. Accumulating evidences indicate that all p53-family proteins function as molecular hubs of a highly interconnected signaling network that coordinates cell proliferation, differentiation and death in response to physiological inputs and oncogenic stress. Therefore, not only the p53-pathway but the entire “p53-family pathway” is a primary target for cancer drug development. In particular, the p53-related protein p73 has a crucial role in determining cellular responses to chemotherapy, and can vicariate p53 functions in triggering cell death after DNA damage in multiple experimental models. The biology and regulation of p73 is complex, since the TP73 gene incorporates both tumor-suppressive and proto-oncogenic functions. However, the p73 gene is rarely mutated in tumors, so appropriate pharmacological manipulation of the p73 pathway is a very promising approach for cancer therapy. Here we provide an overview of the principal mechanism of p73 regulation, and describe several examples of pharmacological tools that can induce p73 accumulation and function by acting on upstream p73 modulators or displacing inhibitory p73 interactors. A better understanding of how the p73 pathway works is mandatory to discover additional players intervening in this pathway and has important implications for the improvement of cancer treatment with the development of new molecules or with the reposition of currently available drugs.
Collapse
Affiliation(s)
- Andrea Bisso
- Laboratorio Nazionale CIB, AREA Science Park, Padriciano 99, Trieste, TS 34149, Italy
| | | | | |
Collapse
|
21
|
p53 Family: Role of Protein Isoforms in Human Cancer. J Nucleic Acids 2011; 2012:687359. [PMID: 22007292 PMCID: PMC3191818 DOI: 10.1155/2012/687359] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/04/2011] [Indexed: 01/07/2023] Open
Abstract
TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.
Collapse
|
22
|
Maas AM, Bretz AC, Mack E, Stiewe T. Targeting p73 in cancer. Cancer Lett 2011; 332:229-36. [PMID: 21903324 DOI: 10.1016/j.canlet.2011.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
p73 is a member of the p53 family of tumor suppressors. Transactivating isoforms of p73 (TAp73) have p53-like, anti-proliferative and pro-apoptotic activities that are crucial for an efficient chemotherapy response. In line with this, genetic studies in mice have confirmed that TAp73 acts as a tumor suppressor. However, in contrast to p53, which is commonly inactivated in human cancer by point mutations, the TP73 gene is almost never mutated. Instead, the tumor suppressor activity of TAp73 is inhibited through a variety of mechanisms including epigenetic silencing and complex formation with inhibitory proteins. All these mechanisms have in common that they are in principle reversible and therefore amenable to therapeutic intervention. Here, we will review how tumor cells control the tumor suppressor activity of TAp73 and discuss possible strategies targeting p73 for reactivation.
Collapse
Affiliation(s)
- Anna-Maria Maas
- Molecular Oncology, Department of Hematology, Oncology and Immunology, Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM, Ellisen LW. A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest 2011; 121:809-20. [PMID: 21293058 DOI: 10.1172/jci43897] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/10/2010] [Indexed: 12/19/2022] Open
Abstract
The p53 tumor suppressor, a central mediator of chemosensitivity in normal cells, is functionally inactivated in many human cancers. Therefore, a central challenge in human cancer therapy is the identification of pathways that control tumor cell survival and chemosensitivity in the absence of functional p53. The p53-related transcription factors p63 and p73 exhibit distinct functions—p73 mediates chemosensitivity while p63 promotes proliferation and cell survival—and are both overexpressed in squamous cell carcinomas (SCCs). However, how p63 and p73 interact functionally and govern the balance between prosurvival and proapoptotic programs in SCC remains elusive. Here, we identify a microRNA-dependent mechanism of p63/p73 crosstalk that regulates p53-independent survival of both human and murine SCC. We first discovered that a subset of p63-regulated microRNAs target p73 for inhibition. One of these, miR-193a-5p, expression of which was repressed by p63, was activated by proapoptotic p73 isoforms in both normal cells and tumor cells in vivo. Chemotherapy caused p63/p73-dependent induction of this microRNA, thereby limiting chemosensitivity due to microRNA-mediated feedback inhibition of p73. Importantly, inhibiting miR-193a interrupted this feedback and thereby suppressed tumor cell viability and induced dramatic chemosensitivity both in vitro and in vivo. Thus, we have identified a direct, microRNA-dependent regulatory circuit mediating inducible chemoresistance, whose inhibition may provide a new therapeutic opportunity in p53-deficient tumors.
Collapse
Affiliation(s)
- Benjamin Ory
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Talos F, Moll UM. Role of the p53 family in stabilizing the genome and preventing polyploidization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:73-91. [PMID: 20687470 DOI: 10.1007/978-1-4419-6199-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular defects resulting in chromosomal instability and aneuploidy are the most common features of human cancers. As a major tumor suppressor and intrinsic part of several cellular checkpoints, p53 contributes to maintenance of the stability of the genetic material, both in quality (ensures faithful replication) and quantity (preservation of diploidy). Although the exact trigger of p53 in case of numerical chromosomal aberrations is unknown, the absence of p53 allows polyploid cells to proliferate and generate unstable aneuploid progeny. A more recent addition to the p53 family, p73, emerged as an important contributor to genomic integrity when p53 is inactivated. p73 loss in p53-null background leads to a rapid increase in polyploidy and aneuploidy, markedly exceeding that caused by p53 loss alone. Constitutive deregulation of Cyclin-Cdk and p27/Kip1 activities and excess failure of the G2/M DNA damage checkpoint are important deficiencies associated with p73 loss.
