1
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Sidhanth C, Bindhya S, Krishnapriya S, Manasa P, Shabna A, Alifia J, Patole C, Kumar V, Garg M, Ganesan TS. Phosphoproteome of signaling by ErbB2 in ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140768. [PMID: 35158093 DOI: 10.1016/j.bbapap.2022.140768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The gene for receptor tyrosine kinase ErbB2 is amplified in breast and ovarian tumours. The linear pathway by which signals are transduced through ErbB2 are well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins specific for ErbB2 using the inhibitors Lapatinib and CP724714 in ovarian cancer cells. The ErbB2 specific proteins identified in SKOV-3 cells were Myristoylated alanine-rich C-kinase substrate, Protein capicua homolog, Protein peptidyl isomerase G, Protein PRRC2C, Chromobox homolog1 and PRP4 homolog. We have evaluated three phosphoproteins PKM2, Aldose reductase and MARCKS in SKOV-3 cells. We observed that PKM2 was phosphorylated by EGF but was not inhibited by Lapatinib and CP724714. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in EGF stimulated cells which was inhibited by Lapatinib and CP724714 but not by Geftinib (EGFR inhibitor). MARCKS was phosphorylated on stimulation of SKOV-3 cells with EGF that was inhibited by Lapatinib and CP724714 which was dependent on the kinase activity of ErbB2. These results have identified phosphoproteins that are specific to ErbB2 which have not been previously reported and sets the basis for future experiments.
Collapse
Affiliation(s)
- C Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - P Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - A Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - J Alifia
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - C Patole
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - V Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Garg
- Amity Institute of Molecular Medicine & Stem cell Research, Amity University, Delhi, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
3
|
Dahiya V, Rutz DA, Moessmer P, Mühlhofer M, Lawatscheck J, Rief M, Buchner J. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones. Mol Cell 2022; 82:1543-1556.e6. [PMID: 35176233 DOI: 10.1016/j.molcel.2022.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Daniel Andreas Rutz
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Patrick Moessmer
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Jannis Lawatscheck
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany.
| |
Collapse
|
4
|
LASP-1 interacts with ErbB2 in ovarian cancer cells. Biochem J 2021; 479:23-38. [PMID: 34881777 DOI: 10.1042/bcj20210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
LASP-1 was identified as a protein following mass spectrometric analysis of phosphoproteins consequent to signaling by ErbB2 in SKOV-3 cells. It has been previously identified as an oncogene and is located on chromosomal arm 17q 0.76Mb centromeric to ErbB2. It is expressed in serous ovarian cancer cell lines as a 40kDa protein. In SKOV-3 cells, it was phosphorylated and was inhibited by Lapatinib and CP7274714. LASP-1 co-immunoprecipitated with ErbB2 in SKOV-3 cells, suggesting a direct interaction. This interaction and phosphorylation were independent of the kinase activity of ErbB2. Moreover, the binding of LASP-1 to ErbB2 was independent of the tyrosine phosphorylation of LASP-1. LASP-1 was neither expressed on the surface epithelium of the normal ovary nor in the fallopian tube. It was expressed in 28% of ovarian tumours (n=101) that did not significantly correlate with other clinical factors. In tumours from patients with invasive ductal carcinoma of the breast who had ErbB2 amplification (3+), LASP-1 was expressed in 3/20 (p <0.001). Analysis of the expression of an independent dataset of ovarian and breast tumors from TCGA showed the significant co-occurrence of ErbB2 and LASP-1 (p<0.01). These results suggest that LASP-1 and ErbB2 interaction could be important in the pathogenesis of ovarian cancer.
Collapse
|
5
|
Yao ZP, Zhu H, Shen F, Gong D. Hsp90 regulates the tumorigenic function of tyrosine protein kinase in osteosarcoma. Clin Exp Pharmacol Physiol 2021; 49:380-390. [PMID: 34767669 DOI: 10.1111/1440-1681.13613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
Despite recent advances in diagnosis and treatment, osteosarcoma remains as the most common bone cancer in children and is associated with poor prognosis. Growing evidence has supported dysregulation of threonine and tyrosine protein kinase (TTK) expression as a hallmark of multiple cancers, however, its function in osteosarcoma remains to be elucidated. In the present study, we found that TTK was frequently overexpressed in osteosarcoma and associated with increased tumour growth and progression. Moreover, using both in vitro and in vivo assays, we provided evidence that TTK level was regulated by a molecular chaperone, heat shock protein 90 (Hsp90). Hsp90 directly interacted with TTK and prevents proteasome-dependent TTK degradation, leading to the accumulation of TTK in osteosarcoma cells. Elevated TTK promoted cancer cell proliferation and survival by activating cell-cycle progression and inhibiting apoptosis. Consistently, depletion of TTK by Hsp90 inhibition induced cell-cycle arrest, generated aneuploidy and eventually resulted in apoptotic cancer cell death. Together, our study revealed an important Hsp90-TTK regulatory axis in osteosarcoma cells to promote cancer cell growth and survival. These findings expand our knowledge on osteosarcoma pathogenesis and offer novel therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Zhao-Peng Yao
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Hui Zhu
- Department of Breast Cancer Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Feng Shen
- Department of Orthopaedics, The First Hospital of Nanchang, Nanchang, China
| | - Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
6
|
Miyata Y, Nishida E. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119081. [PMID: 34147560 DOI: 10.1016/j.bbamcr.2021.119081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The DYRK (Dual-specificity tYrosine-phosphorylation Regulated protein Kinase) family consists of five related protein kinases (DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4). DYRKs show homology to Drosophila Minibrain, and DYRK1A in human chromosome 21 is responsible for various neuronal disorders including human Down syndrome. Here we report identification of cellular proteins that associate with specific members of DYRKs. Cellular proteins with molecular masses of 90, 70, and 50-kDa associated with DYRK1B and DYRK4. These proteins were identified as molecular chaperones Hsp90, Hsp70, and Cdc37, respectively. Microscopic analysis of GFP-DYRKs showed that DYRK1A and DYRK1B were nuclear, while DYRK2, DYRK3, and DYRK4 were mostly cytoplasmic in COS7 cells. Overexpression of DYRK1B induced nuclear re-localization of these chaperones with DYRK1B. Treatment of cells with specific Hsp90 inhibitors, geldanamycin and 17-AAG, abolished the association of Hsp90 and Cdc37 with DYRK1B and DYRK4, but not of Hsp70. Inhibition of Hsp90 chaperone activity affected intracellular dynamics of DYRK1B and DYRK4. DYRK1B and DYRK4 underwent rapid formation of cytoplasmic punctate dots after the geldanamycin treatment, suggesting that the chaperone function of Hsp90 is required for prevention of protein aggregation of the target kinases. Prolonged inhibition of Hsp90 by geldanamycin, 17-AAG, or ganetespib, decreased cellular levels of DYRK1B and DYRK4. Finally, DYRK1B and DYRK4 were ubiquitinated in cells, and ubiquitinated DYRK1B and DYRK4 further increased by Hsp90 inhibition with geldanamycin. Taken together, these results indicate that Hsp90 and Cdc37 discriminate specific members of the DYRK kinase family and play an important role in quality control of these client kinases in cells.