1
|
Zou Y, Li X, Mao Y, Song W, Liu Q. Enhanced Biofilm Formation by Tetracycline in a Staphylococcus aureus Naturally Lacking ica Operon and atl. Microb Drug Resist 2024; 30:82-90. [PMID: 38252794 DOI: 10.1089/mdr.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
3
|
Staphylococcus aureus Tet38 Efflux Pump Structural Modeling and Roles of Essential Residues in Drug Efflux and Host Cell Internalization. Infect Immun 2021; 89:IAI.00811-20. [PMID: 33619028 DOI: 10.1128/iai.00811-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/13/2021] [Indexed: 12/29/2022] Open
Abstract
The Staphylococcus aureus Tet38 membrane protein has distinct functions, including drug efflux and host cell attachment and internalization mediated by interaction with host cell CD36. Using structural modeling and site-directed mutagenesis, we identified key amino acids involved in different functions. Tet38, a member of the major facilitator superfamily, is predicted to have 14 transmembrane segments (TMS), 6 cytoplasmic loops, and 7 external loops. Cysteine substitutions of arginine 106 situated at the junction of TMS 4 and external loop L2, and glycine 151 of motif C on TMS 5, resulted in complete or near-complete (8- to 16-fold) reductions in Tet38-mediated resistance to tetracycline, with minimal to no effect on A549 host cell internalization. In contrast, a three-amino-acid deletion, F411P412G413, in external loop L7 situated between TMS 13 and 14 led to a decrease of 4-fold in S. aureus internalization by A549 cells and a partial effect on tetracycline resistance (4-fold reduction). A three-amino-acid deletion, D38D39L40, in external loop L1 situated between TMS-1 and TMS-2, had a similar partial effect on tetracycline resistance but did not affect cell internalization. Using an Ni column retention assay, we showed further that the L7, but not the L1, deletion impaired binding to CD36. Thus, the L7 domain of Tet38 is key for interaction with CD36 and host cell internalization, and amino acids R106 and G151 (TMSs 4 and 5) are particularly important for tetracycline resistance without affecting internalization.
Collapse
|
4
|
Role of introduced surface cysteine of NADH oxidase from Lactobacillus rhamnosus. Int J Biol Macromol 2019; 132:150-156. [DOI: 10.1016/j.ijbiomac.2019.03.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
|
5
|
Costa SS, Sobkowiak B, Parreira R, Edgeworth JD, Viveiros M, Clark TG, Couto I. Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus. Front Genet 2019; 9:710. [PMID: 30687388 PMCID: PMC6333699 DOI: 10.3389/fgene.2018.00710] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials.
Collapse
Affiliation(s)
- Sofia Santos Costa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Benjamin Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ricardo Parreira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jonathan D. Edgeworth
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London, United Kingdom
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Isabel Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Perez AM, Gomez MM, Kalvapalle P, O'Brien-Gilbert E, Bennett MR, Shamoo Y. Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Mol Syst Biol 2017; 13:964. [PMID: 29273640 PMCID: PMC5740499 DOI: 10.15252/msb.20177635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing Km and Vmax for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties.
Collapse
Affiliation(s)
- Anisha M Perez
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Marcella M Gomez
- Department of Applied Mathematics & Statistics, University of California, Santa Cruz, CA, USA
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | | | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Shen G, Li S, Cui W, Liu S, Yang Y, Gross M, Li W. Membrane Protein Structure in Live Cells: Methodology for Studying Drug Interaction by Mass Spectrometry-Based Footprinting. Biochemistry 2017; 57:286-294. [PMID: 29192498 DOI: 10.1021/acs.biochem.7b00874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mass spectrometry-based footprinting is an emerging approach for studying protein structure. Because integral membrane proteins are difficult targets for conventional structural biology, we recently developed a mass spectrometry (MS) footprinting method to probe membrane protein-drug interactions in live cells. This method can detect structural differences between apo and drug-bound states of membrane proteins, with the changes inferred from MS quantification of the cysteine modification pattern, generated by residue-specific chemical labeling. Here, we describe the experimental design, interpretation, advantages, and limitations of using cysteine footprinting by taking as an example the interaction of warfarin with vitamin K epoxide reductase, a human membrane protein. Compared with other structural methods, footprinting of proteins in live cells produces structural information for the near native state. Knowledge of cellular conformational states is a necessary complement to the high-resolution structures obtained from purified proteins in vitro. Thus, the MS footprinting method is broadly applicable in membrane protein biology. Future directions include probing flexible motions of membrane proteins and their interaction interface in live cells, which are often beyond the reach of conventional structural methods.
Collapse
Affiliation(s)
- Guomin Shen
- Institute of Hemostasis and Thrombosis, College of Medicine, Henan University of Science and Technology , Luoyang, Henan 471003, P. R. China.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | - Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Michael Gross
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
8
|
Whitford W, Hawkins I, Glamuzina E, Wilson F, Marshall A, Ashton F, Love DR, Taylor J, Hill R, Lehnert K, Snell RG, Jacobsen JC. Compound heterozygous SLC19A3 mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001909. [PMID: 28696212 PMCID: PMC5701311 DOI: 10.1101/mcs.a001909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the gene SLC19A3 result in thiamine metabolism dysfunction syndrome 2, also known as biotin-thiamine-responsive basal ganglia disease (BTBGD). This neurometabolic disease typically presents in early childhood with progressive neurodegeneration, including confusion, seizures, and dysphagia, advancing to coma and death. Treatment is possible via supplement of biotin and/or thiamine, with early treatment resulting in significant lifelong improvements. Here we report two siblings who received a refined diagnosis of BTBGD following whole-genome sequencing. Both children inherited compound heterozygous mutations from unaffected parents; a missense single-nucleotide variant (p.G23V) in the first transmembrane domain of the protein, and a 4808-bp deletion in exon 1 encompassing the 5′ UTR and minimal promoter region. This deletion is the smallest promoter deletion reported to date, further defining the minimal promoter region of SLC19A3. Unfortunately, one of the siblings died prior to diagnosis, but the other is showing significant improvement after commencement of therapy. This case demonstrates the power of whole-genome sequencing for the identification of structural variants and subsequent diagnosis of rare neurodevelopmental disorders.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Isobel Hawkins
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic Service, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Francessa Wilson
- Department of Paediatric Radiology, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Andrew Marshall
- Department of Paediatrics and Child Health, Wellington Hospital, Wellington 6021, New Zealand
| | - Fern Ashton
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Donald R Love
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland 1023, New Zealand
| | - Rosamund Hill
- Department of Neurology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
9
|
YidC Insertase of Escherichia coli: Water Accessibility and Membrane Shaping. Structure 2017; 25:1403-1414.e3. [PMID: 28844594 DOI: 10.1016/j.str.2017.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/31/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
The YidC/Oxa1/Alb3 family of membrane proteins function to insert proteins into membranes in bacteria, mitochondria, and chloroplasts. Recent X-ray structures of YidC from Bacillus halodurans and Escherichia coli revealed a hydrophilic groove that is accessible from the lipid bilayer and the cytoplasm. Here, we explore the water accessibility within the conserved core region of the E. coli YidC using in vivo cysteine alkylation scanning and molecular dynamics (MD) simulations of YidC in POPE/POPG membranes. As expected from the structure, YidC possesses an aqueous membrane cavity localized to the membrane inner leaflet. Both the scanning data and the MD simulations show that the lipid-exposed transmembrane helices 3, 4, and 5 are short, leading to membrane thinning around YidC. Close examination of the MD data reveals previously unrecognized structural features that are likely important for protein stability and function.