Collapse
Affiliation(s)
- Flaminia Talos
- Department of Pathology, Health Science Center, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
25
|
Leung THY, Ngan HYS. Interaction of TAp73 and breast cancer-associated gene 3 enhances the sensitivity of cervical cancer cells in response to irradiation-induced apoptosis. Cancer Res 2010; 70:6486-96. [PMID: 20647320 DOI: 10.1158/0008-5472.can-10-0688] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identification of proteins that are involved in the sensitivity of radiotherapy of cancers is important to enhance the response to cancer treatment. Expression of TAp73 is associated with the sensitivity of radiotherapy in cervical cancer patients, suggesting it plays an important role in controlling radiosensitivity. Here, by using yeast two-hybrid system, we identify breast cancer-associated gene 3 (BCA3) as the first and novel protein interacting partner of TAp73. By coimmunoprecipitation and Western blot analysis, we confirm that TAp73 binds with and stabilizes BCA3 in cervical cancer cell line HeLa. Immunofluorescence staining indicates that BCA3 is localized in the cytoplasm and nucleus. Interestingly, when coexpressed with TAp73, BCA3 interacts and colocalizes with TAp73 at the mitochondria. Mutagenesis reveals that the oligomerization domain of TAp73 is responsible for the interaction with BCA3. Furthermore, BCA3 augments the transactivation activity of TAp73 on bax promoter and protein expression. In addition, the expression of BCA3 also increases the sensitivity of TAp73-transfected cells in response to gamma-irradiation-induced apoptosis. Western blot analysis also shows that TAp73 and BCA3 induce activation of caspase-7 and caspase-9. In summary, these findings suggested that BCA3 is a novel protein partner of TAp73, and they cooperate with each other to exert tumor-suppressive functions and sensitize the response of cervical cancer cells to radiotherapy.
Collapse
Affiliation(s)
- Thomas Ho-Yin Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, HKSAR
| | | |
Collapse
|
26
|
Nemajerova A, Petrenko O, Trümper L, Palacios G, Moll UM. Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. J Clin Invest 2010; 120:2070-80. [PMID: 20484818 DOI: 10.1172/jci40331] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/24/2010] [Indexed: 01/07/2023] Open
Abstract
Mice engineered to express c-Myc in B cells (Emu-myc mice) develop lethal lymphomas in which the gene encoding the p53 tumor suppressor is frequently mutated. Whether the p53 homolog p73 also functions as a tumor suppressor in vivo remains controversial. Here we have shown that p73 loss does not substantially affect disease onset and mortality in Emu-myc mice. However, it does alter the phenotype of the disease. Specifically, p73 loss decreased nodal disease and increased widespread extranodal dissemination. We further found that p53 acted as the dominant tumor suppressor during the onset of Emu-myc-driven B cell lymphomagenesis, while p73 modulated tumor dissemination and extranodal growth. Immunophenotyping and expression profiling suggested that p73 loss allowed increased maturation of malignant B cells and deregulated genes involved in lymphocyte homing and dissemination of human lymphomas. Consistent with this, p73 expression was frequently downregulated in a large cohort of human mature aggressive B cell lymphomas, and both the incidence and degree of p73 downregulation in these tumors correlated with their extranodal dissemination status. These data indicate that p73 is a modifier of Myc-driven lymphomas in mice, favoring tumor dissemination, and suggest that p73 could be a biomarker for human B cell lymphoma dissemination, a notion that can now be tested in clinicopathologic correlation studies.