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Bahrami S, Kazemi B, Zali H, Black PC, Basiri A, Bandehpour M, Hedayati M, Sahebkar A. Discovering Therapeutic Protein Targets for Bladder Cancer Using Proteomic Data Analysis. Curr Mol Pharmacol 2021; 13:150-172. [PMID: 31622214 DOI: 10.2174/1874467212666191016124935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer accounts for almost 54% of urinary system cancer and is the second most frequent cause of death in genitourinary malignancies after prostate cancer. About 70% of bladder tumors are non-muscle-invasive, and the rest are muscle-invasive. Recurrence of the tumor is the common feature of bladder cancer. Chemotherapy is a conventional treatment for MIBC, but it cannot improve the survival rate of these patients sufficiently. Therefore, researchers must develop new therapies. Antibody-based therapy is one of the most important strategies for the treatment of solid tumors. Selecting a suitable target is the most critical step for this strategy. OBJECTIVE The aim of this study is to detect therapeutic cell surface antigen targets in bladder cancer using data obtained by proteomic studies. METHODS Isobaric tag for relative and absolute quantitation (iTRAQ) analysis had identified 131 overexpressed proteins in baldder cancer tissue and reverse-phase proteomic array (RPPA) analysis had been done for 343 tumor tissues and 208 antibodies. All identified proteins from two studies (131+208 proteins) were collected and duplicates were removed (331 unique proteins). Gene ontology study was performed using gene ontology (GO) and protein analysis through evolutionary relationships (PANTHER) databases. The Human Protein Atlas database was used to search the protein class and subcellular location of membrane proteins obtained from the PANTHER analysis. RESULTS Membrane proteins that could be suitable therapeutic targets for bladder cancer were selected. These included: Epidermal growth factor receptor (EGFR), Her2, Kinase insert domain receptor (KDR), Heat shock protein 60 (HSP60), HSP90, Transferrin receptor (TFRC), Activin A Receptor Like Type 1 (ACVRL1), and cadherin 2 (CDH2). Monoclonal antibodies against these proteins or their inhibitors were used for the treatment of different cancers in preclinical and clinical trials. CONCLUSION These monoclonal antibodies and inhibitor molecules and also their combination can be used for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Samira Bahrami
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter C Black
- Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Abbas Basiri
- Department of Urology, Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
9
|
Xu H. ATP-Driven Nonequilibrium Activation of Kinase Clients by the Molecular Chaperone Hsp90. Biophys J 2020; 119:1538-1549. [PMID: 33038305 DOI: 10.1016/j.bpj.2020.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The molecular chaperone 90-kDa heat-shock protein (Hsp90) assists the late-stage folding and activation of diverse types of protein substrates (called clients), including many kinases. Previous studies have established that the Hsp90 homodimer undergoes an ATP-driven cycle through open and closed conformations. Here, I propose a model of client activation by Hsp90 that predicts that this cycle enables Hsp90 to use ATP energy to drive a client out of thermodynamic equilibrium toward its active conformation. My model assumes that an Hsp90-bound client can transition between a deactivating conformation and an activating conformation. It suggests that the cochaperone Cdc37 aids Hsp90 to activate kinase clients by differentiating between these two intermediate conformations. My model makes experimentally testable predictions, including how modulating the stepwise kinetics of the Hsp90 cycle-for example, by various cochaperones-affects the activation of different clients. My model may inform client-specific and cell-type-specific therapeutic intervention of Hsp90-mediated protein activation.
Collapse
Affiliation(s)
- Huafeng Xu
- Silicon Therapeutics, Boston, Massachusetts.
| |
Collapse
|
10
|
Discovery of novel anti-breast cancer agents derived from deguelin as inhibitors of heat shock protein 90 (HSP90). Bioorg Med Chem Lett 2020; 30:127374. [PMID: 32738983 DOI: 10.1016/j.bmcl.2020.127374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
A series of O-substituted analogues of the B,C-ring truncated scaffold of deguelin were designed as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antiproliferative agents against HER2-positive breast cancer. Among the synthesized compounds, compound 80 exhibited significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells, whereas compound 80 did not show any cytotoxicity in normal cells. Compound 80 markedly downregulated the expression of the major client proteins of HSP90 in both cell types, indicating that the cytotoxicity of 80 in breast cancer cells is attributed to the destabilization and inactivation of HSP90 client proteins and that HSP90 inhibition represents a promising strategy to overcome trastuzumab resistance. A molecular docking study of 80 with the homology model of a HSP90 homodimer showed that 80 fit nicely in the C-terminal domain with a higher electrostatic complementary score than that of ATP.
Collapse
|
11
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication. J Virol 2019; 93:JVI.01142-19. [PMID: 31484751 DOI: 10.1128/jvi.01142-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Two viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region. This processing is essential for RUBV genome replication. Here we show that heat shock protein 90 (HSP90), a molecular chaperone, is an important host factor for RUBV genome replication. The treatment of RUBV-infected cells with the HSP90 inhibitors 17-allylamino-17-desmethoxygeldanamycin (17-AAG) and ganetespib suppressed RUBV genome replication. HSP90α physically interacted with p150, but not p90. Further analyses into the mechanism of action of the HSP90 inhibitors revealed that HSP90 activity contributes to p150 functional integrity and promotes p200 processing. Collectively, our data demonstrate that RUBV p150 is a client of the HSP90 molecular chaperone and that HSP90 functions as a key host factor for RUBV replication.IMPORTANCE Accumulating evidence indicates that RNA viruses use numerous host factors during replication of their genomes. However, the host factors involved in rubella virus (RUBV) genome replication are largely unknown. In this study, we demonstrate that the HSP90 molecular chaperone is needed for the efficient replication of the RUBV genome. Further, we reveal that HSP90 interacts with RUBV nonstructural protein p150 and its precursor polyprotein, p200. HSP90 contributes to the stability of p150 and the processing of p200 via its protease domain in the p150 region. We conclude that the cellular molecular chaperone HSP90 is a key host factor for functional maturation of nonstructural proteins for RUBV genome replication. These findings provide novel insight into this host-virus interaction.
Collapse
|
13
|
Han SH, Yun SH, Shin YK, Park HT, Park JI. Heat Shock Protein 90 is Required for cAMP-Induced Differentiation in Rat Primary Schwann Cells. Neurochem Res 2019; 44:2643-2657. [PMID: 31606837 DOI: 10.1007/s11064-019-02885-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Schwann cells (SCs) play an important role in producing myelin for rapid neurotransmission in the peripheral nervous system. Activation of the differentiation and myelination processes in SCs requires the expression of a series of transcriptional factors including Sox10, Oct6/Pou3f1, and Egr2/Krox20. However, functional interactions among several transcription factors are poorly defined and the important components of the regulatory network are still unknown. Until now, available evidence suggests that SCs require cAMP signaling to initiate the myelination program. Heat shock protein 90 (Hsp90) is known as a chaperone required to stabilize ErbB2 receptor. In recent years, it was reported that cAMP transactivated the ErbB2/ErbB3 signaling in SCs. However, the relationship between Hsp90 and cAMP-induced differentiation in SCs is undefined. Here we investigated the role of Hsp90 during cAMP-induced differentiation of SCs using Hsp90 inhibitor, geldanamycin and Hsp90 siRNA transfection. Our results showed that dibutyryl-cAMP (db-cAMP) treatment upregulated Hsp90 expression and led to nuclear translocation of Gab1/ERK, the downstream signaling pathway of the ErbB2 signaling mechanism in myelination. The expression of myelin-related genes and nuclear translocation of Gab1/ERK following db-cAMP treatment was inhibited by geldanamycin pretreatment and Hsp90 knockdown. These findings suggest that Hsp90 might play a role in cAMP-induced differentiation via stabilization of ErbB2 and nuclear translocation of Gab1/ERK in SCs.