Collapse
|
10
|
Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Antimicrob Agents Chemother 2015; 60:789-96. [PMID: 26596936 PMCID: PMC4750697 DOI: 10.1128/aac.02465-15] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Tigecycline is a glycylcycline antibiotic active against multidrug-resistant bacterial pathogens. The objectives of our study were to examine the potential of the Tet(A), Tet(K), Tet(M), and Tet(X) tetracycline resistance proteins to acquire mutations causing tigecycline resistance and to determine how this affects resistance to earlier classes of tetracyclines. Mutations in all four tet genes caused a significant increase in the tigecycline MIC in Escherichia coli, and strains expressing mutant Tet(A) and Tet(X) variants reached clinically relevant MICs (2 mg/liter and 3 mg/liter, respectively). Mutations predominantly accumulated in transmembrane domains of the efflux pumps, most likely increasing the accommodation of tigecycline as a substrate. All selected Tet(M) mutants contained at least one mutation in the functionally most important loop III of domain IV. Deletion of leucine 505 of this loop led to the highest increase of the tigecycline MIC (0.5 mg/liter) among Tet(M) mutants. It also caused collateral sensitivity to earlier classes of tetracyclines. A majority of the Tet(X) mutants showed increased activity against all three classes of tetracylines. All tested Tet proteins have the potential to acquire mutations leading to increased MICs of tigecycline. As tet genes are widely found in pathogenic bacteria and spread easily by horizontal gene transfer, resistance development by alteration of existing Tet proteins might compromise the future medical use of tigecycline. We predict that Tet(X) might become the most problematic future Tet determinant, since its weak intrinsic tigecycline activity can be mutationally improved to reach clinically relevant levels without collateral loss in activity to other tetracyclines.
Collapse
|
11
|
Wright DJ, Tate CG. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2261-70. [PMID: 26143388 PMCID: PMC4579554 DOI: 10.1016/j.bbamem.2015.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4–5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. A rapid method was developed for the identification of transport-defective mutants of TetA(B). ITC was used to determine the affinity of tetracycline binding to the mutants. Fifteen transport-defective point mutations were identified. Three mutants bound tetracycline whereas the remainder did not The transport-defective mutants may facilitate crystallisation of TetA(B).
Collapse
Affiliation(s)
- David J Wright
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
12
|
Effects of Cysteine Introduction into Three Homologous Cytochromesc. Biosci Biotechnol Biochem 2014; 73:1227-9. [DOI: 10.1271/bbb.90028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Aldridge C, Storm A, Cline K, Dabney-Smith C. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 2012; 287:34752-63. [PMID: 22896708 PMCID: PMC3464578 DOI: 10.1074/jbc.m112.385666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Indexed: 11/06/2022] Open
Abstract
Twin arginine transport (Tat) systems transport folded proteins using proton-motive force as sole energy source. The thylakoid Tat system comprises three membrane components. A complex composed of cpTatC and Hcf106 is the twin arginine signal peptide receptor. Signal peptide binding triggers assembly of Tha4 for the translocation step. Tha4 is thought to serve as the protein-conducting element, and the topology it adopts during transport produces the transmembrane passageway. We analyzed Tha4 topology and conformation in actively transporting translocases and compared that with Tha4 in nontransporting membranes. Using cysteine accessibility labeling techniques and diagnostic protease protection assays, we confirm an overall N(OUT)-C(IN) topology for Tha4 that is maintained under transport conditions. Significantly, the amphipathic helix (APH) and C-tail exhibited substantial changes in accessibility when actively engaged in protein transport. Compared with resting state, cysteines within the APH became less accessible to stromally applied modifying reagent. The APH proximal C-tail, although still accessible to Cys-directed reagents, was much less accessible to protease. We attribute these changes in accessibility to indicate the Tha4 conformation that is adopted in the translocase primed for translocation. We propose that in the primed translocase, the APH partitions more extensively and uniformly into the membrane interface and the C-tails pack closer together in a mesh-like network. Implications for the mode by which the substrate protein crosses the bilayer are discussed.
Collapse
Affiliation(s)
- Cassie Aldridge
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Amanda Storm
- the Department of Chemistry and Biochemistry and
| | - Kenneth Cline
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Carole Dabney-Smith
- the Department of Chemistry and Biochemistry and
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio 45056
| |
Collapse
|
14
|
Liu Q, Siloto RMP, Snyder CL, Weselake RJ. Functional and topological analysis of yeast acyl-CoA:diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis. J Biol Chem 2011; 286:13115-26. [PMID: 21321129 PMCID: PMC3075658 DOI: 10.1074/jbc.m110.204412] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/01/2011] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA:diacylglycerol acyltransferase (EC 2.3.1.20) is a membrane protein present mainly in the endoplasmic reticulum. It catalyzes the final and committed step in the biosynthesis of triacylglycerol, which is the principal repository of fatty acids for energy utilization and membrane formation. Two distinct family members of acyl-CoA:diacylglycerol acyltransferase, known as DGAT1 and DGAT2, have been characterized in different organisms, including mammals, fungi, and plants. In this study, we characterized the functional role and topological orientation of signature motifs in yeast (Saccharomyces cerevisiae) DGAT2 using mutagenesis in conjunction with chemical modification. Our data provide evidence that both the N and C termini are oriented toward the cytosol and have different catalytic roles. A highly conserved motif, (129)YFP(131), and a hydrophilic segment exclusive to yeast DGAT2 reside in a long endoplasmic reticulum luminal loop following the first transmembrane domain and play an essential role in enzyme catalysis. In addition, the strongly conserved His(195) within the motif HPHG, which may play a role in the active site of DGAT2, is likely embedded in the membrane. These results indicate some similarities to the topology model of murine DGAT2 but also reveal striking differences suggesting that the topological organization of DGAT2 is not ubiquitously conserved.