Collapse
Affiliation(s)
- Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
27
|
Vilgelm AE, Washington MK, Wei J, Chen H, Prassolov VS, Zaika AI. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors. Mol Cancer Ther 2010; 9:693-705. [PMID: 20197393 DOI: 10.1158/1535-7163.mct-09-0912] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Department of Surgery and Cancer Biology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
28
|
Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C, Fuhrmann G. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 2009; 79:1251-60. [PMID: 20026309 DOI: 10.1016/j.bcp.2009.12.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 12/20/2022]
Abstract
The salvage anti-tumoral pathway which implicates the p53-related p73 gene is not yet fully characterized. We therefore attempted to identify the up- and down-stream events involved in the activation of the p73-dependent pro-apoptotic pathway, by focusing on the anti-apoptotic and epigenetic integrator UHRF1 which is essential for cell cycle progression. For this purpose, we analyzed the effects of a known anti-neoplastic drug, thymoquinone (TQ), on the p53-deficient acute lymphoblastic leukemia (ALL) Jurkat cell line. Our results showed that TQ inhibits the proliferation of Jurkat cells and induces G1 cell cycle arrest in a dose-dependent manner. Moreover, TQ treatment triggers programmed cell death, production of reactive oxygen species (ROS) and alteration of the mitochondrial membrane potential (DeltaPsim). TQ-induced apoptosis, confirmed by the presence of hypodiploid G0/G1 cells, is associated with a rapid and sharp re-expression of p73 and dose-dependent changes of the levels of caspase-3 cleaved subunits. These modifications are accompanied by a dramatic down-regulation of UHRF1 and two of its main partners, namely DNMT1 and HDAC1, which are all involved in the epigenetic code regulation. Knockdown of p73 expression restores UHRF1 expression, reactivates cell cycle progression and inhibits TQ-induced apoptosis. Altogether our results showed that TQ mediates its growth inhibitory effects on ALL p53-mutated cells via the activation of a p73-dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets UHRF1.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- CNRS UMR7213 Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Askmalm MS, Carstensen J, Nordenskjöld B, Olsson B, Rutqvist LE, Skoog L, Stål O. Mutation and accumulation of p53 related to results of adjuvant therapy of postmenopausal breast cancer patients. Acta Oncol 2009; 43:235-44. [PMID: 15244246 DOI: 10.1080/02841860410029474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
p53 protein accumulation and gene mutation have been implicated in resistance to cytotoxic treatment. This study was performed to further assess the predictive value of p53 in breast cancer. Postmenopausal patients were randomized to adjuvant chemotherapy with cyclophosphamide, metothrexate, or 5-fluorouracil (CMF) vs. postoperative radiotherapy. The patients were also randomized to adjuvant tamoxifen vs. no endocrine treatment. Immunohistochemistry (IHC) and single-strand conformation polymorphism (SSCP), followed by direct sequencing, was performed. The p53 altered group, regarded as positive for p53 gene mutation and/or p53 protein accumulation, tended to benefit more from CMF than from radiotherapy as compared with others regarding distant recurrences. In the group lacking p53 alteration there was a significantly decreased local recurrence rate in the radiotherapy group as compared with the CMF group (RR = 0.24, 95% CI = 0.083 0.62), whereas no benefit from radiotherapy was found for patients showing p53 alterations. Tamoxifen significantly decreased the rate of distant recurrence for estrogen receptor-positive patients with no apparent difference in relation to p53 alteration. It is suggested that p53 alteration indicates benefit from CMF compared with radiotherapy regarding distant recurrence-free survival and the best local control with radiotherapy is achieved in the absence of p53 alteration. Finally, altered p53 status is probably not a marker of resistance to tamoxifen.
Collapse
Affiliation(s)
- Marie Stenmark Askmalm
- Department of Biomedicine and Surgery, Division of Oncology, Faculty of Health, Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
30
|
Griesmann H, Schlereth K, Krause M, Samans B, Stiewe T. p53 and p73 in suppression of Myc-driven lymphomagenesis. Int J Cancer 2009; 124:502-6. [PMID: 18942718 DOI: 10.1002/ijc.23978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Induction of apoptosis by the tumor suppressor p53 is known to protect from Myc-driven lymphomagenesis. The p53 family member p73 is also a proapoptotic protein, which is activated in response to oncogenes like Myc. Here, we have investigated whether p73 provides a similar protection from Myc-driven lymphomas as p53. Confirming previous studies, the inactivation of a single p53 allele (p53+/-) strongly reduced the median survival of Emu-Myc transgenic mice from 103 to 39 days and was invariably associated with a loss of the wild-type p53 allele. In contrast, mutational inactivation of a p73 allele (p73+/-) reduced the median survival by only 12 days. Lymphomas that developed in the p73+/- background showed no loss of heterozygosity (LOH). Furthermore, gene expression profiling of p73+/+, p73+/- and p73-/- lymphomas indicated that p73+/- lymphomas retained p73 transcriptional activity. Subtle gene expression differences between p73+/+ and p73+/- lymphomas, however, suggest a haploinsufficient phenotype on some p73 target genes. This might help to explain why p73+/- animals succumbed to disease slightly earlier than their p73+/+ littermates (log-rank test p<0.0395) and why p73 often shows monoallelic inactivation in human lymphomas. Together these data demonstrate that in Myc-driven lymphomagenesis p73 has weak tumor suppressor activity compared with p53.
Collapse
Affiliation(s)
- Heidi Griesmann
- Department for Hematology, Oncology and Immunology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologs, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, whereas in this review, we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision.
