1
|
Matylitsky J, Krieg A, Schumacher J, Borho J, Barth H, Papatheodorou P. Inhibition of Clostridioides difficile toxins TcdA and TcdB by the amiodarone derivative dronedarone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9877-9885. [PMID: 38935126 PMCID: PMC11582217 DOI: 10.1007/s00210-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The dreaded nosocomial pathogen Clostridioides difficile causes diarrhea and severe inflammation of the colon, especially after the use of certain antibiotics. The bacterium releases two deleterious toxins, TcdA and TcdB, into the gut, which are mainly responsible for the symptoms of C. difficile-associated diseases (CDADs). Both toxins are capable of entering independently into various host cells, e.g., intestinal epithelial cells, where they mono-O-glucosylate and inactivate Rho and/or Ras GTPases, important molecular switches for various cellular functions. We have shown recently that the cellular uptake of the Clostridioides difficile toxins TcdA and TcdB (TcdA/B) is inhibited by the licensed class III antiarrhythmic drug amiodarone (Schumacher et al. in Gut Microbes 15(2):2256695, 2023). Mechanistically, amiodarone delays the cellular uptake of both toxins into target cells most likely by lowering membrane cholesterol levels and by interfering with membrane insertion and/or pore formation of TcdA/B. However, serious side effects, such as thyroid dysfunction and severe pulmonary fibrosis, limit the clinical use of amiodarone in patients with C. difficile infection (CDI). For that reason, we aimed to test whether dronedarone, an amiodarone derivative with a more favorable side effect profile, is also capable of inhibiting TcdA/B. To this end, we tested in vitro with various methods the impact of dronedarone on the intoxication of Vero and CaCo-2 cells with TcdA/B. Importantly, preincubation of both cell lines with dronedarone for 1 h at concentrations in the low micromolar range rendered the cells less sensitive toward TcdA/B-induced Rac1 glucosylation, collapse of the actin cytoskeleton, cell rounding, and cytopathic effects, respectively. Our study points toward the possibility of repurposing the already approved drug dronedarone as the preferable safer-to-use alternative to amiodarone for inhibiting TcdA/B in the (supportive) therapy of CDADs.
Collapse
Affiliation(s)
- Jauheni Matylitsky
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anica Krieg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Judith Schumacher
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Joscha Borho
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Rodrigues Rodrigues R, Alves MLF, Bilhalva MA, Kremer FS, Junior CM, Ferreira MRA, Galvão CC, Quatrin PHDN, Conceição FR. Large Clostridial Toxins: A Brief Review and Insights into Antigen Design for Veterinary Vaccine Development. Mol Biotechnol 2024:10.1007/s12033-024-01303-6. [PMID: 39472390 DOI: 10.1007/s12033-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The group of large clostridial toxins (LCTs) includes toxins A (TcdA) and B (TcdB) from Clostridioides difficile, hemorrhagic and lethal toxins from Paeniclostridium sordellii, alpha toxin from Clostridium novyi (TcnA), and cytotoxin from Clostridium perfringens. These toxins are associated with severe pathologies in livestock, including gas gangrene (P. sordellii and C. novyi), infectious necrotic hepatitis (C. novyi), avian necrotic enteritis (C. perfringens), and enterocolitis (C. difficile). Immunoprophylaxis is crucial for controlling these diseases, but traditional vaccines face production challenges, such as labor-intensive processes, and often exhibit low immunogenicity. This has led to increased interest in recombinant vaccines. While TcdA and TcdB are well-studied for human immunization, other LCTs remain poorly characterized and require further investigation. Therefore, this study emphasizes the importance of understanding lesser-explored toxins and proposes using immunoinformatics to identify their immunodominant regions. By mapping these regions using silico tools and considering their homology with TcdA and TcdB, the study aims to guide future research in veterinary vaccinology. It also explores alternatives to overcome the limitations of conventional and recombinant vaccines, offering guidelines for developing more effective vaccination strategies against severe infections in animals.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil.