Collapse
Affiliation(s)
- Qin Liu
- From the Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Rodrigo M. P. Siloto
- From the Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Crystal L. Snyder
- From the Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Randall J. Weselake
- From the Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
15
|
Hirai T, Hamasaki N, Yamaguchi T, Ikeda Y. Topology models of anion exchanger 1 that incorporate the anti-parallel V-shaped motifs found in the EM structureThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:148-56. [DOI: 10.1139/o10-160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently published the three-dimensional structure of the membrane domain of human erythrocyte anion exchanger 1 (AE1) at 7.5 Å resolution, solved by electron crystallography. The structure exhibited distinctive anti-parallel V-shaped motifs, which protrude from the membrane bilayer on both sides. Similar motifs exist in the previously reported structure of a bacterial chloride channel (ClC)-type protein. Here, we propose two topology models of AE1 that reflect the anti-parallel V-shaped structural motifs. One is assumed to have structural similarity with the ClC protein and the other is only assumed to have internal repeats, as is often the case with transporters. Both models are consistent with most topological results reported thus far for AE1, each having advantages and disadvantages.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Naotaka Hamasaki
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Tomohiro Yamaguchi
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Yohei Ikeda
- Three-dimensional Microscopy Research Team, RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148, Japan
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
16
|
Mermelekas G, Georgopoulou E, Kallis A, Botou M, Vlantos V, Frillingos S. Cysteine-scanning analysis of helices TM8, TM9a, and TM9b and intervening loops in the YgfO xanthine permease: a carboxyl group is essential at ASP-276. J Biol Chem 2010; 285:35011-20. [PMID: 20802252 DOI: 10.1074/jbc.m110.170415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial and fungal members of the ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family use the NAT signature motif, a conserved 11-amino acid sequence between amphipathic helices TM9a and TM9b, to define function and selectivity of the purine binding site. To examine the role of flanking helices TM9a, TM9b, and TM8, we employed Cys-scanning analysis of the xanthine-specific homolog YgfO from Escherichia coli. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequences (259)FLVVGTIYLLSVLEAVGDITATAMVSRRPIQGEEYQSRLKGGVLADGLVSVIASAV(314) and (342)TIAVMLVILGLFP(354) including these TMs (underlined) was replaced individually with Cys, except the irreplaceable Glu-272 and Asp-304, which had been studied previously. Of 67 single Cys mutants, 55 accumulate xanthine to 35-140% of the steady state observed with C-less, five (I265C, D276C, I277C, G299C, L350C) accumulate to low levels (10-20%) and seven (T278C, A279C, T280C, A281C, G305C, G351C, P354C) show negligible expression in the membrane. Extensive mutagenesis reveals that a carboxyl group is needed at Asp-276 for high activity and that D276E differs from wild type as it recognizes 8-methylxanthine (K(i) 79 μm) but fails to recognize 2-thioxanthine, 3-methylxanthine or 6-thioxanthine; bulky replacements of Ala-279 or Thr-280 and replacements of Gly-305, Gly-351, or Pro-354 impair activity or expression. Single Cys mutants V261C, A273C, G275C, and S284C are sensitive to inactivation by N-ethylmaleimide and sensitivity of G275C (IC(50) 15 μm) is enhanced in the presence of substrate. The data suggest that residues crucial for the transport mechanism cluster in two conserved motifs, at the cytoplasmic end of TM8 (EXXGDXXAT) and in TM9a (GXXXDG).
Collapse
Affiliation(s)
- George Mermelekas
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Georgopoulou E, Mermelekas G, Karena E, Frillingos S. Purine substrate recognition by the nucleobase-ascorbate transporter signature motif in the YgfO xanthine permease: ASN-325 binds and ALA-323 senses substrate. J Biol Chem 2010; 285:19422-33. [PMID: 20406814 DOI: 10.1074/jbc.m110.120543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleobase-ascorbate transporter (NAT) signature motif is a conserved 11-amino acid sequence of the ubiquitous NAT/NCS2 family, essential for function and selectivity of both a bacterial (YgfO) and a fungal (UapA) purine-transporting homolog. We examined the role of NAT motif in more detail, using Cys-scanning and site-directed alkylation analysis of the YgfO xanthine permease of Escherichia coli. Analysis of single-Cys mutants in the sequence 315-339 for sensitivity to inactivation by 2-sulfonatoethyl methanethiosulfonate (MTSES(-)) and N-ethylmaleimide (NEM) showed a similar pattern: highly sensitive mutants clustering at the motif sequence (323-329) and a short alpha-helical face downstream (332, 333, 336). In the presence of substrate, N325C is protected from alkylation with either MTSES(-) or NEM, whereas sensitivity of A323C to inactivation by NEM is enhanced, shifting IC(50) from 34 to 14 microM. Alkylation or sensitivity of the other mutants is unaffected by substrate; the lack of an effect on Q324C is attributed to gross inability of this mutant for high affinity binding. Site-directed mutants G333R and S336N at the alpha-helical face downstream the motif display specific changes in ligand recognition relative to wild type; G333R allows binding of 7-methyl and 8-methylxanthine, whereas S336N disrupts affinity for 6-thioxanthine. Finally, all assayable motif-mutants are highly accessible to MTSES(-) from the periplasmic side. The data suggest that the NAT motif region lines the solvent- and substrate-accessible inner cavity, Asn-325 is at the binding site, Ala-323 responds to binding with a specific conformational shift, and Gly-333 and Ser-336 form part of the purine permeation pathway.