Collapse
Affiliation(s)
- E. Christine Pietsch
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| | - Stephen M. Sykes
- Brigham and Women's Hospital, 1 Blackfan Circle, Boston, MA 02115
| | - Steven B. McMahon
- Kimmel Cancer Center, Thomas Jefferson Medical College, 233 S. 10th St. Philadelphia, Pennsylvania 19107
| | - Maureen E. Murphy
- Division of Medical Sciences, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA, 19111
| |
Collapse
|
32
|
Tozluoğlu M, Karaca E, Haliloglu T, Nussinov R. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucleic Acids Res 2008; 36:5033-49. [PMID: 18660513 PMCID: PMC2528188 DOI: 10.1093/nar/gkn481] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have compiled the p73-mediated cell cycle arrest and apoptosis pathways. p73 is a member of the p53 family, consisting of p53, p63 and p73. p73 exists in several isoforms, presenting different domain structures. p73 functions not only as a tumor suppressor in apoptosis but also as differentiator in embryo development. p53 mutations are responsible for half of the human cancers; p73 can partially substitute mutant p53 as tumor suppressor. The pathways we assembled create a p73-centered network consisting of 53 proteins and 176 interactions. We clustered our network into five functional categories: Upregulation, Activation, Suppression, Transcriptional Activity and Degradation. Our literature searches led to discovering proteins (c-Jun and pRb) with apparent opposing functional effects; these indicate either currently missing proteins and interactions or experimental misidentification or functional annotation. For convenience, here we present the p73 network using the molecular interaction map (MIM) notation. The p73 MIM is unique amongst MIMs, since it further implements detailed domain features. We highlight shared pathways between p53 and p73. We expect that the compiled and organized network would be useful to p53 family-based studies.
Collapse
Affiliation(s)
- Melda Tozluoğlu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Bebek-Istanbul 80815, Turkey
| | | | | | | |
Collapse
|
33
|
Toh WH, Logette E, Corcos L, Sabapathy K. TAp73beta and DNp73beta activate the expression of the pro-survival caspase-2S. Nucleic Acids Res 2008; 36:4498-509. [PMID: 18611950 PMCID: PMC2490756 DOI: 10.1093/nar/gkn414] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
p73, the p53 homologue, exists as a transactivation-domain-proficient TAp73 or deficient deltaN(DN)p73 form. Expectedly, the oncogenic DNp73 that is capable of inactivating both TAp73 and p53 function, is over-expressed in cancers. However, the role of TAp73, which exhibits tumour-suppressive properties in gain or loss of function models, in human cancers where it is hyper-expressed is unclear. We demonstrate here that both TAp73 and DNp73 are able to specifically transactivate the expression of the anti-apoptotic member of the caspase family, caspase-2(S). Neither p53 nor TAp63 has this property, and only the p73beta form, but not the p73alpha form, has this competency. Caspase-2 promoter analysis revealed that a non-canonical, 18 bp GC-rich Sp-1-binding site-containing region is essential for p73beta-mediated activation. However, mutating the Sp-1-binding site or silencing Sp-1 expression did not affect p73beta's transactivation ability. In vitro DNA binding and in vivo chromatin immunoprecipitation assays indicated that p73beta is capable of directly binding to this region, and consistently, DNA binding p73 mutant was unable to transactivate caspase-2(S). Finally, DNp73beta over-expression in neuroblastoma cells led to resistance to cell death, and concomitantly to elevated levels of caspase-2(S.) Silencing p73 expression in these cells led to reduction of caspase-2(S) expression and increased cell death. Together, the data identifies caspase-2(S) as a novel transcriptional target common to both TAp73 and DNp73, and raises the possibility that TAp73 may be over-expressed in cancers to promote survival.
Collapse
Affiliation(s)
- Wen Hong Toh
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11, Hospital Drive, Singapore 169610, Singapore
| | | | | | | |
Collapse
|
34
|
Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, Washington K, Castells A, Pera M, El-Rifai W. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 2008; 112:1688-98. [PMID: 18311783 DOI: 10.1002/cncr.23371] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Upper gastrointestinal adenocarcinomas are a common cause of cancer-related deaths. In this study, the authors investigated the prevalence and biological significance of Aurora Kinase A (AURKA) overexpression in upper gastrointestinal adenocarcinomas. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining on tumor tissue microarrays (TMA) were used to study the expression of AURKA in upper gastrointestinal adenocarcinomas. To investigate the biological and signaling impact of AURKA, the authors used multiple in vitro assays that included 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling), cytochrome C release, flow cytometry, luciferase reporter, and Western blot analysis. RESULTS Frequent overexpression of AURKA transcript in upper gastrointestinal adenocarcinomas was detected compared with normal samples (47%; P= .001). The immunohistochemical analysis of 130 tumors demonstrated moderate-to-strong immunostaining of AURKA in >50% of upper gastrointestinal adenocarcinomas. By using camptothecin as a drug-induced apoptosis in vitro model, the authors demonstrated that the expression of AURKA provided protection against apoptosis to gastrointestinal cancer cells (AGS and RKO) (P= .006) and RIE-1 primary intestinal epithelial cells (P= .001). The AURKA overexpression mediated an increase in phosphorylation of AKT(Ser473) with an increase in HDM2 level. The shRNA-knockdown of AKT in AURKA-overexpressing cells reversed this effect and showed a significant increase in the p53 protein level, indicating a possible nexus of AURKA/AKT/p53. Indeed, overexpression of AURKA led to a remarkable reduction in the transcription activity of p53, with subsequent reductions in transcript and protein levels of its downstream proapoptotic transcription targets (p21, BAX, NOXA, and PUMA). CONCLUSIONS Study results indicated that AURKA provides potent antiapoptotic properties to gastrointestinal cells by regulating levels of p53 through the AKT/HDM2 axis.