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
- Instituto Federal Sul-Rio-Grandense, IFSul, Campus Pelotas, Pelotas, Rio Grande Do Sul, Brasil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Junior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Pedro Henrique Dala Nora Quatrin
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| |
Collapse
|
3
|
Siddiqi U, Lunnemann HM, Childress KO, Shupe JA, Rutherford SA, Farrow MA, Washington MK, Coffey RJ, Lacy DB, Markham NO. Inhibition of EGFR/ErbB does not protect against C. difficile toxin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594035. [PMID: 38798529 PMCID: PMC11118545 DOI: 10.1101/2024.05.13.594035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Clostridioides difficile is a common cause of diarrhea and mortality, especially in immunosuppressed and hospitalized patients. C. difficile is a toxin-mediated disease, but the host cell receptors for C. difficile toxin B (TcdB) have only recently been revealed. Emerging data suggest TcdB interacts with receptor tyrosine kinases during infection. In particular, TcdB can elicit Epidermal Growth Factor Receptor (EGFR) transactivation in human colonic epithelial cells. The mechanisms for this function are not well understood, and the involvement of other receptors in the EGFR family of Erythroblastic Leukemia Viral Oncogene Homolog (ErbB) receptors remains unclear. Furthermore, in an siRNA-knockdown screen for protective genes involved with TcdB toxin pathogenesis, we show ErbB2 and ErbB3 loss resulted in increased cell viability. We hypothesize TcdB induces the transactivation of EGFR and/or ErbB receptors as a component of its cell-killing mechanism. Here, we show in vivo intrarectal instillation of TcdB in mice leads to phosphorylation of ErbB2 and ErbB3. However, immunohistochemical staining for phosphorylated ErbB2 and ErbB3 indicated no discernible difference between control and TcdB-treated mice for epithelial phospho-ErbB2 and phospho-ErbB3. Human colon cancer cell lines (HT29, Caco-2) exposed to TcdB were not protected by pre-treatment with lapatinib, an EGFR/ErbB2 inhibitor. Similarly, lapatinib pre-treatment failed to protect normal human colonoids from TcdB-induced cell death. Neutralizing antibodies against mouse EGFR failed to protect mice from TcdB intrarectal instillation as measured by edema, inflammatory infiltration, and epithelial injury. Our findings suggest TcdB-induced colonocyte cell death does not require EGFR/ErbB receptor tyrosine kinase activation.
Collapse
|
4
|
Kinsolving J, Bous J, Kozielewicz P, Košenina S, Shekhani R, Grätz L, Masuyer G, Wang Y, Stenmark P, Dong M, Schulte G. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD 7. Cell Rep 2024; 43:113727. [PMID: 38308843 DOI: 10.1016/j.celrep.2024.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The G protein-coupled receptors of the Frizzled (FZD) family, in particular FZD1,2,7, are receptors that are exploited by Clostridioides difficile toxin B (TcdB), the major virulence factor responsible for pathogenesis associated with Clostridioides difficile infection. We employ a live-cell assay examining the affinity between full-length FZDs and TcdB. Moreover, we present cryoelectron microscopy structures of TcdB alone and in complex with full-length FZD7, which reveal that large structural rearrangements of the combined repetitive polypeptide domain are required for interaction with FZDs and other TcdB receptors, constituting a first step for receptor recognition. Furthermore, we show that bezlotoxumab, an FDA-approved monoclonal antibody to treat Clostridioides difficile infection, favors the apo-TcdB structure and thus disrupts binding with FZD7. The dynamic transition between the two conformations of TcdB also governs the stability of the pore-forming region. Thus, our work provides structural and functional insight into how conformational dynamics of TcdB determine receptor binding.