Collapse
Affiliation(s)
- Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-Gu, Busan, 49201, Republic of Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
| | - Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-Gu, Busan, 49201, Republic of Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
| | - Yoon-Kyoung Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
| | - Hwan-Tae Park
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea. .,Department of Molecular Neuroscience, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-Gu, Busan, 49201, Republic of Korea.
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, 32, Daesingongwon-ro, Seo-Gu, Busan, 49201, Republic of Korea. .,Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
14
|
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat Commun 2019; 10:2574. [PMID: 31189925 PMCID: PMC6561935 DOI: 10.1038/s41467-019-10463-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.
Collapse
|
15
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
16
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
18
|
Sokolova EA, Vodeneev VA, Deyev SM, Balalaeva IV. 3D in vitro models of tumors expressing EGFR family receptors: a potent tool for studying receptor biology and targeted drug development. Drug Discov Today 2018; 24:99-111. [PMID: 30205170 DOI: 10.1016/j.drudis.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
Carcinomas overexpressing EGFR family receptors are of high clinical importance, because the receptors have prognostic value and are used as molecular targets for anticancer therapy. Insufficient drug efficacy necessitates further in-depth research of the receptor biology and improvement in preclinical stages of drug evaluation. Here, we review the currently used advanced 3D in vitro models of tumors, including tumor spheroids, models in natural and synthetic matrices, tumor organoids and microfluidic-based models, as a potent tool for studying EGFR biology and targeted drug development. We are especially focused on factors that affect the biology of tumor cells, causing modification in the expression and basic phosphorylation of the receptors, crosstalk with other signaling pathways and switch between downstream cascades, resulting ultimately in the resistance to antitumor agents.
Collapse
Affiliation(s)
- Evgeniya A Sokolova
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia
| | - Vladimir A Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Sergey M Deyev
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklay St., Moscow 117997, Russia
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky University, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
19
|
Sidhanth C, Manasa P, Krishnapriya S, Sneha S, Bindhya S, Nagare R, Garg M, Ganesan T. A systematic understanding of signaling by ErbB2 in cancer using phosphoproteomics. Biochem Cell Biol 2018; 96:295-305. [DOI: 10.1139/bcb-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ErbB2 is an important receptor tyrosine kinase and a member of the ErbB family. Although it does not have a specific ligand, it transmits signals downstream by heterodimerization with other receptors in the family. It plays a major role in a variety of cellular responses like proliferation, differentiation, and adhesion. ErbB2 is amplified at the DNA level in breast cancer (20%–30%) and gastric cancer (10%–20%), and trastuzumab is effective as a therapeutic antibody. This review is a critical analysis of the currently published data on the signaling pathways of ErbB2 and the interacting proteins. It also focuses on the techniques that are currently available to evaluate the entire phosphoproteome following activation of ErbB2. Identification of new and relevant phosphoproteins can not only serve as new therapeutic targets but also as a surrogate marker in patients to assess the activity of compounds that inhibit ErbB2. Overall, such analysis will improve understanding of signaling by ErbB2.
Collapse
Affiliation(s)
- C. Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - P. Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Sneha
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - R.P. Nagare
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - M. Garg
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - T.S. Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| |
Collapse
|
20
|
Shramova EI, Proshkina GM, Deyev SM. The Cause of ErbB2 Receptor Resistance to Downregulation. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Morán Luengo T, Kityk R, Mayer MP, Rüdiger SGD. Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System. Mol Cell 2018; 70:545-552.e9. [PMID: 29706537 DOI: 10.1016/j.molcel.2018.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/17/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stop-start mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roman Kityk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
22
|
Mellatyar H, Talaei S, Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A, Barekati-Mowahed M, Zarghami N. Targeted cancer therapy through 17-DMAG as an Hsp90 inhibitor: Overview and current state of the art. Biomed Pharmacother 2018; 102:608-617. [PMID: 29602128 DOI: 10.1016/j.biopha.2018.03.102] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/08/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an evolutionary preserved molecular chaperone which mediates many cellular processes such as cell transformation, proliferation, and survival in normal and stress conditions. Hsp90 plays an important role in folding, maturation, stabilization and activation of Hsp90 client proteins which all contribute to the development, and proliferation of cancer as well as other inflammatory diseases. Functional inhibition of Hsp90 can have a massive effect on various oncogenic and inflammatory pathways, and will result in the degradation of their client proteins. This turns it into an interesting target in the treatment of different malignancies. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) as a semi-synthetic derivative of geldanamycin, has several advantages over 17-Allylamino-17-demethoxygeldanamycin (17-AAG) such as higher water solubility, good bioavailability, reduced metabolism, and greater anti-tumour capability. 17-DMAG binds to the Hsp90, and inhibits its function which eventually results in the degradation of Hsp90 client proteins. Here, we reviewed the pre-clinical data and clinical trial data on 17-DMAG as a single agent, in combination with other agents and loaded on nanomaterials in various cancers and inflammatory diseases.
Collapse
Affiliation(s)
- Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arman Shahabi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Joshi SS, Jiang S, Unni E, Goding SR, Fan T, Antony PA, Hornyak TJ. 17-AAG inhibits vemurafenib-associated MAP kinase activation and is synergistic with cellular immunotherapy in a murine melanoma model. PLoS One 2018; 13:e0191264. [PMID: 29481571 PMCID: PMC5826531 DOI: 10.1371/journal.pone.0191264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone which stabilizes client proteins with important roles in tumor growth. 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of HSP90 ATPase activity, occupies the ATP binding site of HSP90 causing a conformational change which destabilizes client proteins and directs them towards proteosomal degradation. Malignant melanomas have active RAF-MEK-ERK signaling which can occur either through an activating mutation in BRAF (BRAFV600E) or through activation of signal transduction upstream of BRAF. Prior work showed that 17-AAG inhibits cell growth in BRAFV600E and BRAF wildtype (BRAFWT) melanomas, although there were conflicting reports about the dependence of BRAFV600E and BRAFWT upon HSP90 activity for stability. Here, we demonstrate that BRAFWT and CRAF are bound by HSP90 in BRAFWT, NRAS mutant melanoma cells. HSP90 inhibition by 17-AAG inhibits ERK signaling and cell growth by destabilizing CRAF but not BRAFWT in the majority of NRAS mutant melanoma cells. The highly-selective BRAFV600E inhibitor, PLX4032 (vemurafenib), inhibits ERK signaling and cell growth in mutant BRAF melanoma cells, but paradoxically enhances signaling in cells with wild-type BRAF. In our study, we examined whether 17-AAG could inhibit PLX4032-enhanced ERK signaling in BRAFWT melanoma cells. As expected, PLX4032 alone enhanced ERK signaling in the BRAFWT melanoma cell lines Mel-Juso, SK-Mel-2, and SK-Mel-30, and inhibited signaling and cell growth in BRAFV600E A375 cells. However, HSP90 inhibition by 17-AAG inhibited PLX4032-enhanced ERK signaling and inhibited cell growth by destabilizing CRAF. Surprisingly, 17-AAG also stimulated melanin production in SK-Mel-30 cells and enhanced TYRP1 and DCT expression without stimulating TYR production in all three BRAFWT cell lines studied as well as in B16F10 mouse melanoma cells. In vivo, the combination of 17-AAG and cellular immunotherapy directed against Tyrp1 enhanced the inhibition of tumor growth compared to either therapy alone. Our studies support a role for 17-AAG and HSP90 inhibition in enhancing cellular immunotherapy for melanoma.
