1
|
Jena S, Gonzalez G, Vítek D, Kvasnicová M, Štěpánková Š, Strnad M, Voller J, Chanda K. Novel neuroprotective 5,6-dihydropyrido[2',1':2,3]imidazo[4,5-c]quinoline derivatives acting through cholinesterase inhibition and CB2 signaling modulation. Eur J Med Chem 2024; 276:116592. [PMID: 39013357 DOI: 10.1016/j.ejmech.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024]
Abstract
A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.
Collapse
Affiliation(s)
- Sushovan Jena
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, 77520, Olomouc, Czech Republic
| | - Dominik Vítek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic
| | - Marie Kvasnicová
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Jiří Voller
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77515, Olomouc, Czech Republic.
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
2
|
Pluteanu F, Boknik P, Heinick A, König C, Müller FU, Weidlich A, Kirchhefer U. Activation of PKC results in improved contractile effects and Ca cycling by inhibition of PP2A-B56α. Am J Physiol Heart Circ Physiol 2022; 322:H427-H441. [PMID: 35119335 DOI: 10.1152/ajpheart.00539.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. The present study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the non-phosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the co-stimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by 2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Christiane König
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Adam Weidlich
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Klotz-Noack K, Klinger B, Rivera M, Bublitz N, Uhlitz F, Riemer P, Lüthen M, Sell T, Kasack K, Gastl B, Ispasanie SSS, Simon T, Janssen N, Schwab M, Zuber J, Horst D, Blüthgen N, Schäfer R, Morkel M, Sers C. SFPQ Depletion Is Synthetically Lethal with BRAF V600E in Colorectal Cancer Cells. Cell Rep 2021; 32:108184. [PMID: 32966782 DOI: 10.1016/j.celrep.2020.108184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bertram Klinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Maria Rivera
- EPO Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Bublitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Uhlitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Mareen Lüthen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Katharina Kasack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Gastl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Sylvia S S Ispasanie
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72074 Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, VBC, 1030 Vienna, Austria
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhold Schäfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
5
|
Ganapathy S, Peng B, Shen L, Yu T, Lafontant J, Li P, Xiong R, Makriyannis A, Chen C. Suppression of PKC causes oncogenic stress for triggering apoptosis in cancer cells. Oncotarget 2018; 8:30992-31002. [PMID: 28415683 PMCID: PMC5458183 DOI: 10.18632/oncotarget.16047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
Gain of functional mutations in ras occurs in more than 30% of human malignancies and in particular 90% of pancreatic cancer. Mutant ras, via activating multiple effector pathways, not only promote cell growth or survival, but also apoptosis, depending upon cell types or circumstances. In order to further study the mechanisms of apoptosis induced by oncogenic ras, we employed the ras loop mutant genes and demonstrated that Akt functioned downstream of Ras in human pancreatic cancer or HPNE cells ectopically expressing mutated K-ras for the induction of apoptosis after the concurrent suppression of PKC α and β. In this apoptotic process, the redox machinery was aberrantly switched on in the pancreatic cancer cells as well as prostate cancer DU145 cells. p73 was phosphorylated and translocated to the nucleus, accompanied with UPR activation and induction of apoptosis. The in vitro results were corroborated by the in vivo data. Thus, our study indicated that PKC α and β appeared coping with oncogenic Ras or mutated Akt to maintain the balance of the homeostasis in cancer cells. Once these PKC isoforms were suppressed, the redox state in the cancer cells was disrupted, which elicited persistent oncogenic stress and subsequent apoptotic crisis.
Collapse
Affiliation(s)
| | - Bo Peng
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Ling Shen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tianqi Yu
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Jean Lafontant
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Ping Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Rui Xiong
- The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
A Synthetic Lethal Interaction between Glutathione Synthesis and Mitochondrial Reactive Oxygen Species Provides a Tumor-Specific Vulnerability Dependent on STAT3. Mol Cell Biol 2015; 35:3646-56. [PMID: 26283727 DOI: 10.1128/mcb.00541-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
Increased production of mitochondrion-derived reactive oxygen species (ROS) is characteristic of a metabolic shift observed during malignant transformation. While the exact sources and roles of ROS in tumorigenesis remain to be defined, it has become clear that maintaining redox balance is critical for cancer cell proliferation and survival and, as such, may represent a vulnerability that can be exploited therapeutically. STAT3, a latent cytosolic transcription factor activated by diverse cytokines and growth factors, has been shown to exhibit an additional, nontranscriptional function in mitochondria, including modulation of electron transport chain activity. In particular, malignant transformation by Ras oncogenes exploits mitochondrial STAT3 functions. We used mass spectrometry-based metabolomics profiling to explore the biochemical basis for the STAT3 dependence of Ras transformation. We identified the gamma-glutamyl cycle, the production of glutathione, and the regulation of ROS as a mitochondrion-STAT3-dependent pathway in Ras-transformed cells. Experimental inhibition of key enzymes in the glutathione cycle resulted in the depletion of glutathione, accumulation of ROS, oxidative DNA damage, and cell death in an oncogenic Ras- and mitochondrial STAT3-dependent manner. These data uncover a synthetic lethal interaction involving glutathione production and mitochondrial ROS regulation in Ras-transformed cells that is governed by mitochondrial STAT3 and might be exploited therapeutically.