Collapse
Affiliation(s)
- Ekaterini Georgopoulou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | |
Collapse
|
18
|
Karena E, Frillingos S. Role of intramembrane polar residues in the YgfO xanthine permease: HIS-31 and ASN-93 are crucial for affinity and specificity, and ASP-304 and GLU-272 are irreplaceable. J Biol Chem 2009; 284:24257-68. [PMID: 19581302 DOI: 10.1074/jbc.m109.030734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the YgfO xanthine permease of Escherichia coli as a bacterial model for the study of the evolutionarily ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family, we performed a systematic Cys-scanning and site-directed mutagenesis of 14 putatively charged (Asp, Glu, His, Lys, or Arg) and 7 highly polar (Gln or Asn) residues that are predicted to lie in transmembrane helices (TMs). Of 21 single-Cys mutants engineered in the background of a functional YgfO devoid of Cys residues (C-less), only four are inactive or have marginal activity (H31C, N93C, E272C, D304C). The 4 residues are conserved throughout the family in TM1 (His-31), TM3 (Asn-93/Ser/Thr), TM8 (Glu-272), and putative TM9a (Asp-304/Asn/Glu). Extensive site-directed mutagenesis in wild-type background showed that H31N and H31Q have high activity and affinity for xanthine but H31Q recognizes novel purine bases and analogues, whereas H31C and H31L have impaired affinity for xanthine and analogues, and H31K or H31R impairs expression in the membrane. N93S and N93A are highly active but more promiscuous for recognition of analogues at the imidazole moiety of substrate, N93D has low activity, N93T has low affinity for xanthine or analogues, and N93Q or N93C is inactive. All mutants replacing Glu-272 or Asp-304, including E272D, E272Q, D304E, and D304N, are inactive, although expressed to high levels in the membrane. Finally, one of the 17 assayable single-Cys mutants, Q258C, was sensitive to inactivation by N-ethylmaleimide. The findings suggest that polar residues important for the function of YgfO cluster in TMs 1, 3, 8 and 9a.
Collapse
Affiliation(s)
- Ekaterini Karena
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | |
Collapse
|
19
|
Fu HL, Meng Y, Ordóñez E, Villadangos AF, Bhattacharjee H, Gil JA, Mateos LM, Rosen BP. Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. J Biol Chem 2009; 284:19887-95. [PMID: 19494117 DOI: 10.1074/jbc.m109.011882] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Acr3 family of arsenite permeases confer resistance to trivalent arsenic by extrusion from cells, with members in every phylogenetic domain. In this study bacterial Acr3 homologues from Alkaliphilus metalliredigens and Corynebacterium glutamicum were cloned and expressed in Escherichia coli. Modification of a single cysteine residue that is conserved in all analyzed Acr3 homologues resulted in loss of transport activity, indicating that it plays a role in Acr3 function. The results of treatment with thiol reagents suggested that the conserved cysteine is located in a hydrophobic region of the permease. A scanning cysteine accessibility method was used to show that Acr3 has 10 transmembrane segments, and the conserved cysteine would be predicted to be in the fourth transmembrane segment.
Collapse
Affiliation(s)
- Hseuh-Liang Fu
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Padan E, Kozachkov L, Herz K, Rimon A. NhaA crystal structure: functional–structural insights. J Exp Biol 2009; 212:1593-603. [DOI: 10.1242/jeb.026708] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARY
Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic membrane and many intracellular membranes. They are essential for Na+, pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na+/H+ antiporters are tightly regulated by pH. Escherichia coli NhaA Na+/H+ antiporter, a prototype pH-regulated antiporter,exchanges 2 H+ for 1 Na+ (or Li+). The NhaA crystal structure has provided insights into the pH-regulated mechanism of antiporter action and opened up new in silico and in situavenues of research. The monomer is the functional unit of NhaA yet the dimer is essential for the stability of the antiporter under extreme stress conditions. Ionizable residues of NhaA that strongly interact electrostatically are organized in a transmembrane fashion in accordance with the functional organization of the cation-binding site, `pH sensor', the pH transduction pathway and the pH-induced conformational changes. Remarkably,NhaA contains an inverted topology motive of transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found to vary in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane,which might be essential for ion binding and translocation. Based on the crystal structure of NhaA, a model structure of the human Na+/H+ exchanger (NHE1) was constructed, paving the way to a rational drug design.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lena Kozachkov
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Katia Herz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
21
|
Optimized production and analysis of the staphylococcal multidrug efflux protein QacA. Protein Expr Purif 2009; 64:118-24. [DOI: 10.1016/j.pep.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/21/2022]
|
22
|
Yamaguchi A. [Studies on the structure, function and expression regulation of bacterial xenobiotic exporters]. Nihon Saikingaku Zasshi 2009; 63:437-46. [PMID: 19317233 DOI: 10.3412/jsb.63.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
23
|
Culham DE, Vernikovska Y, Tschowri N, Keates RAB, Wood JM, Boggs JM. Periplasmic loops of osmosensory transporter ProP in Escherichia coli are sensitive to osmolality. Biochemistry 2009; 47:13584-93. [PMID: 19049385 DOI: 10.1021/bi801576x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ProP is an osmosensory transporter. The activities of ProP and ProP*, a cysteine-less, His(6)-tagged ProP variant, increase with osmotic pressure in cells and proteoliposomes. In proteoliposomes, ProP activity is osmolality-dependent only if the magnitude of the membrane potential (DeltaPsi) exceeds 100 mV. Some amino acid replacements rendered ProP activity osmolality-insensitive [e.g., Y44M in transmembrane segment 1 (TMI); S62C in periplasmic loop 1 (loop P1)], whereas others elevated the osmolality at which ProP activates (e.g., A59C). This suggested that the environments and/or conformations of TMI and loop P1 might be osmolality-dependent. This report correlates structural dynamics of ProP with osmoregulation of its transport activity. Residues in periplasmic loops were replaced with Cys, and changes in their environments were detected by monitoring their reactivities with N-ethylmaleimide (NEM). Increasing osmolality markedly increased the NEM reactivity of some Cys residues (e.g., C59, loop P1; C415-C418, loop P6) but not others (e.g., C293, loop P4; C348, loop P5). The NEM reactivity of C62 was insensitive to osmolality, as expected. Substitution Y44M rendered the transport activities of ProP*-A59C and ProP*-Q415C, and the NEM reactivities of the introduced Cys, osmolality-insensitive. Furthermore, osmolality did not affect the reactivity of C59 in cells lacking a protonmotive force, consistent with evidence that DeltaPsi is required for osmosensing by ProP. These results indicate that the osmotically induced increases in NEM reactivity of C59 and C415 in energized bacteria are due to a conformational change of ProP in response to osmolality. They therefore constitute the first direct evidence of an osmotically induced conformational change associated with osmosensing by a transporter.