Collapse
Affiliation(s)
- Sandeep S. Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shunlin Jiang
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Emmanual Unni
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen R. Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tao Fan
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Paul A. Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas J. Hornyak
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Dermatology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yuan H, Wang X, Lu J, Zhang Q, Brandina I, Alexandrov I, Glazer RI. MMTV-NeuT/ATTAC mice: a new model for studying the stromal tumor microenvironment. Oncotarget 2018; 9:8042-8053. [PMID: 29487713 PMCID: PMC5814280 DOI: 10.18632/oncotarget.24233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
One of the central challenges in cancer prevention is the identification of factors in the tumor microenvironment (TME) that increase susceptibility to tumorigenesis. One such factor is stromal fibrosis, a histopathologic negative prognostic criterion for invasive breast cancer. Since the stromal composition of the breast is largely adipose and fibroblast tissue, it is important to understand how alterations in these tissues affect cancer progression. To address this question, a novel transgenic animal model was developed by crossing MMTV-NeuT mice containing a constitutively active ErbB2 gene into the FAT-ATTAC (fat apoptosis through targeted activation of caspase 8) background, which expresses an inducible caspase 8 fusion protein targeted to mammary adipose tissue. Upon caspase 8 activation, lipoatrophy of the mammary gland results in stromal fibrosis and acceleration of mammary tumor development with an increase in tumor multiplicity. Fibrosis was accompanied by an increase in collagen deposition, α-smooth muscle actin and CD31 expression in the tumor stroma as well as an increase in PD-L1-positive tumor cells, and infiltration by regulatory T cells, myeloid-derived suppressor cells and tumor-associated macrophages. Gene expression and signal transduction profiling indicated upregulation of pathways associated with cytokine signaling, inflammation and proliferation. This model should be useful for evaluating new therapies that target desmoplasia in the TME associated with invasive cancer.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Xiaoyi Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jin Lu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Qiongsi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | - Robert I. Glazer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
25
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
26
|
Morey TM, Winick-Ng W, Seah C, Rylett RJ. Chaperone-Mediated Regulation of Choline Acetyltransferase Protein Stability and Activity by HSC/HSP70, HSP90, and p97/VCP. Front Mol Neurosci 2017; 10:415. [PMID: 29311808 PMCID: PMC5733026 DOI: 10.3389/fnmol.2017.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022] Open
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A) or mutation of residue Val18 (V18M) enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID), co-immunoprecipitation and in situ proximity-ligation assay (PLA), we identified the heat shock proteins (HSPs) HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES) or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT) compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER)- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms for the functional regulation of wild-type and CMS-related mutant ChAT by pro-stabilizing HSPs and the pro-degradative co-chaperone p97/VCP that may have broader implications for ChAT function during cellular stress and disease.
Collapse
Affiliation(s)
- Trevor M Morey
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Warren Winick-Ng
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Claudia Seah
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
27
|
Rong B, Yang S. Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments (Review). Int J Oncol 2017; 52:321-336. [PMID: 29207057 DOI: 10.3892/ijo.2017.4214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
The exploration of the molecular mechanisms and signaling pathways on lung cancer is very important for developing new strategies of diagnosis and treatment to this disease, such as finding valuable lung cancer markers and molecularly targeted therapies. Previously, a number of studies disclose that heat shock protein 90 (Hsp90) is upregulated in cancer cells, tissues and serum of lung cancer patients, and its upregulation intimately correlates with the occurrence, development and outcome of lung cancer. On the contrary, inhibition of Hsp90 can suppress cell proliferation, motility and metastasis of lung cancer and promote apoptosis of lung cancer cells via complex signaling pathways. In addition, a series of Hsp90 inhibitors have been investigated as effective molecular targeted therapy tactics fighting against lung cancer. This review, systematically summarizes the role of Hsp90 in lung cancer, the molecular mechanisms and development of anti-Hsp90 treatment in lung cancer.
Collapse
Affiliation(s)
- Biaoxue Rong
- Department of Oncology, First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, P.R. China
| | - Shuanying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
28
|
STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget 2017; 8:77474-77488. [PMID: 29100402 PMCID: PMC5652794 DOI: 10.18632/oncotarget.20535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022] Open
Abstract
Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.
Collapse
|
29
|
Verba KA, Agard DA. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches. Trends Biochem Sci 2017; 42:799-811. [PMID: 28784328 PMCID: PMC5621984 DOI: 10.1016/j.tibs.2017.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
The Hsp90/Cdc37 chaperone system interacts with and supports 60% of the human kinome. Not only are Hsp90 and Cdc37 generally required for initial folding, but many kinases rely on the Hsp90/Cdc37 throughout their lifetimes. A large fraction of these 'client' kinases are key oncoproteins, and their interactions with the Hsp90/Cdc37 machinery are crucial for both their normal and malignant activity. Recently, advances in single-particle cryo-electron microscopy (cryoEM) and biochemical strategies have provided the first key molecular insights into kinase-chaperone interactions. The surprising results suggest a re-evaluation of the role of chaperones in the kinase lifecycle, and suggest that such interactions potentially allow kinases to more rapidly respond to key signals while simultaneously protecting unstable kinases from degradation and suppressing unwanted basal activity.