Collapse
|
7
|
Patel A, Burton DGA, Halvorsen K, Balkan W, Reiner T, Perez-Stable C, Cohen A, Munoz A, Giribaldi MG, Singh S, Robbins DJ, Nguyen DM, Rai P. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 2014; 34:2586-96. [PMID: 25023700 PMCID: PMC4294948 DOI: 10.1038/onc.2014.195] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
Oncogenic RAS promotes production of reactive oxygen species (ROS), which mediate pro-malignant signaling but can also trigger DNA damage-induced tumor suppression. Thus RAS-driven tumor cells require redox-protective mechanisms to mitigate the damaging aspects of ROS. Here, we show that MutT Homolog 1 (MTH1), the mammalian 8-oxodGTPase that sanitizes oxidative damage in the nucleotide pool, is important for maintaining several KRAS-driven pro-malignant traits in a nonsmall cell lung carcinoma (NSCLC) model. MTH1 suppression in KRAS-mutant NSCLC cells impairs proliferation and xenograft tumor formation. Furthermore, MTH1 levels modulate KRAS-induced transformation of immortalized lung epithelial cells. MTH1 expression is upregulated by oncogenic KRAS and correlates positively with high KRAS levels in NSCLC human tumors. At a molecular level, in p53-competent KRAS-mutant cells, MTH1 loss provokes DNA damage and induction of oncogene-induced senescence. In p53-nonfunctional KRAS-mutant cells, MTH1 suppression does not produce DNA damage but reduces proliferation and leads to an adaptive decrease in KRAS expression levels. Thus, MTH1 not only enables evasion of oxidative DNA damage and its consequences, but can also function as a molecular rheostat for maintaining oncogene expression at optimal levels. Accordingly, our results indicate MTH1 is a novel and critical component of oncogenic KRAS-associated malignancy and its inhibition is likely to yield significant tumor-suppressive outcomes in KRAS-driven tumors.
Collapse
Affiliation(s)
- A Patel
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - D G A Burton
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - K Halvorsen
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - W Balkan
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - T Reiner
- Geriatric Research, Education and Clinical Center, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA
| | - C Perez-Stable
- 1] Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA [2] Geriatric Research, Education and Clinical Center, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA [3] Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, FL, USA
| | - A Cohen
- 1] Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA [2] David and Sheila Fuente Graduate Program in Cancer Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - A Munoz
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - M G Giribaldi
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - S Singh
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - D J Robbins
- 1] Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, FL, USA [2] Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - D M Nguyen
- 1] Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, FL, USA [2] Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - P Rai
- 1] Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA [2] Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, FL, USA
| |
Collapse
|
8
|
Rai P. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS. Small GTPases 2013; 3:120-5. [PMID: 22790201 PMCID: PMC3408976 DOI: 10.4161/sgtp.19556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial–mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.
Collapse
Affiliation(s)
- Priyamvada Rai
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Shen L, Nishioka T, Guo J, Chen C. Geminin functions downstream of p53 in K-ras-induced gene amplification of dihydrofolate reductase. Cancer Res 2012; 72:6153-62. [PMID: 23026135 DOI: 10.1158/0008-5472.can-12-1862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA strand breakage and perturbation of cell-cycle progression contribute to gene amplification events that can drive cancer. In cells lacking p53, DNA damage does not trigger an effective cell-cycle arrest and in this setting promotes gene amplification. This is also increased in cells harboring oncogenic Ras, in which cell-cycle arrest is perturbed and ROS levels that cause DNA single strand breaks are elevated. This study focused on the effects of v-K-ras and p53 on Methotrexate (MTX)-mediated DHFR amplification. Rat lung epithelial cells expressing v-K-ras or murine lung cancer LKR cells harboring active K-ras continued cell-cycle progression when treated with MTX. However, upon loss of p53, amplification of DHFR and formation of MTX-resistant colonies occurred. Expression levels of cyclin A, Geminin, and Cdt1 were increased in v-K-ras transfectants. Geminin was sufficient to prevent the occurrence of multiple replications via interaction with Cdt1 after MTX treatment, and DHFR amplification proceeded in v-K-ras transfectants that possess a functional p53 in the absence of geminin. Taken together, our findings indicate that p53 not only regulates cell-cycle progression, but also functions through geminin to prevent DHFR amplification and protect genomic integrity.
Collapse
Affiliation(s)
- Ling Shen
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
10
|
Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol 2012; 3:362. [PMID: 22988443 PMCID: PMC3440026 DOI: 10.3389/fphys.2012.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
Systems Biology holds that complex cellular functions are generated as system-level properties endowed with robustness, each involving large networks of molecular determinants, generally identified by “omics” analyses. In this paper we describe four basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation, evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced senescence. Focusing our analysis on a K-ras dependent transformation system, we show that enhanced proliferation and evasion from apoptosis are closely linked, and present findings that indicate how a large metabolic remodeling sustains the enhanced growth ability. Network analysis of transcriptional profiling gives the first indication on this remodeling, further supported by biochemical investigations and metabolic flux analysis (MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a sustained production of growth building blocks and glutathione, are the hallmarks of enhanced proliferation. Low glucose availability specifically induces cell death in K-ras transformed cells, while PKA activation reverts this effect, possibly through at least two mitochondrial targets. The central role of mitochondria in determining the two investigated cancer cell properties is finally discussed. Taken together the findings reported herein indicate that a system-level property is sustained by a cascade of interconnected biochemical pathways that behave differently in normal and in transformed cells.
Collapse
Affiliation(s)
- Lilia Alberghina
- SysBio Centre for Systems Biology Milano and Rome, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen Z, Forman LW, Miller KA, English B, Takashima A, Bohacek RA, Williams RM, Faller DV. Protein kinase Cδ inactivation inhibits cellular proliferation and decreases survival in human neuroendocrine tumors. Endocr Relat Cancer 2011; 18:759-71. [PMID: 21990324 PMCID: PMC3527126 DOI: 10.1530/erc-10-0224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The concept of targeting cancer therapeutics toward specific mutations or abnormalities in tumor cells, which are not found in normal tissues, has the potential advantages of high selectivity for the tumor and correspondingly low secondary toxicities. Many human malignancies display activating mutations in the Ras family of signal-transducing genes or over-activity of p21(Ras)-signaling pathways. Carcinoid and other neuroendocrine tumors have been similarly demonstrated to have activation of Ras signaling directly by mutations in Ras, indirectly by loss of Ras-regulatory proteins, or via constitutive activation of upstream or downstream effector pathways of Ras, such as growth factor receptors or PI(3)-kinase and Raf/mitogen-activated protein kinases. We previously reported that aberrant activation of Ras signaling sensitizes cells to apoptosis when the activity of the PKCδ isozyme is suppressed and that PKCδ suppression is not toxic to cells with normal levels of p21(Ras) signaling. We demonstrate here that inhibition of PKCδ by a number of independent means, including genetic mechanisms (shRNA) or small-molecule inhibitors, is able to efficiently and selectively repress the growth of human neuroendocrine cell lines derived from bronchopulmonary, foregut, or hindgut tumors. PKCδ inhibition in these tumors also efficiently induced apoptosis. Exposure to small-molecule inhibitors of PKCδ over a period of 24 h is sufficient to significantly suppress cell growth and clonogenic capacity of these tumor cell lines. Neuroendocrine tumors are typically refractory to conventional therapeutic approaches. This Ras-targeted therapeutic approach, mediated through PKCδ suppression, which selectively takes advantage of the very oncogenic mutations that contribute to the malignancy of the tumor, may hold potential as a novel therapeutic modality.