Collapse
Affiliation(s)
- Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
24
|
Padan E. The enlightening encounter between structure and function in the NhaA Na+–H+ antiporter. Trends Biochem Sci 2008; 33:435-43. [DOI: 10.1016/j.tibs.2008.06.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/16/2022]
|
25
|
Wang Y, Toei M, Forgac M. Analysis of the membrane topology of transmembrane segments in the C-terminal hydrophobic domain of the yeast vacuolar ATPase subunit a (Vph1p) by chemical modification. J Biol Chem 2008; 283:20696-702. [PMID: 18508769 DOI: 10.1074/jbc.m803258200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integral V(0) domain of the vacuolar (H(+))-ATPases (V-ATPases) provides the pathway by which protons are transported across the membrane. Subunit a is a 100-kDa integral subunit of V(0) that plays an essential role in proton translocation. To better define the membrane topology of subunit a, unique cysteine residues were introduced into a Cys-less form of the yeast subunit a (Vph1p) and the accessibility of these cysteine residues to modification by the membrane permeant reagent N-ethylmaleimide (NEM) and the membrane impermeant reagent polyethyleneglycol maleimide (PEG-mal) in the presence and absence of the protein denaturant SDS was assessed. Thirty Vph1p mutants containing unique cysteine residues were constructed and analyzed. Cysteines introduced between residues 670 and 710 and between 807 and 840 were modified by PEG-mal in the absence of SDS, indicating a cytoplasmic orientation. Cysteines introduced between residues 602 and 620 and between residues 744 and 761 were modified by NEM but not PEG-mal in the absence of SDS, suggesting a lumenal orientation. Finally, cysteines introduced at residues 638, 645, 648, 723, 726, 734, and at nine positions between residue 766 and 804 were modified by NEM and PEG-mal only in the presence of SDS, consistent with their presence within the membrane or at a protein-protein interface. The results support an eight transmembrane helix (TM) model of subunit a in which the C terminus is located on the cytoplasmic side of the membrane and provide information on the location of hydrophilic loops separating TM6, 7, and 8.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
26
|
Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J Biol Chem 2008; 283:13044-52. [PMID: 18337242 DOI: 10.1074/jbc.m800900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Tavoulari S, Frillingos S. Substrate Selectivity of the Melibiose Permease (MelY) from Enterobacter cloacae. J Mol Biol 2008; 376:681-93. [DOI: 10.1016/j.jmb.2007.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 12/01/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
29
|
Analysis of tryptophan residues in the staphylococcal multidrug transporter QacA reveals long-distance functional associations of residues on opposite sides of the membrane. J Bacteriol 2008; 190:2441-9. [PMID: 18223078 DOI: 10.1128/jb.01864-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein.
Collapse
|
30
|
Sapunaric FM, Levy SB. Interdomain Loop Mutation Asp190Cys of the Tetracycline Efflux Transporter TetA(B) Decreases Affinity for Substrate. Antimicrob Agents Chemother 2007; 51:3036-7. [PMID: 17517833 PMCID: PMC1932504 DOI: 10.1128/aac.00357-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
32
|
Liu F, Culham DE, Vernikovska YI, Keates RAB, Boggs JM, Wood JM. Structure and Function of Transmembrane Segment XII in Osmosensor and Osmoprotectant Transporter ProP ofEscherichia coli. Biochemistry 2007; 46:5647-55. [PMID: 17441691 DOI: 10.1021/bi062198r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted structure of ProP, reveal the dimerization interface, and show that the structure of TM XII influences the osmolality at which ProP activates.
Collapse
Affiliation(s)
- Feng Liu
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, ON Canada
| | | | | | | | | | | |
Collapse
|
33
|
Angevine CM, Herold KAG, Vincent OD, Fillingame RH. Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. J Biol Chem 2007; 282:9001-7. [PMID: 17234633 DOI: 10.1074/jbc.m610848200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is thought to play a key role in H+ transport-driven rotation of the subunit c ring in Escherichia coli F1F0 ATP synthase. In the membrane-traversing F0 sector of the enzyme, H+ binding and release occurs at Asp-61 in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp-61 via aqueous channels formed at least in part by one or more of the five TMHs of subunit a. Aqueous access to surfaces of TMHs 2, 4, and 5 was previously suggested based upon the chemical reactivity of cysteine residues substituted into these helices. Here we have substituted Cys into TMH1 and TMH3 and extended the substitutions in TMH5 to the cytoplasmic surface. One region of TMH3 proved to be moderately Ag+-sensitive and may connect with the Ag+-sensitive region found previously on the periplasmic side of TMH2. A single Cys substitution in TMH1 proved to be both N-ethylmaleimide (NEM)-sensitive and Ag+-sensitive and suggests a possible packing interaction of TMH1 with TMH2 and TMH3. New Ag+- and NEM-sensitive residues were found at the cytoplasmic end of TMH5 and suggest a possible connection of this region to the NEM- and Ag+-sensitive region of TMH4 described previously. From the now complete pattern of TMH residue reactivity, we conclude that aqueous access from the periplasmic side of F0 to cAsp-61 at the center of the membrane is likely to be mediated by residues of TMHs 2, 3, 4, and 5 at the center of a four-helix bundle. Further, aqueous access between cAsp-61 and the cytoplasmic surface is likely to be mediated by residues in TMH4 and TMH5 at the exterior of the four-helix bundle that are in contact with the c-ring.