Collapse
Affiliation(s)
- Julia Kinsolving
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Julien Bous
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Pawel Kozielewicz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rawan Shekhani
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Lukas Grätz
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Yuankai Wang
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Gunnar Schulte
- Karolinska Institutet, Department Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, 17165 Stockholm, Sweden.
| |
Collapse
|
5
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Schumacher J, Nienhaus A, Heber S, Matylitsky J, Chaves-Olarte E, Rodríguez C, Barth H, Papatheodorou P. Exploring the inhibitory potential of the antiarrhythmic drug amiodarone against Clostridioides difficile toxins TcdA and TcdB. Gut Microbes 2023; 15:2256695. [PMID: 37749884 PMCID: PMC10524773 DOI: 10.1080/19490976.2023.2256695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
The intestinal pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The symptoms of C. difficile-associated diseases (CDADs) are directly associated with the pathogen's toxins TcdA and TcdB, which enter host cells and inactivate Rho and/or Ras GTPases by glucosylation. Membrane cholesterol is crucial during the intoxication process of TcdA and TcdB, and likely involved during pore formation of both toxins in endosomal membranes, a key step after cellular uptake for the translocation of the glucosyltransferase domain of both toxins from endosomes into the host cell cytosol. The licensed drug amiodarone, a multichannel blocker commonly used in the treatment of cardiac dysrhythmias, is also capable of inhibiting endosomal acidification and, as shown recently, cholesterol biosynthesis. Thus, we were keen to investigate in vitro with cultured cells and human intestinal organoids, whether amiodarone preincubation protects from TcdA and/or TcdB intoxication. Amiodarone conferred protection against both toxins independently and in combination as well as against toxin variants from the clinically relevant, epidemic C. difficile strain NAP1/027. Further mechanistic studies suggested that amiodarone's mode-of-inhibition involves also interference with the translocation pore of both toxins. Our study opens the possibility of repurposing the licensed drug amiodarone as a novel pan-variant antitoxin therapeutic in the context of CDADs.
Collapse
Affiliation(s)
- Judith Schumacher
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Astrid Nienhaus
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Heber
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Jauheni Matylitsky
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Lisboa J, Pereira C, Pinto RD, Rodrigues IS, Pereira LMG, Pinheiro B, Oliveira P, Pereira PJB, Azevedo JE, Durand D, Benz R, do Vale A, Dos Santos NMS. Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56. Nat Commun 2023; 14:7431. [PMID: 37973928 PMCID: PMC10654918 DOI: 10.1038/s41467-023-43054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.
Collapse
Affiliation(s)
- Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bruno Pinheiro
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology (MCbiology), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Macromolecular Structure Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Jorge E Azevedo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roland Benz
- Science Faculty, Constructor University, Bremen, Germany
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
Jia J, Braune-Yan M, Lietz S, Wahba M, Pulliainen AT, Barth H, Ernst K. Domperidone Inhibits Clostridium botulinum C2 Toxin and Bordetella pertussis Toxin. Toxins (Basel) 2023; 15:412. [PMID: 37505681 PMCID: PMC10467066 DOI: 10.3390/toxins15070412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Bordetella pertussis toxin (PT) and Clostridium botulinum C2 toxin are ADP-ribosylating toxins causing severe diseases in humans and animals. They share a common translocation mechanism requiring the cellular chaperones Hsp90 and Hsp70, cyclophilins, and FK506-binding proteins to transport the toxins' enzyme subunits into the cytosol. Inhibitors of chaperone activities have been shown to reduce the amount of transported enzyme subunits into the cytosol of cells, thus protecting cells from intoxication by these toxins. Recently, domperidone, an approved dopamine receptor antagonist drug, was found to inhibit Hsp70 activity. Since Hsp70 is required for cellular toxin uptake, we hypothesized that domperidone also protects cells from intoxication with PT and C2. The inhibition of intoxication by domperidone was demonstrated by analyzing the ADP-ribosylation status of the toxins' specific substrates. Domperidone had no inhibitory effect on the receptor-binding or enzyme activity of the toxins, but it inhibited the pH-driven membrane translocation of the enzyme subunit of the C2 toxin and reduced the amount of PTS1 in cells. Taken together, our results indicate that domperidone is a potent inhibitor of PT and C2 toxins in cells and therefore might have therapeutic potential by repurposing domperidone to treat diseases caused by bacterial toxins that require Hsp70 for their cellular uptake.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
10
|
Braune-Yan M, Jia J, Wahba M, Schmid J, Papatheodorou P, Barth H, Ernst K. Domperidone Protects Cells from Intoxication with Clostridioides difficile Toxins by Inhibiting Hsp70-Assisted Membrane Translocation. Toxins (Basel) 2023; 15:384. [PMID: 37368685 DOI: 10.3390/toxins15060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.