Collapse
Affiliation(s)
- Zhihong Chen
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | - Lora W. Forman
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | - Kenneth A. Miller
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Brandon English
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Asami Takashima
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| | | | - Robert M. Williams
- Department of Chemistry, Colorado State University, 115 Centre St., Fort Collins, CO
| | - Douglas V. Faller
- Cancer Center, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
- Departments of Medicine, Pediatrics, Biochemistry, Microbiology, Pathology and Laboratory Medicine, 72 East Concord St., Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
12
|
Guo J, Zhu T, Chen L, Nishioka T, Tsuji T, Xiao ZXJ, Chen CY. Differential sensitization of different prostate cancer cells to apoptosis. Genes Cancer 2011; 1:836-46. [PMID: 21132068 DOI: 10.1177/1947601910381645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 11/17/2022] Open
Abstract
Although protein kinase C (PKC) plays an important role in sensitizing prostate cancer cells to apoptosis, and suppression of PKC is able to trigger an apoptotic crisis in cells harboring oncogenic ras, little is known about whether dyregulation of Ras effectors in prostate cancer cells, together with loss of PKC, is synthetically lethal. The current study aims at investigating whether prostate cancer cells with aberrant Ras effector signaling are sensitive to treatment with HMG (a PKC inhibitor) for the induction of apoptosis. We show that prostate cancer DU145 cells expressing a high level of JNK1 become susceptible to apoptosis after treatment with HMG, in which caspase 8 is activated and cytochrome c is released to the cytosol. In contrast, the addition of HMG sensitizes LNCaP or PC3 prostate cancer cells harboring an active Akt to apoptosis, in which ROS is upregulated to induce the UPR and GADD153 expression. The concurrent activation of JNK1 and Akt has an additive effect on apoptosis following PKC suppression. Thus, the data identify Akt and JNK1 as potential targets in prostate cancer cells for PKC inhibition-induced apoptosis.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
RASSF1A suppresses the activated K-Ras-induced oxidative DNA damage. Biochem Biophys Res Commun 2011; 408:149-53. [PMID: 21473856 DOI: 10.1016/j.bbrc.2011.03.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/23/2022]
Abstract
The mutant K-Ras elevates intracellular reactive oxygen species (ROS) levels and leads to oxidative DNA damage, resulting in malignant cell transformation. Ras association domain family 1 isoform A (RASSF1A) is known to play a role as a Ras effector. However, the suppressive effect of RASSF1A on K-RasV12-induced ROS increase and DNA damage has not been identified. Here, we show that RASSF1A blocks K-RasV12-triggered ROS production. RASSF1A expression also inhibits oxidative DNA damage and chromosomal damage. From the results obtained in this study, we suggest that RASSF1A regulates the cellular ROS levels enhanced by the Ras signaling pathway, and that it may function as a tumor suppressor by suppressing DNA damage caused by activated Ras.
Collapse
|
14
|
Moumtzi SS, Roberts ML, Joyce T, Evangelidou M, Probert L, Frillingos S, Fotsis T, Pintzas A. Gene Expression Profile Associated with Oncogenic Ras-induced Senescence, Cell Death, and Transforming Properties in Human Cells. Cancer Invest 2009; 28:563-87. [DOI: 10.3109/07357900903095623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Guo J, Zhu T, Luo LY, Huang Y, Sunkavalli RG, Chen CY. PI3K Acts in synergy with loss of PKC to elicit apoptosis via the UPR. J Cell Biochem 2009; 107:76-85. [PMID: 19241442 DOI: 10.1002/jcb.22102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is known that Ras mutations, together with loss of PKC, are apoptotic in various types of mammalian cells. The mechanism of how aberrant Ras transmits this apoptotic signaling remains unclear. Using three V12-Ha-ras loop mutants that preferentially bind to and activate one of Ras effectors, we tested the role of Ras downstream pathways in the induction of apoptosis in rat lung epithelia, human lung or prostate cancer cells. After PKC inhibition, the activation of PI3K/Akt renders the susceptibility of cells to apoptosis. We also demonstrate that the amount of ROS is moderately increased in the cells ectopically expressing V12C40 and dramatically elevated by suppression of PKC, which leads to apoptosis through the activation of UPR. Thus, our study suggests that after PKC abrogation, PI3K functions downstream of Ras to perturb the state of cellular redox and signals to ER stress-regulated apoptotic machinery.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
16
|
Maciag A, Anderson LM. Reactive Oxygen Species And Lung Tumorigenesis By Mutant K-ras: A Working Hypothesis. Exp Lung Res 2009; 31:83-104. [PMID: 15765920 DOI: 10.1080/01902140490495048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wild-type K-ras is tumor suppressive in mouse lung, but mutant K-ras is actively oncogenic. Thus, the mutant protein must acquire new, dominant protumorigenic properties. Generation of reactive oxygen species could be one such property. The authors demonstrate increased peroxides in lung epithelial cells (E10)-transfected with mutant hK-ras(va112). An associated increase in DNA damage (comet assay) correlates with increased cyclooxygenase-2 protein. This DNA damage is completely abrogated by a specific cyclooxygenase-2 inhibitor (SC58125) or by a cell-permeable modified catalase. Literature is reviewed regarding generation of reactive oxygen and cyclooxygenase-2 induction by ras, cyclooxygenase-2 release of DNA-damaging reactive oxygen, and involvement of cyclooxygenase-2 and reactive oxygen in lung cancer
Collapse
Affiliation(s)
- Anna Maciag
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
17
|
Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. Bioessays 2009; 31:492-5. [PMID: 19319914 DOI: 10.1002/bies.200900005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Akt, a protein kinase hyperactivated in many tumors, plays a major role in both cell survival and resistance to tumor therapy. A recent study,1 along with other evidences, shows interestingly, that Akt is not a single-function kinase, but may facilitate rather than inhibit cell death under certain conditions. This hitherto undetected function of Akt is accomplished by its ability to increase reactive oxygen species and to suppress antioxidant enzymes. The ability of Akt to down-regulate antioxidant defenses uncovers a novel Achilles' heel, which could be exploited by oxidant therapies in order to selectively eradicate tumor cells that express high levels of Akt activity.