Collapse
Affiliation(s)
- Christine M Angevine
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
34
|
Hassan KA, Galea M, Wu J, Mitchell BA, Skurray RA, Brown MH. Functional effects of intramembranous proline substitutions in the staphylococcal multidrug transporter QacA. FEMS Microbiol Lett 2006; 263:76-85. [PMID: 16958854 DOI: 10.1111/j.1574-6968.2006.00411.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Hassan KA, Robinson KL, Smith AN, Gibson JH, Skurray RA, Brown MH. Glycine-Rich Transmembrane Helix 10 in the Staphylococcal Tetracycline Transporter TetA(K) Lines a Solvent-Accessible Channel. Biochemistry 2006; 45:15661-9. [PMID: 17176088 DOI: 10.1021/bi0614380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The staphylococcal TetA(K) tetracycline exporter is classified within the major facilitator superfamily of transport proteins and contains 14 alpha-helical transmembrane segments (TMS). Using cysteine-scanning mutagenesis, 27 amino acid residues across and flanking putative TMS 10 of the TetA(K) transporter were individually replaced with cysteine. The level of solvent accessibility to each of the targeted amino acid positions was determined as a measure of fluorescein maleimide reactivity and demonstrated that TMS 10 of TetA(K) has a cytoplasmic boundary at G313 and is likely to extend from at least V298 on the periplasmic side. TMS 10 was found to be amphiphilic containing at least partially solvent accessible amino acid residues along the length of one helical face, suggesting that this helix may line a solvent-exposed channel. Functional analyses of these cysteine mutants demonstrated a significant role for a number of amino acid residues, including a predominance of glycine residues which were further analyzed by alanine substitution. These residues are postulated to allow interhelical interactions between TMS 10 and distal parts of TetA(K) that are likely to be required for the tetracycline transport mechanism in TetA(K) and may be a general feature required by bacterial tetracycline transporters for activity.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, A12, University of Sydney, Sydney, New South Wales, Australia 2006
| | | | | | | | | | | |
Collapse
|
36
|
Karatza P, Panos P, Georgopoulou E, Frillingos S. Cysteine-scanning Analysis of the Nucleobase-Ascorbate Transporter Signature Motif in YgfO Permease of Escherichia coli. J Biol Chem 2006; 281:39881-90. [PMID: 17077086 DOI: 10.1074/jbc.m605748200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleobase-ascorbate transporter (NAT) signature motif is a conserved sequence motif of the ubiquitous NAT/NCS2 family implicated in defining the function and selectivity of purine translocation pathway in the major fungal homolog UapA. To analyze the role of NAT motif more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence (315)GSIPITTFAQNNGVIQMTGVASRYVG(340) (motif underlined) was replaced individually with Cys. Of the 26 single-Cys mutants, 16 accumulate xanthine to > or =50% of the steady state observed with C-less YgfO, 4 accumulate to low levels (10-25% of C-less), F322C, N325C, and N326C accumulate marginally (5-8% of C-less), and P318C, Q324C, and G340C are inactive. When transferred to wild type, F322C(wt) and N326C(wt) are highly active, but P318G(wt), Q324C(wt), N325C(wt), and G340C(wt) are inactive, and G340A(wt) displays low activity. Immunoblot analysis shows that replacements at Pro-318 or Gly-340 are associated with low or negligible expression in the membrane. More extensive mutagenesis reveals that Gln-324 is critical for high affinity uptake and ligand recognition, and Asn-325 is irreplaceable for active xanthine transport, whereas Thr-332 and Gly-333 are important determinants of ligand specificity. All single-Cys mutants react with N-ethylmaleimide, but regarding sensitivity to inactivation, they fall to three regions; positions 315-322 are insensitive to N-ethylmaleimide, with IC(50) values > or =0.4 mM, positions 323-329 are highly sensitive, with IC(50) values of 15-80 microM, and sensitivity of positions 330-340 follows a periodicity, with mutants sensitive to inactivation clustering on one face of an alpha-helix.
Collapse
Affiliation(s)
- Panayiota Karatza
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | |
Collapse
|
37
|
Subramanian VS, Marchant JS, Said HM. Targeting and trafficking of the human thiamine transporter-2 in epithelial cells. J Biol Chem 2005; 281:5233-45. [PMID: 16371350 DOI: 10.1074/jbc.m512765200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Humans lack biochemical pathways for thiamine synthesis, so cellular requirements are met via specific carrier-mediated uptake pathways. Two proteins from the solute carrier SLC19A gene family have been identified as human thiamine transporters (hTHTRs), SLC19A1 (hTHTR1) and SLC19A2 (hTHTR2). Both of these transporters are co-expressed but are differentially targeted in polarized cell types that mediate vectorial thiamine transport (e.g. renal and intestinal epithelia). It is important to understand the domain structure of these proteins, namely which regions within the polypeptide sequence are important for physiological delivery to the cell surface, in order to understand the impact of clinically relevant mutations on thiamine transport. Here we have characterized the mechanisms regulating hTHTR2 distribution by using live cell imaging methods that resolve the targeting and trafficking dynamics of full-length hTHTR2, a series of hTHTR2 truncation mutants, as well as chimeras comprising the hTHTR1 and hTHTR2 sequence. We showed the following: (i) that the cytoplasmic COOH-tail of hTHTR2 is not essential for apical targeting in polarized cells; (ii) that delivery of hTHTR2 to the cell surface is critically dependent on the integrity of the transmembrane backbone of the polypeptide so that minimal truncations abrogate cell surface expression of hTHTR2; and (iii) video rate images of hTHTR2-containing intracellular vesicles displayed rapid bi-directional trafficking events to and from the cell surface impaired by microtubule-disrupting but not microfilament-disrupting agents as well as by overexpression of the dynactin subunit dynamitin (p50). Finally, we compared the behavior of hTHTR2 with that of hTHTR1 and the human reduced folate carrier (SLC19A1) to underscore commonalities in the cell surface targeting mechanisms of the entire SLC19A gene family.
Collapse
|
38
|
De Jesus M, Jin J, Guffanti AA, Krulwich TA. Importance of the GP dipeptide of the antiporter motif and other membrane-embedded proline and glycine residues in tetracycline efflux protein Tet(L). Biochemistry 2005; 44:12896-904. [PMID: 16171405 PMCID: PMC2515593 DOI: 10.1021/bi050762c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proline and glycine residues are well represented among functionally important residues in hydrophobic domains of membrane transport proteins, and several critical roles have been suggested for them. Here, the effects of mutational changes in membrane-embedded proline and glycine residues of Tet(L) were examined, with a focus on the conserved GP(155,156) dipeptide of motif C, a putative "antiporter motif". Mutation of Gly155 to cysteine resulted in a mutant Tet(L) that bound its tetracycline-divalent metal (Tc-Me2+) substrate but did not catalyze efflux or exchange of Tc-Me2+ or catalyze uptake or exchange of Rb+ which was used to monitor the coupling ion. These results support suggestions that this region is involved in the conformational changes required for translocation. Mutations in Pro156 resulted in reduction (P156G) or loss (P156A or P156C) of Tc-Me2+ efflux capacity. All three Pro156 mutants exhibited a K+ leak (monitored by 86Rb+ fluxes) that was not observed in wild-type Tet(L). A similar leak was observed in a mutant in a membrane-embedded proline residue elsewhere in the Tet(L) protein (P175C) as well as in a P156C mutant of related antiporter Tet(K). These findings are consistent with roles proposed for membrane-embedded prolines in tight helix packing. Patterns of Tc resistance conferred by additional Tet(L) mutants indicate important roles for another GP dipeptide in transmembrane segment (TMS) X as well as for membrane-embedded glycine residues in TMS XIII.