Collapse
Affiliation(s)
- Altaf A Dar
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Beitzinger M, Hofmann L, Oswald C, Beinoraviciute-Kellner R, Sauer M, Griesmann H, Bretz AC, Burek C, Rosenwald A, Stiewe T. p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO J 2008; 27:792-803. [PMID: 18239687 DOI: 10.1038/emboj.2008.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 01/11/2008] [Indexed: 11/09/2022] Open
Abstract
p53 is known to prevent tumour formation by restricting the proliferation of damaged or oncogene-expressing cells. In contrast, how the p53 family member p73 suppresses tumour formation remains elusive. Using a step-wise transformation protocol for human cells, we show that, in premalignant stages, expression of the transactivation-competent p73 isoform TAp73 is triggered in response to pRB pathway alterations. TAp73 expression at this stage of transformation results in increased sensitivity to chemotherapeutic drugs and oxidative stress and inhibits proliferation and survival at high cell density. Importantly, TAp73 triggers a transcriptional programme to prevent anchorage-independent growth, which is considered a crucial hallmark of fully transformed cells. An essential suppressor of anchorage-independent growth is KCNK1, which is directly transactivated by TAp73 and commonly downregulated in glioma, melanoma and ovarian cancer. Oncogenic Ras switches p73 expression from TAp73 to the oncogenic deltaNp73 isoform in a phosphatidyl-inositol 3-kinase-dependent manner. Our results implicate TAp73 as a barrier to anchorage-independent growth and indicate that downregulation of TAp73 is a key transforming activity of oncogenic Ras mutants.
Collapse
Affiliation(s)
- Michaela Beitzinger
- Molecular Tumor Biology Group, Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.
Collapse
Affiliation(s)
- Nishant Jain
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
37
|
Abstract
Although chemotherapy can induce complete responses in patients with chronic lymphocytic leukemia (CLL), it is not considered curative. Treated patients generally develop recurrent disease requiring additional therapy, which can cause worsening immune dysfunction, myelosuppression, and selection for chemotherapy-resistant leukemia-cell subclones. Cellular immune therapy promises to mitigate these complications and potentially provide for curative treatment. Most experience with this is in the use of allogeneic hematopoietic stem-cell transplantation (allo-HSCT), in which graft-versus-leukemia (GVL) effects can be observed and shown responsible for long-term disease-free survival. However, use of allo-HSCT for CLL is limited because of the lack of suitable donors and the treatment-related morbidity/mortality for elderly patients, who constitute the majority at risk for developing this disease. The GVL effect, however, suggests there are specific CLL-associated antigens that could be targeted in autologous cellular immune therapy. Effective strategies for this will have to overcome the disease-related acquired immune deficiency and the capacity of the leukemia-cell to induce T-cell tolerance, thereby compromising the activity of even conventional vaccines in patients with this disease. We will discuss the different strategies being developed to overcome these limitations that might provide for effective cellular immune therapy of CLL.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
38
|
Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer 2007; 43:1361-72. [PMID: 17428654 DOI: 10.1016/j.ejca.2007.01.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/19/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
p73 is a member of the p53 family which is gaining increasing importance in the field of cancer. Its structural homology with p53 led to the assumption that it could act as a new tumour suppressor gene. Increasing knowledge of its function, however, has cast doubts on this role. A particularly interesting characteristic of p73 is that the cell contains different isoforms with distinct and sometimes opposite functions. Evidence in the last few years clearly indicates that p73 does share some activities with p53 but also that it has some distinct functions. This review focuses on p73's role in the development and progression of cancer, analysing the gene structure and regulation and discussing similarities with p53 and differences. Recent results obtained with specific detection methods on the levels and functions of the different isoforms in tumours are also discussed.
Collapse
Affiliation(s)
- Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milan, Italy.
| | | | | |
Collapse
|
39
|
Abstract
The p53-related genes p63 and p73 exhibit significant structural homology to p53; however, they do not function as classical tumor suppressors and are rarely mutated in human cancers. Both p63 and p73 exhibit tissue-specific roles in normal development and a complex contribution to tumorigenesis that is due to their expression as multiple protein isoforms. The predominant p63/p73 isoforms expressed both in normal development and in many tumors lack the conserved transactivation (TA) domain; these isoforms instead exhibit a truncated N-terminus (DeltaN) and function at least in part as transcriptional repressors. p63 and p73 isoforms are regulated through both transcriptional and post-translational mechanisms, and they in turn regulate diverse cellular functions including proliferation, survival and differentiation. The net effect of p63/p73 expression in a given context depends on the ratio of TA/DeltaN isoforms expressed, on physical interaction between p63 and p73 isoforms, and on functional interactions with p53 at the promoters of specific downstream target genes. These multifaceted interactions occur in diverse ways in tumor-specific contexts, demonstrating a functional 'p53 family network' in human tumorigenesis. Understanding the regulation and mechanistic contributions of p63 and p73 in human cancers may ultimately provide new therapeutic opportunities for a variety of these diseases.