Collapse
Affiliation(s)
- Marek Los
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
18
|
Xia S, Chen Z, Forman LW, Faller DV. PKCdelta survival signaling in cells containing an activated p21Ras protein requires PDK1. Cell Signal 2009; 21:502-8. [PMID: 19146951 PMCID: PMC2644428 DOI: 10.1016/j.cellsig.2008.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 01/02/2023]
Abstract
Protein kinase C delta (PKCdelta) modulates cell survival and apoptosis in diverse cellular systems. We recently reported that PKCdelta functions as a critical anti-apoptotic signal transducer in cells containing activated p21(Ras) and results in the activation of AKT, thereby promoting cell survival. How PKCdelta is regulated by p21(Ras), however, remains incompletely understood. In this study, we show that PKCdelta, as a transducer of anti-apoptotic signals, is activated by phosphotidylinositol 3' kinase/phosphoinositide-dependent kinase 1 (PI(3)K-PDK1) to deliver the survival signal to Akt in the environment of activated p21(Ras). PDK1 is upregulated in cells containing an activated p21Ras. Knock-down of PDK1, PKCdelta, or AKT forces cells containing activated p21(Ras) to undergo apoptosis. PDK1 regulates PKCdelta activity, and constitutive expression of PDK1 increases PKCdelta activity in different cell types. Conversely, expression of a kinase-dead (dominant-negative) PDK1 significantly suppresses PKCdelta activity. p21(Ras)-mediated survival signaling is therefore regulated by via a PI(3)K-AKT pathway, which is dependent upon both PDK1 and PKCdelta, and PDK1 activates and regulates PKCdelta to determine the fate of cells containing a mutated, activated p21(Ras).
Collapse
Affiliation(s)
- Shuhua Xia
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Zhihong Chen
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Lora W. Forman
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas V. Faller
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
19
|
Longo VD. Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 2009; 44:70-4. [PMID: 18638538 DOI: 10.1016/j.exger.2008.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Our studies in yeast have shown that the down-regulation of major signal transduction mediators increases stress resistance and causes an up to 10 fold chronological life span extension. Whereas other laboratories have proposed that sirtuins (Sir2 and its homologs), a family of conserved proteins which are NAD(+)-dependent histone deacetylases, can extend longevity in various model organisms, we propose that one sirtuin, i.e., Sir2, can also accelerate cellular aging and death. In Saccharomyces cerevisiae (yeast), the deletion of Sir2 increases DNA damage but in combination with longevity mutations in principal intracellular signal transduction mediators, or in combination with calorie restriction it causes a further increase in the chronological lifespan as well as an increase in the stress resistance and a major reduction in age-dependent genomic instability. Our recent results also provide evidence for a role of the mammalian Sir2 ortholog SirT1 in the activation of a highly conserved neuronal pathway and in the sensitization of neurons to oxidative damage. However, the mean lifespan of the SirT1(+/-) mice is not different from that of wild type animals, and the survival of SirT1(-/-) mice was reduced under both normal and calorie restricted conditions. Here, I review the studies linking SirT1, IGF-I signaling and starvation in various model organisms with a focus on the post-mitotic cells, which indicate that sirtuins can play both protective and pro-aging roles.
Collapse
Affiliation(s)
- Valter D Longo
- Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Tewari R, Sharma V, Koul N, Sen E. Involvement of miltefosine-mediated ERK activation in glioma cell apoptosis through Fas regulation. J Neurochem 2008; 107:616-27. [DOI: 10.1111/j.1471-4159.2008.05625.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Programmed cell death suppression in transformed plant tissue by tomato cDNAs identified from an Agrobacterium rhizogenes-based functional screen. Mol Genet Genomics 2008; 279:509-21. [DOI: 10.1007/s00438-008-0329-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/31/2008] [Indexed: 01/17/2023]
|
22
|
Valastyan S, Thakur V, Johnson A, Kumar K, Manor D. Novel transcriptional activities of vitamin E: inhibition of cholesterol biosynthesis. Biochemistry 2007; 47:744-52. [PMID: 18095660 DOI: 10.1021/bi701432q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vitamin E is a dietary lipid that is essential for vertebrate health and fertility. The biological activity of vitamin E is thought to reflect its ability to quench oxygen- and carbon-based free radicals and thus to protect the organism from oxidative damage. However, recent reports suggest that vitamin E may also display other biological activities. Here, to examine possible mechanisms that may underlie such nonclassical activities of vitamin E, we investigated the possibility that it functions as a specific modulator of gene expression. We show that treatment of cultured hepatocytes with (RRR)-alpha-tocopherol alters the expression of multiple genes and that these effects are distinct from those elicited by another antioxidant. Genes modulated by vitamin E include those that encode key enzymes in the cholesterol biosynthetic pathway. Correspondingly, vitamin E caused a pronounced inhibition of de novo cholesterol biosynthesis. The transcriptional activities of vitamin E were mediated by attenuating the post-translational processing of the transcription factor SREBP-2 that, in turn, led to a decreased transcriptional activity of sterol-responsive elements in the promoters of target genes. These observations indicate that vitamin E possesses novel transcriptional activities that affect fundamental biological processes. Cross talk between tocopherol levels and cholesterol status may be an important facet of the biological activities of vitamin E.