Collapse
Affiliation(s)
- Magdia De Jesus
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
39
|
Xu Z, O'Rourke BA, Skurray RA, Brown MH. Role of transmembrane segment 10 in efflux mediated by the staphylococcal multidrug transport protein QacA. J Biol Chem 2005; 281:792-9. [PMID: 16282328 DOI: 10.1074/jbc.m508676200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The staphylococcal multidrug exporter QacA confers resistance to a wide range of structurally dissimilar monovalent and bivalent cationic antimicrobial compounds. To understand the functional importance of transmembrane segment 10, which is thought to be involved in substrate binding, cysteine-scanning mutagenesis was performed in which 35 amino acid residues in the putative transmembrane helix and its flanking regions were replaced in turn with cysteine. Solvent accessibility analysis of the introduced cysteine residues using fluorescein maleimide indicated that transmembrane segment 10 of QacA contains a 20-amino-acid hydrophobic core and may extend from Pro-309 to Ala-334. Phenotypic analysis and fluorimetric transport assays of these mutants showed that Gly-313 is important for the efflux of both monovalent and bivalent cationic substrates, whereas Asp-323 is only important for the efflux of bivalent substrates and probably forms part of the bivalent substrate-binding site(s) together with Met-319. Furthermore, the effects of N-ethyl-maleimide treatment on ethidium and 4',6-diamidino-2-phenylindole export mediated by the QacA mutants suggest that the face of transmembrane segment 10 that contains Asp-323 may also be close to the monovalent substrate-binding site(s), making this helix an integral component of the QacA multidrug-binding pocket.
Collapse
Affiliation(s)
- Zhiqiang Xu
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
40
|
Hernández JA, Fischbarg J. A General Channel Model Accounts for Channel, Carrier, Countertransport and Cotransport Kinetics. J Membr Biol 2005; 206:215-26. [PMID: 16456716 DOI: 10.1007/s00232-005-0794-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/19/2005] [Indexed: 10/25/2022]
Abstract
In this work we propose a unifying model of mediated membrane transport, based upon the idea that the integral membrane proteins involved in these processes operate via complex channel mechanisms. In the first part, we briefly review literature about the structural aspects of membrane transporters. We conclude that there is a substantial amount of evidence suggesting that most membrane proteins performing transport are embodied with channel-like structures that may constitute the translocation paths. This includes cases where the phenomenological transport kinetics do not correspond to the classical channel behavior. In the second part of this article we introduce the general channel model of mediated transport and employ it to derive specific examples, like simple one- or two-ligand channels, water-ligand channels, simple carriers, co- and counter-transport systems and more complex water-ligand carriers. We show that, for the most part, these particular cases can be obtained by the application of the techniques of diagram reduction to the full model. The necessary conditions for diagram reduction reflect physical properties of the protein and its surroundings.
Collapse
Affiliation(s)
- J A Hernández
- Secctión Biofisica, Facultad de Ciencias, Universidad de la República, Iguá esq. Mataojo, Montevideo, Uruguay, 11400.
| | | |
Collapse
|
41
|
Sapunaric FM, Levy SB. Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity. Microbiology (Reading) 2005; 151:2315-2322. [PMID: 16000721 DOI: 10.1099/mic.0.27997-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330-20339]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short alpha-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
Collapse
Affiliation(s)
- Frédéric M Sapunaric
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stuart B Levy
- The Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
42
|
Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci 2005; 13:1832-40. [PMID: 15215526 PMCID: PMC2279927 DOI: 10.1110/ps.04657704] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10-encoded metal-tetracycline/H(+) antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.
Collapse
Affiliation(s)
- Eyal Vardy
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|
43
|
Unkles SE, Rouch DA, Wang Y, Siddiqi MY, Glass ADM, Kinghorn JR. Two perfectly conserved arginine residues are required for substrate binding in a high-affinity nitrate transporter. Proc Natl Acad Sci U S A 2004; 101:17549-54. [PMID: 15576512 PMCID: PMC536016 DOI: 10.1073/pnas.0405054101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 11/18/2022] Open
Abstract
This study represents the first attempt to investigate the molecular mechanisms by which nitrate, an anion of significant ecological, agricultural, and medical importance, is transported into cells by high-affinity nitrate transporters. Two charged residues, R87 and R368, located within hydrophobic transmembrane domains 2 and 8, respectively, are conserved in all 52 high-affinity nitrate transporters sequenced thus far. Site-directed replacements of either of R87 or R368 residues by lysine were found to be tolerated, but such residue changes increased the K(m) for nitrate influx from micromolar to millimolar values. Seven other amino acid substitutions of R87 or R368 all led to loss of function and lack of growth on nitrate. No evidence was obtained of R87 or R368 forming a salt-bridge with conserved acidic residues. Remarkably, the phenotype of loss-of-function mutant R87T was found to be alleviated by an alteration to lysine of N459, present in the second copy of the nitrate signature (transmembrane domain 11), suggesting a structural or functional interplay between residues R87 and N459 in the three-dimensional NrtA protein structure. Failure of the potential reciprocal second site suppressor N168K (in the first nitrate signature copy of transmembrane domain 5) to revert R368T was observed. Taken with recent structural studies of other major facilitator superfamily proteins, the results suggest that R87 and R368 are involved in substrate binding and probably located in a region of the protein close to N459.
Collapse
Affiliation(s)
- Shiela E Unkles
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Kretz KA, Richardson TH, Gray KA, Robertson DE, Tan X, Short JM. Gene site saturation mutagenesis: a comprehensive mutagenesis approach. Methods Enzymol 2004; 388:3-11. [PMID: 15289056 DOI: 10.1016/s0076-6879(04)88001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Keith A Kretz
- Diversa Corporation, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hirai T, Subramaniam S. Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys J 2004; 87:3600-7. [PMID: 15339805 PMCID: PMC1304825 DOI: 10.1529/biophysj.104.049320] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Mimura H, Nakanishi Y, Hirono M, Maeshima M. Membrane Topology of the H+-pyrophosphatase of Streptomyces coelicolor Determined by Cysteine-scanning Mutagenesis. J Biol Chem 2004; 279:35106-12. [PMID: 15187077 DOI: 10.1074/jbc.m406264200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The H+-translocating pyrophosphatase (H+-PPase) is a proton pump that is found in a wide variety of organisms. It consists of a single polypeptide chain that is thought to possess between 14 and 17 transmembrane domains. To determine the topological arrangement of its conserved motifs and transmembrane domains, we carried out a cysteine-scanning analysis by determining the membrane topology of cysteine substitution mutants of Streptomyces coelicolor H+-PPase expressed in Escherichia coli using chemical reagents. First, we prepared a synthetic DNA that encoded the enzyme and constructed a functional cysteine-less mutant by substituting the four cysteine residues. We then introduced cysteine residues individually into 42 sites in its hydrophilic regions and N- and C-terminal segments. Thirty-six of the mutant enzymes retained both pyrophosphatase and H+-translocating activities. Analysis of 29 of these mutant forms using membrane-permeable and -impermeable sulfhydryl reagents revealed that S. coelicolor H+-PPase contains 17 transmembrane domains and that several conserved segments, such as the substrate-binding domains, are exposed to the cytoplasm. Four essential serine residues that were located on the cytoplasmic side were also identified. A marked characteristic of the S. coelicolor enzyme is a long additional sequence that includes a transmembrane domain at the C terminus. We propose that the basic structure of H+-PPases has 16 transmembrane domains with several large cytoplasmic loops containing functional motifs.