Collapse
Affiliation(s)
- Kliment A Verba
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
30
|
Chai RC, Vieusseux JL, Lang BJ, Nguyen CH, Kouspou MM, Britt KL, Price JT. Histone deacetylase activity mediates acquired resistance towards structurally diverse HSP90 inhibitors. Mol Oncol 2017; 11:567-583. [PMID: 28306192 PMCID: PMC5527463 DOI: 10.1002/1878-0261.12054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
Heat shock protein 90 (HSP90) regulates multiple signalling pathways critical for tumour growth. As such, HSP90 inhibitors have been shown to act as effective anticancer agents in preclinical studies but, for a number of reasons, the same effect has not been observed in the clinical trials to date. One potential reason for this may be the presence of de novo or acquired resistance within the tumours. To investigate mechanisms of resistance, we generated resistant cell lines through gradual dose escalation of the HSP90 inhibitor 17‐allylamino‐17‐demethoxygeldanamycin (17‐AAG). The resultant resistant cell lines maintained their respective levels of resistance (7–240×) in the absence of 17‐AAG and were also cross‐resistant with other benzoquinone ansamycin HSP90 inhibitors. Expression of members of the histone deacetylase family (HDAC 1, 5, 6) was altered in the resistant cells. To determine whether HDAC activity contributed to resistance, pan‐HDAC inhibitors (TSA and LBH589) and the class II HDAC‐specific inhibitor SNDX275 were found to resensitize resistant cells towards 17‐AAG and 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin. Most significantly, resistant cells were also identified as cross‐resistant towards structurally distinct HSP90 inhibitors such as radicicol and the second‐generation HSP90 inhibitors CCT018159, VER50589 and AUY922. HDAC inhibition also resensitized resistant cells towards these classes of HSP90 inhibitors. In conclusion, we report that prolonged 17‐AAG treatment results in acquired resistance of cancer cells towards not just 17‐AAG but also to a spectrum of structurally distinct HSP90 inhibitors. This acquired resistance can be inhibited using clinically relevant HDAC inhibitors. This work supports the potential benefit of using HSP90 and HDAC inhibitors in combination within the clinical setting.
Collapse
Affiliation(s)
- Ryan C Chai
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Bone Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Jessica L Vieusseux
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Benjamin J Lang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Department of Radiation Oncology, Centre for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chau H Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| | - Michelle M Kouspou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Kara L Britt
- Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Vic., Australia
| | - John T Price
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and University of Melbourne, Vic., Australia.,Department of Medicine, Melbourne Medical School-Western Precinct, The University of Melbourne, St Albans, Vic., Australia
| |
Collapse
|
31
|
Jeong J, Kim W, Kim LK, VanHouten J, Wysolmerski JJ. HER2 signaling regulates HER2 localization and membrane retention. PLoS One 2017; 12:e0174849. [PMID: 28369073 PMCID: PMC5378417 DOI: 10.1371/journal.pone.0174849] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
ErbB2/HER2/Neu is a receptor tyrosine kinase that is overexpressed in 25-30% of human breast cancers, usually associated with amplification of the ERBB2 gene. HER2 has no recognized ligands and heterodimers between HER2 and EGFR (ErbB1/HER1) or HER2 and ErbB3/HER3 are important in breast cancer. Unlike other ErbB family members, HER2 is resistant to internalization and degradation, and remains at the cell surface to signal for prolonged periods after it is activated. Although the mechanisms underlying retention of HER2 at the cell surface are not fully understood, prior studies have shown that, in order to avoid internalization, HER2 must interact with the chaperone, HSP90, and the calcium pump, PMCA2, within specific plasma membrane domains that protrude from the cell surface. In this report, we demonstrate that HER2 signaling, itself, is important for the formation and maintenance of membrane protrusions, at least in part, by maintaining PMCA2 expression and preventing increased intracellular calcium concentrations. Partial genetic knockdown of HER2 expression or pharmacologic inhibition of HER2 signaling causes the depletion of membrane protrusions and disruption of the interactions between HER2 and HSP90. This is associated with the ubiquitination of HER2, its internalization with EGFR or HER3, and its degradation. These results suggest a model by which some threshold of HER2 signaling is required for the formation and/or maintenance of multi-protein signaling complexes that reinforce and prolong HER2/EGFR or HER2/HER3 signaling by inhibiting HER2 ubiquitination and internalization.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS project to Medical Science, Severance Institute for Vascular and Metabolic Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - John J. Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
32
|
Shrestha L, Bolaender A, Patel HJ, Taldone T. Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease. Curr Top Med Chem 2017; 16:2753-64. [PMID: 27072696 DOI: 10.2174/1568026616666160413141911] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/21/2015] [Accepted: 01/17/2016] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10021, USA.
| |
Collapse
|
33
|
Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. Int J Biochem Cell Biol 2017; 83:97-110. [PMID: 28049018 DOI: 10.1016/j.biocel.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
34
|
Han SY, Ko A, Kitano H, Choi CH, Lee MS, Seo J, Fukuoka J, Kim SY, Hewitt SM, Chung JY, Song J. Molecular Chaperone HSP90 Is Necessary to Prevent Cellular Senescence via Lysosomal Degradation of p14ARF. Cancer Res 2016; 77:343-354. [PMID: 27793846 DOI: 10.1158/0008-5472.can-16-0613] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/13/2016] [Accepted: 10/01/2016] [Indexed: 01/09/2023]
Abstract
The tumor suppressor function of p14ARF is regulated at a posttranslational level via mechanisms yet to be fully understood. Here, we report the identification of an unconventional p14ARF degradation pathway induced by the chaperone HSP90 in association with the E3 ubiquitin ligase C-terminus of HSP70-interacting protein (CHIP). The ternary complex of HSP90, CHIP, and p14ARF was required to induce the lysosomal degradation of p14ARF by an ubiquitination-independent but LAMP2A-dependent mechanism. Depletion of HSP90 or CHIP induced p14ARF-dependent senescence in human fibroblasts. Premature senescence observed in cells genetically deficient in CHIP was rescued in cells that were doubly deficient in CHIP and p14ARF. Notably, non-small cell lung cancer cells (NSCLC) positive for p14ARF were sensitive to treatment with the HSP90 inhibitor geldanamycin. Furthermore, overexpression of HSP90 and CHIP with a concomitant loss of p14ARF correlated with poor prognosis in patients with NSCLC. Our findings identify a relationship between p14ARF and its chaperones that suggest new therapeutic strategies in cancers that overexpress HSP90. Cancer Res; 77(2); 343-54. ©2016 AACR.
Collapse
Affiliation(s)
- Su Yeon Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Haruhisa Kitano
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Thoracic Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (South)
| | - Min-Sik Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South)
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Republic of Korea (South)
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea (South).