Collapse
Affiliation(s)
- Scott Valastyan
- Cornell University, Ithaca, New York 14853, and Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
23
|
Zhou D, Wang J, Zapala MA, Xue J, Schork NJ, Haddad GG. Gene expression in mouse brain following chronic hypoxia: role of sarcospan in glial cell death. Physiol Genomics 2007; 32:370-9. [PMID: 18056785 DOI: 10.1152/physiolgenomics.00147.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is a hallmark of respiratory, neurological, or hematological diseases as well as life at high altitude. For example, chronic constant hypoxia (CCH) occurs in chronic lung diseases or at high altitude, whereas chronic intermittent hypoxia (CIH) occurs in diseases such as sleep apnea or sickle cell disease. Despite the fact that such conditions are frequent, the cellular and molecular mechanisms underlying the effect of hypoxia, whether constant or intermittent, are not well understood. In this study, we first determined the effect of CCH and CIH on global gene expression in different regions of mouse brain using microarrays and then investigated the biological role of genes of interest. We found that: 1) in the cortical region, the expression level of 80 genes was significantly altered by CIH (16 up- and 64 downregulated), and this number increased to 137 genes following CCH (34 up- and 103 downregulated); 2) a similar number of gene alterations was identified in the hippocampal area, and the majority of the changes in this region were upregulations; 3) two genes (Sspn and Ttc27) were downregulated in both brain regions and following both treatments; and 4) RNA interference-mediated knockdown of Sspn increased cell death in hypoxia in a cell culture system. We conclude that CIH or CCH induced significant and distinguishable alterations in gene expression in cortex and hippocampus and that Sspn seems to play a critical role in inducing cell death under hypoxic conditions.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics (Section of Respiratory Medicine) and Neuroscience, University of California San Diego, La Jolla, CA 92093-0735, USA
| | | | | | | | | | | |
Collapse
|
24
|
Romanowska M, Maciag A, Smith AL, Fields JR, Fornwald LW, Kikawa KD, Kasprzak KS, Anderson LM. DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells. Free Radic Biol Med 2007; 43:1145-55. [PMID: 17854710 DOI: 10.1016/j.freeradbiomed.2007.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 05/17/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
DNA single-strand breaks (quantitative comet assay) were assessed to indicate ongoing genetic instability in a panel of human lung adenocarcinoma cell lines. Of these, 19/20 showed more DNA damage than a nontransformed cell line from human peripheral lung epithelium, HPL1D. DNA damage was significantly greater in those derived from pleural effusates vs those from lymph node metastases. DNA strand breaks correlated positively with superoxide (nitroblue tetrazolium reduction assay), and negatively with amount of OGG1, a repair enzyme for oxidative DNA damage. Levels of CuZn superoxide dismutase varied moderately among the lines and did not correlate with other parameters. A role for mutant K-ras through generation of reactive oxygen species was examined. Cells with mutant K-ras had significantly lower amounts of manganese superoxide dismutase (MnSOD) vs those with wild-type K-ras, but MnSOD protein correlated positively with superoxide levels. In a subset of cell lines with similar levels of MnSOD, comparable to those in HPL1D cells, K-ras activity correlated positively with levels of both superoxide and DNA strand breaks. These results suggest that persistent DNA damage in some lung adenocarcinoma cells may be caused by superoxide resulting from mutant K-ras activity, and that OGG1 is important for prevention of this damage.
Collapse
Affiliation(s)
- Malgorzata Romanowska
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Building 538/206, Fort Detrick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo J, Zhu T, Xiao ZXJ, Chen CY. Modulation of intracellular signaling pathways to induce apoptosis in prostate cancer cells. J Biol Chem 2007; 282:24364-72. [PMID: 17573344 DOI: 10.1074/jbc.m702938200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
26
|
Xia S, Forman LW, Faller DV. Protein kinase C delta is required for survival of cells expressing activated p21RAS. J Biol Chem 2007; 282:13199-210. [PMID: 17350960 PMCID: PMC3527128 DOI: 10.1074/jbc.m610225200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of protein kinase C (PKC) activity in transformed cells and tumor cells containing activated p21(RAS) results in apoptosis. To investigate the pro-apoptotic pathway induced by the p21(RAS) oncoprotein, we first identified the specific PKC isozyme necessary to prevent apoptosis in the presence of activated p21(RAS). Dominant-negative mutants of PKC, short interfering RNA vectors, and PKC isozyme-specific chemical inhibitors directed against the PKCdelta isozyme demonstrated that PKCdelta plays a critical role in p21(RAS)-mediated apoptosis. An activating p21(RAS) mutation, or activation of the phosphatidylinositol 3-kinase (PI3K) Ras effector pathway, increased the levels of PKCdelta protein and activity in cells, whereas inhibition of p21(RAS) activity decreased the expression of the PKCdelta protein. Activation of the Akt survival pathway by oncogenic Ras required PKCdelta activity. Akt activity was dramatically decreased after PKCdelta suppression in cells containing activated p21(RAS). Conversely, constitutively activated Akt rescued cells from apoptosis induced by PKCdelta inhibition. Collectively, these findings demonstrate that p21(RAS), through its downstream effector PI3K, induces PKCdelta expression and that this increase in PKCdelta activity, acting through Akt, is required for cell survival. The p21(RAS) effector molecule responsible for the initiation of the apoptotic signal after suppression of PKCdelta activity was also determined to be PI3K. PI3K (p110(C)(AAX), where AA is aliphatic amino acid) was sufficient for induction of apoptosis after PKCdelta inhibition. Thus, the same p21(RAS) effector, PI3K, is responsible for delivering both a pro-apoptotic signal and a survival signal, the latter being mediated by PKCdelta and Akt. Selective suppression of PKCdelta activity and consequent induction of apoptosis is a potential strategy for targeting of tumor cells containing an activated p21(RAS).