Collapse
Affiliation(s)
- M P Deyoung
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | |
Collapse
|
40
|
Abstract
Although mutations in the TP73 gene are extremely rare in human tumours, altered expression is common. In some tumours, most notably leukaemias and lymphomas, expression of TP73 is reduced, suggesting a tumour suppressor role. In contrast, TP73 is over-expressed in many other tumour types, implying that it has oncogenic functions in human tumourigenesis. These conflicting scenarios can be reconciled by the observations that the TP73 gene produces p53-like isoforms (TAp73) and anti-p53 isoforms (DeltaTAp73). Thus, loss of TAp73 or over-expression of DeltaTAp73 should each promote oncogenic transformation, and the balance of expression of the opposing isoforms is the crucial factor. The mechanisms that regulate expression of TP73 isoforms are therefore of great interest. Recent data provide evidence for interacting roles of ZEB1, p300, and a polymorphic 73 bp deletion in intron 1 of the human TP73 gene in this process. Importantly, alterations to the proposed regulatory pathway for controlling TP73 isoform expression in colorectal cancer are associated with adverse clinico-pathological characteristics. Because p73 is also associated with tumour chemosensitivity, these new findings should provide prognostic information and have the potential to guide future therapeutic decisions.
Collapse
Affiliation(s)
- P J Coates
- Pathology and Neurosciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
41
|
Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M, Hüttinger-Kirchhof N, Oswald C, Friedl P, Gattenlöhner S, Burek C, Rosenwald A, Stiewe T. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 2006; 10:281-93. [PMID: 17045206 DOI: 10.1016/j.ccr.2006.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/05/2006] [Accepted: 08/10/2006] [Indexed: 12/20/2022]
Abstract
The p53 family comprises the tumor suppressor p53 and the structural homologs p63 and p73. How the three family members cooperate in tumor suppression remains unclear. Here, we report different but complementary functions of the individual members for regulating retinoblastoma protein (RB) function during myogenic differentiation. Whereas p53 transactivates the retinoblastoma gene, p63 and p73 induce the cyclin-dependent kinase inhibitor p57 to maintain RB in an active, hypophosphorylated state. DeltaNp73 inhibits these functions of the p53 family in differentiation control, prevents myogenic differentiation, and enables cooperating oncogenes to transform myoblasts to tumorigenicity. DeltaNp73 is frequently overexpressed in rhabdomyosarcoma and essential for tumor progression in vivo. These findings establish differentiation control as a key tumor suppressor activity of the p53 family.
Collapse
Affiliation(s)
- Hakan Cam
- Molecular Tumor Biology Group, Rudolf-Virchow-Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pluta A, Nyman U, Joseph B, Robak T, Zhivotovsky B, Smolewski P. The role of p73 in hematological malignancies. Leukemia 2006; 20:757-66. [PMID: 16541141 DOI: 10.1038/sj.leu.2404166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The P73 gene is a homologue of the P53 tumor suppressor. Owing to its structural similarity with p53, p73 was originally considered to have tumor suppressor function. However, the discovery of N-terminal truncated isoforms with oncogenic properties showed a 'two in one' structure of its product, p73 protein. The full-length variants are strong inducers of apoptosis, whereas the truncated isoforms inhibit proapoptotic activity of p53 and the full-length p73. Thus, p73 is involved in the regulation of cell cycle, cell death and development. Moreover, it plays a role in carcinogenesis and controls tumor sensitivity to treatment. p73 is commonly expressed in tumor cells in hematological malignancies. Overexpression of p73 protein and aberrant expression of its particular isoforms, with very low frequency of P73 hypermethylation or mutations, were found in malignant myeloproliferations, including acute myeloblastic leukemia. In contrast, hypermethylation and subsequent inactivation of the P73 gene are the most common findings in malignant lymphoproliferative disorders, especially acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphomas. Assessment of P73 methylation may provide important prognostic information, as was confirmed in patients with ALL. This review summarizes some aspects of p73 biology with particular reference to its possible pathogenetic role and prognostic significance in hematological malignancies.
Collapse
Affiliation(s)
- A Pluta
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Charlot JF, Nicolier M, Prétet JL, Mougin C. Modulation of p53 transcriptional activity by PRIMA-1 and Pifithrin-alpha on staurosporine-induced apoptosis of wild-type and mutated p53 epithelial cells. Apoptosis 2006; 11:813-27. [PMID: 16554962 DOI: 10.1007/s10495-006-5876-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We recently argued for a major role of p53 in staurosporine(ST)-induced apoptosis of immortalized epithelial cells, depending on their p53 status. Here, we studied the effects of PRIMA-1 (p53 reactivation and induction of massive apoptosis) and Pifithrin-alpha (p fifty-three inhibitor) in combination with ST to reinforce our previous results by respectively restoring or inhibiting the p53 transcriptional activity in different cell lines.PRIMA-1 does modify neither expression of apoptosis-related proteins nor the percentage of wild-type p53 HeLa and CaSki cells with [symbol: see text]delta psi m and DNA cleavage, whilst it increases by 45% Bax expression and apoptosis of mutated p53 C33A cells. Pifithrin-alpha, does modify neither Bax expression nor apoptosis level of C33A cells, but readily inhibits both [symbol: see text]delta psi m and DNA fragmentation of p53wt cells with decreasing Bax expression. These data support the evidence that PRIMA-1 could be a good candidate, as an anti-cancer drug targeting mutant p53, in order to increase ST efficiency. Moreover, Pifithrin-alpha could be used in combination with ST and PRIMA-1 to prevent side effects of anti-tumor therapies in cells expressing mutant P53.