Collapse
Affiliation(s)
- Hisatoshi Mimura
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
47
|
Lemieux MJ, Huang Y, Wang DN. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 2004; 14:405-12. [PMID: 15313233 DOI: 10.1016/j.sbi.2004.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The major facilitator superfamily represents the largest group of secondary active membrane transporters in the cell. The 3.3A resolution structure of a member of this protein superfamily, the glycerol-3-phosphate transporter from the Escherichia coli inner membrane, reveals two domains connected by a long central loop. These N- and C-terminal domains, each containing a six-helix bundle, are related by pseudo-twofold symmetry. A substrate translocation pore is located between the two domains and is open to the cytoplasm. Two arginines at the closed end of the pore comprise the substrate-binding site. Biochemical experiments show that, upon substrate binding, the protein adopts a more compact conformation. The crystal structure suggests that the transporter operates through a single binding site, alternating access mechanism via a rocker-switch type of movement of the N- and C-terminal domains. The structure and mechanism of the glycerol-3-phosphate transporter form a paradigm for other members of the major facilitator superfamily.
Collapse
Affiliation(s)
- M Joanne Lemieux
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | |
Collapse
|
48
|
Galili L, Herz K, Dym O, Padan E. Unraveling Functional and Structural Interactions between Transmembrane Domains IV and XI of NhaA Na+/H+ Antiporter of Escherichia coli. J Biol Chem 2004; 279:23104-13. [PMID: 15039449 DOI: 10.1074/jbc.m400288200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functionally important, interface domain between transmembrane segments (TMSs) IV and XI of the NhaA Na+/H+ antiporter of Escherichia coli has been unraveled. Scanning by single Cys replacements identified new mutations (F136C, G125C, and A137C) that cluster in one face of TMS IV and increase dramatically the Km of the antiporter. Whereas G125C, in addition, causes a drastic alkaline shift to the pH dependence of the antiporter, G338C alleviates the pH control of NhaA. Scanning by double Cys replacements (21 pairs of one replacement per TMS) identified genetically eight pairs of residues that showed very strong negative complementation. Cross-linking of the double mutants identified six double mutants (T132C/G338C, D133C/G338C, F136C/S342C, T132C/S342C, A137C/S342C, and A137C/G338C) of which pronounced intramolecular cross-linking defined an interface domain between the two TMSs. Remarkably, cross-linking by a short and rigid reagent (N,N'-o-phenylenedimaleimide) revived the Li+/H+ antiport activity, whereas a shorter reagent (1,2-ethanediyl bismethanethiosulfonate) revived both Na+/H+ and Li+/H+ antiporter activities and even the pH response of the dead mutant T132C/G338C. Hence, cross-linking at this position restores an active conformation of NhaA.
Collapse
Affiliation(s)
- Livnat Galili
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
49
|
Bannam TL, Johanesen PA, Salvado CL, Pidot SJA, Farrow KA, Rood JI. The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology (Reading) 2004; 150:127-134. [PMID: 14702405 DOI: 10.1099/mic.0.26614-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Clostridium perfringens tetracycline resistance protein, TetA(P), is an inner-membrane protein that mediates the active efflux of tetracycline from the bacterial cell. This protein comprises 420 aa and is predicted to have 12 transmembrane domains (TMDs). Comparison of the TetA(P) amino acid sequence to that of several members of the major facilitator superfamily (MFS) identified a variant copy of the conserved Motif A. This region consists of the sequence E59xPxxxxxDxxxRK72 and is located within the putative loop joining TMDs 2 and 3 in the predicted structural model of the TetA(P) protein. To study the functional importance of the conserved residues, site-directed mutagenesis was used to construct 17 point mutations that were then analysed for their effect on tetracycline resistance and their ability to produce an immunoreactive TetA(P) protein. Changes to the conserved Phe-58 residue were tolerated, whereas three independent substitutions of Pro-61 abolished tetracycline resistance. Examination of the basic residues showed that Arg-71 is required for function, whereas tetracycline resistance was retained when Lys-72 was substituted with arginine. These results confirm that the region encoding this motif is important for tetracycline resistance and represents a distant version of the Motif A region found in other efflux proteins and members of the MFS family. In addition, it was shown that Glu-117 of the TetA(P) protein, which is predicted to be located in TMD4, is important for resistance although a derivative with an aspartate residue at this position is also functional.
Collapse
Affiliation(s)
- Trudi L Bannam
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Priscilla A Johanesen
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Chelsea L Salvado
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Sacha J A Pidot
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Kylie A Farrow
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- ARC Centre for Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
50
|
Tzubery T, Rimon A, Padan E. Mutation E252C Increases Drastically the K Value for Na+ and Causes an Alkaline Shift of the pH Dependence of NhaA Na+/H+ Antiporter of Escherichia coli. J Biol Chem 2004; 279:3265-72. [PMID: 14604993 DOI: 10.1074/jbc.m309021200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A single Cys replacement of Glu at position 252 (E252C) in loop VIII-IX of NhaA increases drastically the Km for Na(+) (50-fold) of the Na(+)/H(+) antiporter activity of NhaA and shifts the pH dependence of NhaA activity, by one pH unit, to the alkaline range. In parallel, E252C causes a similar alkaline pH shift to the pH-induced conformational change of loop VIII-IX. Thus, although both the Na(+)/H(+) antiporter activity of wild type NhaA and its accessibility to trypsin at position Lys(249) in loop VIII-IX increase with pH between pH 6.5 and 7.5, the response of E252C occurs above pH 8. Furthermore, probing accessibility of pure E252C protein in dodecyl maltoside solution to 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid revealed that E252C itself undergoes a pH-dependent conformational change, similar to position Lys(249), and the rate of the pH-induced conformational change is increased specifically by the presence of Na(+) or Li(+), the specific ligands of the antiporter. Chemical modification of E252C by N-ethylmaleimide, 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid; [2-(trimethylammonium)ethyl]methane thiosulfonate, or (2-sulfonatoethyl)methanethiosulfonate reversed, to a great extent, the pH shift conferred by E252C but had no effect on the K(m) of the mutant antiporter.
Collapse
Affiliation(s)
- Tzvi Tzubery
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|