Collapse
Affiliation(s)
- Shuhua Xia
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
27
|
Wang AG, Moon HB, Lee MR, Hwang CY, Kwon KS, Yu SL, Kim YS, Kim M, Kim JM, Kim SK, Lee TH, Moon EY, Lee DS, Yu DY. Gender-dependent hepatic alterations in H-ras12V transgenic mice. J Hepatol 2005; 43:836-44. [PMID: 16087271 DOI: 10.1016/j.jhep.2005.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 03/30/2005] [Accepted: 04/26/2005] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Although it has been proposed that Ras and related signal pathways play important roles in hepatocarcinogenesis, appropriate in vivo models are lacking. METHODS Two hepatocellular carcinoma lines were established using pronuclear microinjection techniques to create an insertion of the H-ras12V transgene under the control of the albumin enhancer/promoter. The resulting phenotypes and related molecular events were then examined. RESULTS Male (but not female) transgenic mice older than 2 months showed hepatic alterations with a high degree of reproducibility, as compared to the wild-type mice. The liver/body-weight ratios were lower for the females than for the males. The transgene-carrying line 28 was investigated extensively with respect to molecular differences between the genders. Male hepatocytes showed higher Ras activity and higher reactive oxygen species (ROS) levels than female hepatocytes. The female hepatocytes showed higher expression levels of p53 and p21Waf1/Cip1, enhanced cytochrome c release, which correlated with cell cycle arrest, and higher levels of hypodiploid cell formation, as compared to the male hepatocytes. CONCLUSIONS The gender-related differences in molecular responses to activated Ras may have implications for the prevalence of hepatic alterations in males. Our transgenic mice represent a potentially valuable animal model for future investigations.
Collapse
Affiliation(s)
- Ai-Guo Wang
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guo J, Chu M, Abbeyquaye T, Chen CY. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation. J Biol Chem 2005; 280:30422-31. [PMID: 15983034 DOI: 10.1074/jbc.m504688200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although nicotine has been suggested to promote lung carcinogenesis, the mechanism of its action in this process remains unknown. The present investigation demonstrates that the treatment of rat lung epithelial cells with nicotine for various periods differentially mobilizes multiple intracellular pathways. Protein kinase C and phosphoinositide 3-OH-kinase are transiently activated after the treatment. Also, Ras and its downstream effector ERK1/2 are activated after long term exposure to nicotine. The activation of Ras by nicotine treatment is responsible for the subsequent perturbation of the methotrexate (MTX)-mediated G1 cell cycle restriction as well as an increase in production of reactive oxygen species. When p53 expression is suppressed by introducing E6, persistent exposure to nicotine enables dihydrofolate reductase gene amplification in the presence of methotrexate (MTX) and the formation of the MTX-resistant colonies. Altering the activity of phosphoinositide 3-OH-kinase has no effect on dihydrofolate reductase amplification. However, the suppression of protein kinase C dramatically affects the colony formation in soft agar. Thus, our data suggest that persistent exposure to nicotine perturbs the G1 checkpoint and causes DNA damage through the increase of the production of reactive oxygen species. However, a third element rendered by loss of p53 is required for the initiation of the process of gene amplification. Under p53-deficient conditions, the establishment of a full oncogenic transformation, in response to long term nicotine exposure, is achieved through the cooperation of multiple signaling pathways.
Collapse
Affiliation(s)
- Jinjin Guo
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
29
|
Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 2005; 280:29346-54. [PMID: 15914462 DOI: 10.1074/jbc.m504852200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proline oxidase is a p53-induced redox gene that can generate reactive oxygen species (ROS) and mediate apoptosis in tumor cells. We report that proline oxidase is a downstream effector in p53-mediated activation of the calcium/calmodulin-dependent phosphatase calcineurin in lung, renal, colon, and ovarian carcinoma cells. The activation of calcineurin by p53 and proline oxidase was detected by activation of the nuclear factor of activated T cells (NFAT), an established indicator of activated calcineurin. Both proline oxidase- and p53-induced activation of NFAT were sensitive to the calcineurin inhibitors cyclosporin A and FK-506, to scavengers of ROS, and to inhibitors of calcium mobilization. A proline oxidase antisense vector suppressed the ability of p53 to up-regulate proline oxidase, activate calcineurin, and induce apoptosis. Moreover, two renal carcinoma-derived mutant p53 proteins were deficient in inducing proline oxidase expression and in activating calcineurin. Inhibitors of calcineurin and calcium mobilization abolished proline oxidase-mediated apoptosis and reduced p53-induced apoptosis. Treatment of colon and ovarian carcinoma cells with the anticancer genotoxic agent etoposide up-regulated both p53 and proline oxidase, activated calcineurin, and induced apoptosis. The etoposide-mediated activation of calcineurin and induction of apoptosis was markedly suppressed by FK-506 calcineurin inhibitor. We propose that proline oxidase mediates apoptosis through the generation of proline-dependent ROS, which then mobilize calcium and activate calcineurin. The activation of calcineurin-regulated transcription factor pathways by proline oxidase might affect gene expression events important to p53 regulation of cell growth and apoptosis.