| |
Collapse
|
35
|
Liu S, Street TO. 5'-N-ethylcarboxamidoadenosine is not a paralog-specific Hsp90 inhibitor. Protein Sci 2016; 25:2209-2215. [PMID: 27667530 DOI: 10.1002/pro.3049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 01/03/2023]
Abstract
The molecular chaperone Hsp90 facilitates the folding and modulates activation of diverse substrate proteins. Unlike other heat shock proteins such as Hsp60 and Hsp70, Hsp90 plays critical regulatory roles by maintaining active states of kinases, many of which are overactive in cancer cells. Four Hsp90 paralogs are expressed in eukaryotic cells: Hsp90α/β (in the cytosol), Grp94 (in the endoplasmic reticulum), Trap1 (in mitochondria). Although numerous Hsp90 inhibitors are being tested in cancer clinical trials, little is known about why different Hsp90 inhibitors show specificity among Hsp90 paralogs. The paralog specificity of Hsp90 inhibitors is likely fundamental to inhibitor efficacy and side effects. In hopes of gaining insight into this issue we examined NECA (5'-N-ethylcarboxamidoadenosine), which has been claimed to be an example of a highly specific ligand that binds to one paralog, Grp94, but not cytosolic Hsp90. To our surprise we find that NECA inhibits many different Hsp90 proteins (Grp94, Hsp90α, Trap1, yeast Hsp82, bacterial HtpG). NMR experiments demonstrate that NECA can bind to the N-terminal domains of Grp94 and Hsp82. We use ATPase competition experiments to quantify the inhibitory power of NECA for different Hsp90 proteins. This scale: Hsp82 > Hsp90α > HtpG ≈ Grp94 > Trap1, ranks Grp94 as less sensitive to NECA inhibition. Because NECA is primarily used as an adenosine receptor agonist, our results also suggest that cell biological experiments utilizing NECA may have confounding effects from cytosolic Hsp90 inhibition.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA, 02454
| |
Collapse
|
36
|
Mitra S, Ghosh B, Gayen N, Roy J, Mandal AK. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem 2016; 291:24579-24593. [PMID: 27703006 DOI: 10.1074/jbc.m116.746420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
CRAF kinase maintains cell viability, growth, and proliferation by participating in the MAPK pathway. Unlike BRAF, CRAF requires continuous chaperoning by Hsp90 to retain MAPK signaling. However, the reason behind the continuous association of Hsp90 with CRAF is still elusive. In this study, we have identified the bipartite role of Hsp90 in chaperoning CRAF kinase. Hsp90 facilitates Ser-621 phosphorylation of CRAF and prevents the kinase from degradation. Co-chaperone Cdc37 assists in this phosphorylation event. However, after folding, the stability of the kinase becomes insensitive to Hsp90 inhibition, although the physical association between Hsp90 and CRAF remains intact. We observed that overexpression of Hsp90 stimulates MAPK signaling by activating CRAF. The interaction between Hsp90 and CRAF is substantially increased under an elevated level of cellular Hsp90 and in the presence of either active Ras (RasV12) or EGF. Surprisingly, enhanced binding of Hsp90 to CRAF occurs prior to the Ras-CRAF association and facilitates actin recruitment to CRAF for efficient Ras-CRAF interaction, which is independent of the ATPase activity of Hsp90. However, monomeric CRAF (CRAFR401H) shows abrogated interaction with both Hsp90 and actin, thereby affecting Hsp90-dependent CRAF activation. This finding suggests that stringent assemblage of Hsp90 keeps CRAF kinase equipped for participating in the MAPK pathway. Thus, the role of Hsp90 in CRAF maturation and activation acts as a limiting factor to maintain the function of a strong client like CRAF kinase.
Collapse
Affiliation(s)
- Shahana Mitra
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Baijayanti Ghosh
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Nilanjan Gayen
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Joydeep Roy
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Atin K Mandal
- From the Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
37
|
Göstring L, Lindegren S, Gedda L. 17AAG-induced internalisation of HER2-specific Affibody molecules. Oncol Lett 2016; 12:2574-2580. [PMID: 27698830 PMCID: PMC5038849 DOI: 10.3892/ol.2016.4990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/16/2016] [Indexed: 02/03/2023] Open
Abstract
The geldanamycin derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) is known to induce internalisation and degradation of the otherwise internalisation-resistant human epidermal growth factor receptor 2 (HER2) receptor. In the present study, 17-AAG was used to increase internalisation of the HER2-specific Affibody molecule ABY-025. The cellular redistribution of halogen-labelled 211At-ABY-025 and radiometal-labelled 111In-ABY-025 following treatment with 17-AAG was studied. 17-AAG treatment of SKOV-3 human ovarian carcinoma and SKBR-3 human breast carcinoma cells to some extent shifted the localisation of 111In-ABY-025 from the cell surface to intracellular compartments in the two cell lines. ABY-025 labelled with the high-linear energy transfer α emitter 211At was also internalised to a higher degree; however, due to its physiological properties, this nuclide was excreted faster. The results indicate that 17-AAG may be used to facilitate cell-specific intracellular localisation of a suitable cytotoxic or radioactive agent coupled to ABY-025 in HER2-overexpressing cells.
Collapse
Affiliation(s)
- Lovisa Göstring
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Sture Lindegren
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Lars Gedda
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden; Swedish Radiation Safety Authority, SE-17116, Stockholm, Sweden
| |
Collapse
|
38
|
Verma S, Goyal S, Jamal S, Singh A, Grover A. Hsp90: Friends, clients and natural foes. Biochimie 2016; 127:227-240. [PMID: 27295069 DOI: 10.1016/j.biochi.2016.05.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/13/2022]
Abstract
Hsp90, a homodimeric ATPase, is responsible for the correct folding of a number of newly synthesized polypeptides in addition to the correct folding of denatured/misfolded client proteins. It requires several co-chaperones and other partner proteins for chaperone activity. Due to the involvement of Hsp90-dependent client proteins in a variety of oncogenic signaling pathways, Hsp90 inhibition has emerged as one of the leading strategies for anticancer chemotherapeutics. Most of Hsp90 inhibitors blocks the N terminal ATP binding pocket and prevents the conformational changes which are essential for the loading of co-chaperones and client proteins. Several other inhibitors have also been reported which disrupt chaperone cycle in ways other than binding to N terminal ATP binding pocket. The Hsp90 inhibition is associated with heat shock response, mediated by HSF-1, to overcome the loss of Hsp90 and sustain cell survival. This review is an attempt to give an over view of all the important players of chaperone cycle.
Collapse
Affiliation(s)
- Sharad Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022, India.
| | - Aditi Singh
- Department of Biotechnology, TERI University, VasantKunj, New Delhi 110 070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
39
|
Szymanska M, Fosdahl AM, Nikolaysen F, Pedersen MW, Grandal MM, Stang E, Bertelsen V. A combination of two antibodies recognizing non-overlapping epitopes of HER2 induces kinase activity-dependent internalization of HER2. J Cell Mol Med 2016; 20:1999-2011. [PMID: 27469139 PMCID: PMC5020627 DOI: 10.1111/jcmm.12899] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation.
Collapse
Affiliation(s)
- Monika Szymanska
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne M Fosdahl
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Filip Nikolaysen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Espen Stang
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bertelsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
40
|
Kim J, Felts S, Llauger L, He H, Huezo H, Rosen N, Chiosis G. Development of a Fluorescence Polarization Assay for the Molecular Chaperone Hsp90. ACTA ACUST UNITED AC 2016; 9:375-81. [PMID: 15296636 DOI: 10.1177/1087057104265995] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone with essential functions in maintaining transformation, and there is increasing interest in developing Hsp90 inhibitors as cancer therapeutics. In this study, the authors describe the development and optimization of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization. The assay is based on the competition of fluorescently (BODIPY) labeled geldanamycin (GM) for binding to purified recombinant Hsp90α (GM is a natural product that binds to the ATP/ADP pocket in the amino terminal of Hsp90). The authors show that GM-BODIPY binds Hsp90α with high affinity. Even at low Hsp90α concentrations (30 nM), the measured polarization value is close to the maximum assay range of 160 mP, making measurements very sensitive. Its performance, as judged by signal-to-noise ratios (> 10) and Z and Z′ values (> 0.5), suggests that this is a robust and reliable assay. GM, PU24FCl, ADP, and ATP, all known to bind to the Hsp90 pocket, compete with GM-BODIPY for binding to Hsp90α with EC50s in agreement with reported values. These data demonstrate that the Hsp90-FP-based assay can be used for high-throughput screening in aiding the identification of novel Hsp90 inhibitors.