Collapse
Affiliation(s)
- J F Charlot
- Université de Franche-Comté, UFR Médecine et Pharmacie, EA 3181, IFR 133. 19 rue Ambroise Paré, 25000 Besançon, France
| | | | | | | |
Collapse
|
44
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
45
|
Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 2006; 26:2661-74. [PMID: 16537910 PMCID: PMC1430322 DOI: 10.1128/mcb.26.7.2661-2674.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gene encoding the SNF5/Ini1 core subunit of the SWI/SNF chromatin remodeling complex is a tumor suppressor in humans and mice, with an essential role in early embryonic development. To investigate further the function of this gene, we have generated a Cre/lox-conditional mouse line. We demonstrate that Snf5 deletion in primary fibroblasts impairs cell proliferation and survival without the expected derepression of most retinoblastoma protein-controlled, E2F-responsive genes. Furthermore, Snf5-deficient cells are hypersensitive to genotoxic stress, display increased aberrant mitotic features, and accumulate phosphorylated p53, leading to elevated expression of a specific subset of p53 target genes, suggesting a role for Snf5 in the DNA damage response. p53 inactivation does not rescue the proliferation defect caused by Snf5 deficiency but reduces apoptosis and strongly accelerates tumor formation in Snf5-heterozygous mice.
Collapse
Affiliation(s)
- Agnes Klochendler-Yeivin
- Department of Animal and Cell Biology, The Institute for Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
46
|
Beitzinger M, Oswald C, Beinoraviciute-Kellner R, Stiewe T. Regulation of telomerase activity by the p53 family member p73. Oncogene 2006; 25:813-26. [PMID: 16205639 DOI: 10.1038/sj.onc.1209125] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The terminal ends of eukaryotic chromosomes, termed telomeres, progressively shorten during each round of cell division eventually leading cells into senescence. Tumor cells typically overcome this barrier to unlimited proliferation by activation of the human telomerase reverse transcriptase (hTERT) gene. In contrast, in most human somatic cells hTERT expression is tightly repressed by multiple tumor suppressors. Here, we studied the regulation of hTERT by the p53 family member p73. We show that forced expression of p73 or activation of endogenous p73 by E2F1 results in the downregulation of telomerase activity. Vice versa, siRNA-mediated knockdown of p73 induces hTERT expression. Responsiveness to p73 is conferred by Sp1 binding sites within the hTERT core promoter. In tumor cells, p73 isoforms lacking the transactivation domain (DeltaNp73) are frequently overexpressed and believed to function as oncogenes. We show that DeltaNp73 antagonizes the repressive effect of the proapoptotic p53 family members on hTERT expression and, in addition, induces hTERT expression in telomerase-negative cells by interfering with E2F-RB-mediated repression of the hTERT core promoter. These data provide evidence that the p73 gene functions as an important regulator of telomerase activity with implications for embryonic development, cellular differentiation and tumorigenesis.
Collapse
Affiliation(s)
- M Beitzinger
- Molecular Tumor Biology Group, Rudolf-Virchow-Center (DFG Research Center for Experimental Biomedicine), University of Würzburg, Versbacher Strasse 9, Würzburg 97078, Germany
| | | | | | | |
Collapse
|
47
|
Jain N, Gupta S, Sudhakar C, Radha V, Swarup G. Role of p73 in Regulating Human Caspase-1 Gene Transcription Induced by Interferon-γ and Cisplatin. J Biol Chem 2005; 280:36664-73. [PMID: 16135520 DOI: 10.1074/jbc.m413261200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-1, a cysteine protease is primarily involved in proteolytic activation of proinflammatory cytokines such as interleukin-1beta. It is also involved in some forms of apoptosis. Here we have analyzed the role of p73, a homolog of tumor suppressor p53, in regulating human caspase-1 gene transcription. The caspase-1 promoter was strongly activated by p73alpha and p73beta primarily through a p53/p73 responsive site. Overexpression of p73 by transient transfection increased the caspase-1 mRNA level. Treatment of cells with cisplatin (which increases p73 protein level) resulted in increased caspase-1 promoter activity and its mRNA level. Blocking of p73 function by a dominant negative mutant reduced basal as well as cisplatin-induced caspase-1 promoter activity. Mutation of the p73 responsive site abolished cisplatin-induced activation of the promoter. Interferon-gamma induced caspase-1 promoter activity and this was reduced by p73-directed small hairpin RNA and also by a dominant negative mutant of p73. Abrogation of the p73 responsive site partially inhibited interferon-gamma-induced activation of the caspase-1 promoter. Treatment of HeLa cells with interferon-gamma resulted in an increase in p73 protein as well as its activity. Mutation of the IRF-1 binding site abolished interferon-gamma-induced caspase-1 promoter activity but p73-induced activation was only marginally reduced. IRF-1 cooperated with p73 and cisplatin cooperated with interferon-gamma in the activation of the caspase-1 promoter. Our results show that p73 is a regulator of caspase-1 gene transcription, and is required for optimal activation of the caspase-1 promoter by interferon-gamma.