Collapse
Affiliation(s)
- Armando Rivera
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
30
|
Zhao X, Ayer RE, Davis SL, Ames SJ, Florence B, Torchinsky C, Liou JS, Shen L, Spanjaard RA. Apoptosis factor EI24/PIG8 is a novel endoplasmic reticulum-localized Bcl-2-binding protein which is associated with suppression of breast cancer invasiveness. Cancer Res 2005; 65:2125-9. [PMID: 15781622 DOI: 10.1158/0008-5472.can-04-3377] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 is a critical tumor suppressor which removes cells with DNA damage by regulating expression and activity of a select group of p53-induced genes (PIG) that subsequently induce apoptosis. PIG8 was also identified as a gene induced by etoposide and named etoposide-induced gene 24 (EI24). Later experiments established EI24/PIG8 as a proapoptotic factor and suggested that it may function as a tumor suppressor. Indeed, EI24/PIG8 is relatively highly mutated in aggressive breast cancers and is located in a region which expresses frequent loss of heterozygosity. However, despite these important observations, the activity and role of EI24/PIG8 remain largely unknown. We used (immmuno)fluorescence microscopy and subcellular fractionation techniques to show that EI24/PIG8 is localized in the endoplasmic reticulum (ER). Pull-down experiments showed that it specifically binds with Bcl-2, a death regulator known to reside in mitochondria, ER, and the nuclear envelope. EI24/PIG8-Bcl-2 binding was corroborated by coimmunoprecipitation and other in vitro and in vivo protein-protein binding assays. Further analysis showed that EI24/PIG8 uses its N-terminal region to bind the BH3 domain in Bcl-2. Finally, we used immunohistochemical techniques to analyze expression of EI24/PIG8 in breast cancer tissue progression arrays and showed that loss of EI24/PIG8 is associated with tumor invasiveness but not with the development of the primary tumor. These results suggest that EI24/PIG8 is a novel, ER-localized Bcl-2-binding protein which may contribute to apoptosis by modulating the activity and/or function of Bcl-2 in this organelle. EI24/PIG8 may serve to prevent tumor spreading, consistent with its suspected role as a tumor suppressor.
Collapse
Affiliation(s)
- Xiansi Zhao
- Department of Otolaryngology and Biochemistry, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oberley TD, Xue Y, Zhao Y, Kiningham K, Szweda LI, St Clair DK. In situ reduction of oxidative damage, increased cell turnover, and delay of mitochondrial injury by overexpression of manganese superoxide dismutase in a multistage skin carcinogenesis model. Antioxid Redox Signal 2004; 6:537-48. [PMID: 15130280 DOI: 10.1089/152308604773934297] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To study early subcellular pathologic changes of tumorigenesis in mouse skin and possible modulation by overexpression of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD), skin keratinocytes from nontransgenic (Ntg) and transgenic (TgH) mice overexpressing MnSOD topically treated with one dose of 7,12-dimethylbenz(a)anthracene (DMBA) and a subsequent dose of 12-O-tetradecanoylphorbol 13-acetate (TPA) were analyzed in situ for levels of MnSOD and the oxidative damage product 4-hydroxy-2-nonenal (4HNE)-modified proteins using specific antibodies and immunogold electron microscopy. At all selected time points analyzed after TPA treatment, there was more MnSOD immunoreactive protein in mitochondria of keratinocytes of TgH mice than Ntg mice. Compared with untreated groups, there was a large increase in 4HNE-modified proteins at 6-24 h after TPA treatment, and this increase was larger in Ntg than TgH mice. Indices of mitosis and apoptosis of keratinocytes were greater in DMBA/TPA-treated TgH than Ntg mouse skin. Mitochondrial injury detected by transmission electron microscopy was delayed in keratinocytes of TgH compared with Ntg mice. The present study demonstrated that overexpression of MnSOD not only protected cells from oxidative damage, but also affected cell turnover kinetics. Thus, previously identified reduction in papilloma formation observed in TgH mice is correlated with mitochondrial events.
Collapse
Affiliation(s)
- Terry D Oberley
- Pathology and Laboratory Medicine Service, William S. Middleton Veterans Memorial Hospital, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Chen JS, Faller DV. Histone deacetylase inhibition-mediated post-translational elevation of p27KIP1 protein levels is required for G1 arrest in fibroblasts. J Cell Physiol 2004; 202:87-99. [PMID: 15389542 DOI: 10.1002/jcp.20094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Butyrate, a non-toxic short-chain fatty acid (SCFA) and inhibitor of histone deacetylase (HDAC), has potential as an anti-tumor agent because it imposes a reversible G1 block in normal cells yet induces apoptosis in tumor lines. As a potent reactivator of fetal globin transcription, butyrate is used clinically in the treatment of hemoglobinopathies. The anti-proliferative effect of butyrate and its derivatives on in vivo erythroid cell maturation, however, has limited their utility. The molecular mechanisms underlying the G1 arrest induced by butyrate and related SCFAs remain unclear. One model, drawing on tumor cell data, proposes that HDAC inhibition and subsequent transcriptional induction of cyclin-dependent kinase inhibitor (CKI) p21CIP are required. However, because of potentially confounding genetic mutations present in tumor models, we examined SCFA effects on CKIs in a non-transformed growth control model. Using murine 3T3 fibroblasts, we find p27KIP1 is also strongly induced. Unlike previously described effects of butyrate and HDAC inhibition on p21CIP, p27KIP1 induction did not occur at the transcriptional level; instead, the stability of the p27KIP1 protein increased. Other structurally unrelated HDAC inhibitors, including trichostatin A (TSA), induced p27KIP1 similarly. p27KIP1 was found in cyclin E/Cdk2 complexes, concomitant with suppression of cdk2 activity. Elevation of p27KIP1 is required for the observed G1 blockade, as p27KIP1-deficient fibroblasts were resistant to HDAC inhibition-induced arrest. These data suggest a novel activity for HDAC inhibitors and demonstrate a critical role for p27KIP1 in mediating G1 arrest in response to these drugs.
Collapse
Affiliation(s)
- James S Chen
- Cancer Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
33
|
Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY. Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 2003; 278:5775-85. [PMID: 12477721 PMCID: PMC11093621 DOI: 10.1074/jbc.m210202200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 protects cells against Ras-mediated apoptosis; this protection coincides with its binding to Ras. However, the protection mechanism has remained enigmatic. Here, we demonstrate that, upon apoptotic stimulation, newly synthesized Bcl-2 redistributes to mitochondria, interacts there with activated Ras, and blocks Ras-mediated apoptotic signaling. We also show, by employing bcl-2 mutants, that the BH4 domain of Bcl-2 binds to Ras and regulates its anti-apoptotic activity. Experiments with a C-terminal-truncated Ras or a farnesyltransferase inhibitor demonstrate that the CAAX motif of Ras is essential for apoptotic signaling and Bcl-2 association. The results indicate a potential mechanism by which Bcl-2 protects cells against Ras-mediated apoptotic signaling.