Collapse
Affiliation(s)
- Joungnam Kim
- Program in Cell Biology and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Li WX, Han B, Cui CB. Pseudoverticin B, a novel geldanamycin analog obtained as new cell cycle inhibitor from Streptomyces pseudoverticillus YN17707. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:705-710. [PMID: 26813156 DOI: 10.1080/10286020.2015.1137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Pseudoverticin B (1), a novel naturally occurring geldanamycin analog with cell cycle inhibitory activity, was isolated from the fermentation broth of Streptomyces pseudoverticillus YN17707, together with the known ansamycin antibiotic, hydroquinone geldanamycin (2), through bioassay-guided fractionation procedures. The structure of compound 1 was elucidated by spectroscopic methods, being characterized by an ansa bridge, same as that in geldanamycin and a novel hydroquinone-derived moiety. Compounds 1 and 2 arrested the cell cycle of tsFT210 cells at the G0/G1 phase with the minimum inhibitory concentration values of 10.1 and 20.2 μmolL(-1), respectively.
Collapse
Affiliation(s)
- Wen-Xin Li
- a Beijing Institute of Biomedicine , Beijing 100091 , China
| | - Bing Han
- a Beijing Institute of Biomedicine , Beijing 100091 , China
| | - Cheng-Bin Cui
- b State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , China
| |
Collapse
|
42
|
Tao Y, Messer JS, Goss KH, Hart J, Bissonnette M, Chang EB. Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis 2016; 37:731-739. [PMID: 27207671 DOI: 10.1093/carcin/bgw056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) develops from colonic epithelial cells that lose expression of key tumor suppressor genes and/or gain expression of proproliferative and antiapoptotic genes like heat shock protein 70 (Hsp70). Heat shock protein 70 is overexpressed in CRC, but it is not known whether this is in response to the proteotoxic stress induced by transformation, or if it contributes to the process of transformation itself. Here, using the Apc (Min/+) mouse model of CRC, we show that Hsp70 regulates mitogenic signaling in intestinal epithelial cells through stabilization of proteins involved in the receptor tyrosine kinase (RTK) and WNT signaling pathways. Loss of Hsp70 reduced tumor size with decreased proliferation and increased tumor cell death. Hsp70 loss also led to decreased expression of ErbB2, Akt, ERK and β-catenin along with decreased β-catenin transcriptional activity as measured by c-myc and axin2 expression. Upregulation of RTK or WNT signals are frequent oncogenic events in CRC and many other cancers. Thus, in addition to the role of Hsp70 in cell-survival after transformation, Hsp70 stabilization of β-catenin, Akt, ERK and ErbB2 are predicted to contribute to transformation. This has important implications not only for understanding the pathophysiology of these cancers, but also for treatment since anti-EGFR antibodies are in clinical use for CRC and EGFR is a major ErbB2 heterodimeric partner. Targeting Hsp70, therefore, might provide an alternative or complementary strategy for achieving better outcomes for CRC and other related cancer types.
Collapse
Affiliation(s)
| | | | | | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J 2016; 473:1703-18. [PMID: 27048593 DOI: 10.1042/bcj20160203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Septins are a family of cytoskeletal GTP-binding proteins that assemble into membrane-associated hetero-oligomers and organize scaffolds for recruitment of cytosolic proteins or stabilization of membrane proteins. Septins have been implicated in a diverse range of cancers, including gastric cancer, but the underlying mechanisms remain unclear. The hypothesis tested here is that septins contribute to cancer by stabilizing the receptor tyrosine kinase ErbB2, an important target for cancer treatment. Septins and ErbB2 were highly over-expressed in gastric cancer cells. Immunoprecipitation followed by MS analysis identified ErbB2 as a septin-interacting protein. Knockdown of septin-2 or cell exposure to forchlorfenuron (FCF), a well-established inhibitor of septin oligomerization, decreased surface and total levels of ErbB2. These treatments had no effect on epidermal growth factor receptor (EGFR), emphasizing the specificity and functionality of the septin-ErbB2 interaction. The level of ubiquitylated ErbB2 at the plasma membrane was elevated in cells treated with FCF, which was accompanied by a decrease in co-localization of ErbB2 with septins at the membrane. Cathepsin B inhibitor, but not bafilomycin or lactacystin, prevented FCF-induced decrease in total ErbB2 by increasing accumulation of ubiquitylated ErbB2 in lysosomes. Therefore, septins protect ErbB2 from ubiquitylation, endocytosis and lysosomal degradation. The FCF-induced degradation pathway is distinct from and additive with the degradation induced by inhibiting ErbB2 chaperone Hsp90. These results identify septins as novel regulators of ErbB2 expression that contribute to the remarkable stabilization of the receptor at the plasma membrane of cancer cells and may provide a basis for the development of new ErbB2-targeting anti-cancer therapies.
Collapse
|
44
|
Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90. Mol Cell Biol 2016; 36:1007-18. [PMID: 26755559 DOI: 10.1128/mcb.01045-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
The heat shock protein 90 (HSP90) and cell division cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests that thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90 binding between wild-type (WT) and kinase-dead (KD) glycogen synthase kinase 3β (GSK3β) forms. Using model cell lines stably expressing these two GSK3β forms, we observed no interaction between WT GSK3β and HSP90, in stark contrast to KD GSK3β forming a stable complex with HSP90 at a 1:1 ratio. In a survey of 91 ectopically expressed kinases in DLD-1 cells, we compared two parameters to measure HSP90 dependency: static binding and kinase stability following HSP90 inhibition. We observed no correlation between HSP90 binding and reduced stability of a kinase after pharmacological inhibition of HSP90. We expanded our stability study to >50 endogenous kinases across four cell lines and demonstrated that HSP90 dependency is context dependent. These observations suggest that HSP90 binds to its kinase client in a particular conformation that we hypothesize to be associated with the nucleotide-processing cycle. Lastly, we performed proteomics profiling of kinases and phosphopeptides in DLD-1 cells to globally define the impact of HSP90 inhibition on the kinome.