Collapse
Affiliation(s)
- Nishant Jain
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | | | | | |
Collapse
|
48
|
Abstract
p73 belongs to a family of p53-related nuclear transcription factors that includes p53, p73 and p63. The overall structure and sequence homology indicates that a p63/p73-like protogene is the ancestral gene, whereas p53 evolved later in higher organisms. In accordance with their structural similarity, p73 functions in a manner analogous to p53 by inducing tumor cell apoptosis and participating in the cell cycle checkpoint control through transactivating an overlapping set of p53/p73-target genes. In sharp contrast to p53, however, p73 is expressed as two NH(2)-terminally distinct isoforms including transcriptionally active (TA) and transcriptionally inactive (DeltaN) forms. DeltaNp73, which has oncogenic potential, acts in a dominant negative manner against TAp73 as well as p53. p73 is induced to be stabilized in response to a subset of DNA-damaging agents in a way that is distinct from that of p53, and exerts its pro-apoptotic activity. Several lines of evidence suggest that p73 can induce tumor cell apoptosis in a p53-dependent and p53-independent manner. Some tumors exhibit resistance to the p53-dependent apoptotic program, therefore p73, which can induce apoptotic cell death by p53-independent mechanisms, is particularly useful. In this review, we discuss the regulatory mechanisms of p73 activity, and also the functional significance of p73 in the regulation of cellular processes including tumorigenesis, apoptosis and neurogenesis.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Division of Biochemistry, Chiba Cancer Center Research Institute, Chuoh-ku, Japan
| | | |
Collapse
|
49
|
Saunders M, Eldeen MB, Del Valle L, Reiss K, Peruzzi F, Mameli G, Gelman BB, Khalili K, Amini S, Sawaya BE. p73 modulates HIV-1 Tat transcriptional and apoptotic activities in human astrocytes. Apoptosis 2005; 10:1419-31. [PMID: 16235026 DOI: 10.1007/s10495-005-2467-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 Tat is a potent transcriptional activator of the viral promoter with the ability to modulate a number of cellular regulatory circuits including apoptosis. Tat exerts its effects through interaction with viral as well as cellular proteins. Here, we studied the influence of p73, a protein that is implicated in apoptosis and cell cycle control, on Tat apoptotic function in the central nervous system. We recently demonstrated the ability of Tat to associate with p73, and that this association modulates Tat transcriptional activity (Amini et al., Mol Cell Biol 2005; 18: 8126-8138). We demonstrated that p73 interferes with Tat-mediated apoptosis by preventing the up-regulation of Bax and down-regulation of Bcl-2 proteins in astrocytes. Thus, the interplay between Tat and p73 may affect Tat contribution to apoptotic events in the brain, limiting its involvement in the neuropathology often observed in the brains of HIV-1 patients.
Collapse
Affiliation(s)
- M Saunders
- Department of Neuroscience & Center for Neurovirology, Temple University, 1900 North 12th Street, 015-96, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W. Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res 2005; 65:6583-92. [PMID: 16061638 DOI: 10.1158/0008-5472.can-05-1433] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show the molecular mechanisms involved in Darpp-32 overexpression and its biological role in upper gastrointestinal adenocarcinomas (UGC). A tumor tissue array of 377 samples was developed and used to detect DARPP-32 DNA amplification and protein overexpression, which occurred in 32% and 60% of UGCs, respectively. Concomitant overexpression of mRNA for Darpp-32 and its truncated isoform t-Darpp was observed in 68% of tumors (P < 0.001). When Darpp-32 and t-Darpp were overexpressed in AGS and RKO gastrointestinal cells, up to a 4-fold reduction in the apoptosis rate was observed (terminal deoxynucleotidyl transferase-mediated nick-end labeling and Annexin V assays) in response to camptothecin, sodium butyrate, and ceramide. However, the introduction of mutations in phosphorylation sites abrogated this effect. Expression of Darpp-32 and t-Darpp preserved the mitochondrial transmembrane potential and was associated with increased levels of Bcl2 protein. A reversal of Bcl2 protein level was obtained using small interfering RNAs for Darpp-32 and t-Darpp. Luciferase assays using the p53 and p21 reporter plasmids and probing of immunoblots with antibodies specific for p53 transcriptional targets, such as Hdm2 and p21, indicated that neither Darpp-32 nor t-Darpp interfere with p53 function. Altogether, we show more frequent mRNA and protein overexpression of Darpp-32 than DNA amplification, suggesting that, in addition to amplification, transcriptional or posttranscriptional mechanisms may play an important role. The expression of Darpp-32 and t-Darpp is associated with a potent antiapoptotic advantage for cancer cells through a p53-independent mechanism that involves preservation of mitochondrial potential and increased Bcl2 levels.
Collapse
Affiliation(s)
- Abbes Belkhiri
- Digestive Health Center of Excellence and Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908-0708, USA
| | | | | | | | | | | |
Collapse
|