Collapse
Affiliation(s)
| | | | - Peihong Ma
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Deeds
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Douglas V. Faller
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Chang-Yan Chen
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
34
|
Liou JS, Chen JS, Faller DV. Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines. J Cell Physiol 2003; 198:277-94. [PMID: 14603530 DOI: 10.1002/jcp.10409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.
Collapse
Affiliation(s)
- James S Liou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
35
|
Wolfman JC, Palmby T, Der CJ, Wolfman A. Cellular N-Ras promotes cell survival by downregulation of Jun N-terminal protein kinase and p38. Mol Cell Biol 2002; 22:1589-606. [PMID: 11839824 PMCID: PMC134687 DOI: 10.1128/mcb.22.5.1589-1606.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular N-Ras provides a steady-state antiapoptotic signal, at least partially through the regulation of phosphorylated Akt and Bad levels. Fibroblasts lacking c-N-Ras expression are highly sensitive to the induction of apoptosis by a variety of agents. Reduction of pBad and pAkt levels using a phosphatidylinositol 3-kinase inhibitor was not sufficient to sensitize the control cell population to the high level of apoptosis observed in the N-Ras knockout cell lines, suggesting that c-N-Ras provides at least one other antiapoptotic signal. Stimulation of the control cells with apoptotic agents results in a transient increase in Jun N-terminal protein kinase (JNK)/p38 activity that decreased to baseline levels during the time course of the experiments. In all cases, however, sustained JNK/p38 activity was observed in cells lacking c-N-Ras expression. This correlated with sustained levels of phosphorylated MKK4 and MKK3/6, upstream activators of JNK and p38, respectively. Mimicking the sustained activation of JNK in the control cells did result in increasing their sensitivity to apoptotic agents, suggesting that prolonged JNK activity is a proapoptotic event. We also examined the potential downstream c-N-Ras targets that might be involved in regulating the duration of the JNK/p38 signal. Only the RalGDS 37G-N-Ras protein protected the N-Ras knockout cells from apoptosis and restored transient rather than sustained JNK activation. These data suggest that cellular N-Ras provides an antiapoptotic signal through at least two distinct mechanisms, one which regulates steady-state pBad and pAkt levels and one which regulates the duration of JNK/p38 activity following an apoptotic challenge.
Collapse
Affiliation(s)
- Janice C Wolfman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
36
|
Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B, Avruch J. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 2002; 12:253-65. [PMID: 11864565 DOI: 10.1016/s0960-9822(02)00683-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The Ras-GTPase controls cell fate decisions through the binding of an array of effector molecules, such as Raf and PI 3-kinase, in a GTP-dependent manner. NORE1, a noncatalytic polypeptide, binds specifically to Ras-GTP and to several other Ras-like GTPases. NORE is homologous to the putative tumor suppressor RASSF1 and to the Caenorhabditis elegans polypeptide T24F1.3. RESULTS We find that all three NORE-related polypeptides bind selectively to the proapoptotic protein kinase MST1, a member of the Group II GC kinases. Endogenous NORE and MST1 occur in a constitutive complex in vivo that associates with endogenous Ras after serum stimulation. Targeting recombinant MST1 to the membrane, either through NORE or myristoylation, augments the apoptotic efficacy of MST1. Overexpression of constitutively active Ki-RasG12V promotes apoptosis in a variety of cell lines; Ha-RasG12V is a much less potent proapoptotic agent; however, a Ha-RasG12V effector loop mutant (E37G) that binds NORE, but not Raf or PI 3-kinase, exhibits proapoptotic efficacy approaching that of Ki-RasG12V. The apoptotic action of both Ki-RasG12V and Ha-RasG12V, E37G is suppressed by overexpression of the MST1 carboxy-terminal noncatalytic segment or by the NORE segment that binds MST1. CONCLUSIONS MST1 is a phylogenetically conserved partner of the NORE/RASSF polypeptide family, and the NORE-MST1 complex is a novel Ras effector unit that mediates the apoptotic effect of Ki-RasG12V.
Collapse
Affiliation(s)
- Andrei Khokhlatchev
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21:71-5. [PMID: 12102499 DOI: 10.1191/0960327102ht213oa] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ROS are diverse and abundant in biological systems. While excessive ROS production clearly damages DNA, low levels of ROS affect cell signaling particularly at the level of redox modulation. Moreover, the specific contributions of ROS to apoptosis and mitogenesis in maintenance of cell number homeostasis remains to be elucidated. ROS dose is a critical parameter in determining the ultimate cellular response; however the shape of the dose response curve is unpredictable. When cells are stimulated with ROS, cell-signaling cascades are activated. It appears that the cellular redox potential is an important determinant of cell function and interruption of redox balance may adversely affect cell function. As a result, compounds such as antioxidants may intercept critical ROS signaling molecules and both protect cells and foster pathogenesis. As a result, further study is needed to unravel the role of ROS in redox regulation and the potential outcome of antioxidant administration on cellular responses.
Collapse
Affiliation(s)
- K R Martin
- Laboratory of Environmental Carcinogenesis and Mutagenesis, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
38
|
Abstract
Accumulated evidence from prospective studies, intervention trials and studies on animal models of cancer have suggested a strong inverse correlation between selenium intake and cancer incidence. Several putative mechanisms have been suggested to mediate the chemopreventive activities of selenium: of these, the inhibition of cellular proliferation and the induction of apoptosis are particularly attractive. The mitogen activated protein kinase (MAPK) pathways are known to be important regulators of cell death and our recent work has focused on the involvement of these pathways in selenium-induced apoptosis in primary cultures of oral cancers and corresponding normal mucosa derived from biopsy material. Using this system, the oral carcinoma cells were found to have enhanced sensitivity to apoptosis when treated with certain selenium compounds compared to normal oral mucosa. Induction of Fas ligand was associated with selenium-induced apoptosis. Signal transduction studies suggests that selenium induces several changes in the MAPK signalling pathways but functional intervention/inhibitor studies indicate that activation of the JNK pathway seems to be most important.
Collapse
Affiliation(s)
- A Ghose
- CRC Beatson Laboratories, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | |
Collapse
|