Collapse
|
45
|
Hsp90 Co-chaperones as Drug Targets in Cancer: Current Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Lu YY, Xu W, Ji J, Feng D, Sourbier C, Yang Y, Qu J, Zeng Z, Wang C, Chang X, Chen Y, Mishra A, Xu M, Lee MJ, Lee S, Trepel J, Linehan WM, Wang XW, Yang Y, Neckers L. Alternative splicing of the cell fate determinant Numb in hepatocellular carcinoma. Hepatology 2015; 62:1122-31. [PMID: 26058814 PMCID: PMC4589429 DOI: 10.1002/hep.27923] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED The cell fate determinant Numb is aberrantly expressed in cancer. Numb is alternatively spliced, with one isoform containing a long proline-rich region (PRR(L) ) compared to the other with a short PRR (PRR(S) ). Recently, PRR(L) was reported to enhance proliferation of breast and lung cancer cells. However, the importance of Numb alternative splicing in hepatocellular carcinoma (HCC) remains unexplored. We report here that Numb PRR(L) expression is increased in HCC and associated with early recurrence and reduced overall survival after surgery. In a panel of HCC cell lines, PRR(L) generally promotes and PRR(S) suppresses proliferation, migration, invasion, and colony formation. Knockdown of PRR(S) leads to increased Akt phosphorylation and c-Myc expression, and Akt inhibition or c-Myc silencing dampens the proliferative impact of Numb PRR(S) knockdown. In the cell models explored in this study, alternative splicing of Numb PRR isoforms is coordinately regulated by the splicing factor RNA-binding Fox domain containing 2 (RbFox2) and the kinase serine/arginine protein-specific kinase 2 (SRPK2). Knockdown of the former causes accumulation of PRR(L) , while SRPK2 knockdown causes accumulation of PRR(S) . The subcellular location of SRPK2 is regulated by the molecular chaperone heat shock protein 90, and heat shock protein 90 inhibition or knockdown phenocopies SRPK2 knockdown in promoting accumulation of Numb PRR(S) . Finally, HCC cell lines that predominantly express PRR(L) are differentially sensitive to heat shock protein 90 inhibition. CONCLUSION Alternative splicing of Numb may provide a useful prognostic biomarker in HCC and is pharmacologically tractable.
Collapse
Affiliation(s)
- Yin Ying Lu
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Wanping Xu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Junfang Ji
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Jianhui Qu
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Zhen Zeng
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Chunping Wang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Xiujuan Chang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Yan Chen
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Max Xu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| | - Yongping Yang
- Center for Therapeutic Research of Hepatocarcinoma, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Beijing 100039, China
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892
| |
Collapse
|
47
|
Wu BX, Hong F, Zhang Y, Ansa-Addo E, Li Z. GRP94/gp96 in Cancer: Biology, Structure, Immunology, and Drug Development. Adv Cancer Res 2015; 129:165-90. [PMID: 26916005 DOI: 10.1016/bs.acr.2015.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As an endoplasmic reticulum heat-shock protein 90 (HSP90) paralog, GRP94 (glucose-regulated protein 94)/gp96 (hereafter referred to as GRP94) has been shown to be an essential master chaperone for multiple receptors including Toll-like receptors, Wnt coreceptors, and integrins. Clinically, expression of GRP94 correlates with advanced stage and poor survival in a variety of cancers. Recent preclinical studies have also revealed that GRP94 expression is closely linked to cancer growth and metastasis in melanoma, ovarian cancer, multiple myeloma, lung cancer, and inflammation-associated colon cancer. Thus, GRP94 is an attractive therapeutic target in a number of malignancies. The chaperone function of GRP94 depends on its ATPase domain, which is structurally distinct from HSP90, allowing design of highly selective GRP94-targeted inhibitors. In this chapter, we discuss the biology and structure-function relationship of GRP94. We also summarize the immunological roles of GRP94 based on the studies documented over the last two decades, as these pertain to tumorigenesis and cancer progression. Finally, the structure-based rationale for the design of selective small-molecule inhibitors of GRP94 and their potential application in the treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Bill X Wu
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Feng Hong
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongliang Zhang
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ephraim Ansa-Addo
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
48
|
Devarakonda CV, Kita D, Phoenix KN, Claffey KP. Patient-derived heavy chain antibody targets cell surface HSP90 on breast tumors. BMC Cancer 2015; 15:614. [PMID: 26334999 PMCID: PMC4559304 DOI: 10.1186/s12885-015-1608-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022] Open
Abstract
Background Monoclonal antibodies have been used to effectively treat various tumors. We previously established a unique strategy to identify tumor specific antibodies by capturing B-cell response against breast tumor antigens from patient-derived sentinel lymph nodes. Initial application of this approach led to identification of a tumor specific single domain antibody. In this paper we optimized our previous strategy by generating heavy chain antibodies (HCAbs) to overcome the deficiencies of single domain antibodies. Here we identified and characterized a heavy chain antibody (HCAb2) that targets cell surface HSP90 antigen on breast tumor cells but not normal cells. Methods Eight HCAbs derived from 4 breast cancer patients were generated using an in vitro expression system. HCAbs were screened against normal breast cells (MCF10A, HMEC) and tumor cell lines (MCF7, MDA-MB-231) to identify cell surface targeting and tumor specific antibodies using flow cytometry and immunofluorescence. Results observed with cell lines were validated by screening a cohort of primary human breast normal and tumor tissues using immunofluorescence. Respective antigens for two HCAbs (HCAb1 and HCAb2) were identified using immunoprecipitation followed by mass spectrometry. Finally, we generated MDA-MB-231 xenograft tumors in NOD scid gamma mice and performed in vivo tumor targeting analysis of HCAb1 and HCAb2. Results Flow cytometry screen revealed that HCAb2 selectively bound to the surface of MDA-MB-231 cells in comparison to MCF10A and MCF7 cells. HCAb2 showed punctate membrane staining on MDA-MB-231 cells and preferential binding to human breast tumor tissues in comparison to normal breast tissues. In primary breast tumor tissues, HCAb2 showed positive binding to both E-cadherin positive and negative tumor cells. We identified and validated the target antigen of HCAb2 as Heat shock protein 90 (HSP90). HCAb2 also selectively targeted MDA-MB-231 xenograft tumor cells in vivo with little targeting to mouse normal tissues. Finally, HCAb2 specifically targeted calnexin negative xenograft tumor cells. Conclusions From our screening methodology, we identified HCAb2 as a breast tumor specific heavy chain antibody targeting cell surface HSP90. HCAb2 also targeted MDA-MB-231 tumor cells in vivo suggesting that HCAb2 could be an ideal tumor targeting antibody. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1608-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charan V Devarakonda
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, Lab E5029, Farmington, CT-06030-3501, USA.
| | - Daniel Kita
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, Lab E5029, Farmington, CT-06030-3501, USA.
| | - Kathryn N Phoenix
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, Lab E5029, Farmington, CT-06030-3501, USA.
| | - Kevin P Claffey
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, Lab E5029, Farmington, CT-06030-3501, USA.
| |
Collapse
|
49
|
Liu W, Vielhauer GA, Holzbeierlein JM, Zhao H, Ghosh S, Brown D, Lee E, Blagg BSJ. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells. Mol Pharmacol 2015; 88:121-30. [PMID: 25939977 PMCID: PMC4468638 DOI: 10.1124/mol.114.097303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - George A Vielhauer
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Jeffrey M Holzbeierlein
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Huiping Zhao
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Suman Ghosh
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Douglas Brown
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Eugene Lee
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| | - Brian S J Blagg
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas (W.L., G.A.V., J.M.H., D.B., E.L.); and Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas (H.Z., S.G., B.S.J.B.)
| |
Collapse
|
50
|
Kuballa P, Baumann AL, Mayer K, Bär U, Burtscher H, Brinkmann U. Induction of heat shock protein HSPA6 (HSP70B′) upon HSP90 inhibition in cancer cell lines. FEBS Lett 2015; 589:1450-8. [DOI: 10.1016/j.febslet.2015.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/10/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|