Collapse
Affiliation(s)
- Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Johannes Schmid
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
11
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
12
|
Oh C, Li L, Verma A, Reuven AD, Miao EA, Bliska JB, Aachoui Y. Neutrophil inflammasomes sense the subcellular delivery route of translocated bacterial effectors and toxins. Cell Rep 2022; 41:111688. [PMID: 36417874 PMCID: PMC9827617 DOI: 10.1016/j.celrep.2022.111688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
In neutrophils, caspase-11 cleaves gasdermin D (GSDMD), causing pyroptosis to clear cytosol-invasive bacteria. In contrast, caspase-1 also cleaves GSDMD but seems to not cause pyroptosis. Here, we show that this pyroptosis-resistant caspase-1 activation is specifically programmed by the site of translocation of the detected microbial virulence factors. We find that pyrin and NLRC4 agonists do not trigger pyroptosis in neutrophils when they access the cytosol from endosomal compartment. In contrast, when the same ligands penetrate through the plasma membrane, they cause pyroptosis. Consistently, pyrin detects extracellular Yersinia pseudotuberculosis ΔyopM in neutrophils, driving caspase-1-GSDMD pyroptosis. This pyroptotic response drives PAD4-dependent H3 citrullination and results in extrusion of neutrophil extracellular traps (NETs). Our data indicate that caspase-1, GSDMD, or PAD4 deficiency renders mice more susceptible to Y. pseudotuberculosis ΔyopM infection. Therefore, neutrophils induce pyroptosis in response to caspase-1-activating inflammasomes triggered by extracellular bacterial pathogens, but after they phagocytose pathogens, they are programmed to forego pyroptosis.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arianna D Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
13
|
Chen B, Perry K, Jin R. Neutralizing epitopes on Clostridioides difficile toxin A revealed by the structures of two camelid VHH antibodies. Front Immunol 2022; 13:978858. [PMID: 36466927 PMCID: PMC9709291 DOI: 10.3389/fimmu.2022.978858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Kay Perry
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, United States,Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL, United States
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States,*Correspondence: Rongsheng Jin,
| |
Collapse
|
14
|
Plakoglobin and High-Mobility Group Box 1 Mediate Intestinal Epithelial Cell Apoptosis Induced by Clostridioides difficile TcdB. mBio 2022; 13:e0184922. [PMID: 36043787 DOI: 10.1128/mbio.01849-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated intestinal disease, resulting in severe diarrhea and fatal pseudomembranous colitis. TcdB, one of the essential virulence factors secreted by this bacterium, induces host cell apoptosis through a poorly understood mechanism. Here, we performed an RNA interference (RNAi) screen customized to Caco-2 cells, a cell line model of the intestinal epithelium, to discover host factors involved in TcdB-induced apoptosis. We identified plakoglobin, also known as junction plakoglobin (JUP) or γ-catenin, a member of the catenin family, as a novel host factor and a previously known cell death-related chromatin factor, high-mobility group box 1 (HMGB1). Disruption of those host factors by RNAi and CRISPR resulted in resistance of cells to TcdB-mediated and mitochondrion-dependent apoptosis. JUP was redistributed from adherens junctions to the mitochondria and colocalized with the antiapoptotic factor Bcl-XL. JUP proteins could permeabilize the mitochondrial membrane, resulting in the release of cytochrome c. Our results reveal a novel role of JUP in targeting the mitochondria to promote the mitochondrial apoptotic pathway. Treatment with glycyrrhizin, an HMGB1 inhibitor, resulted in significantly increased resistance to TcdB-induced epithelial damage in cultured cells and a mouse ligated colon loop model. These findings demonstrate the critical roles of JUP and HMGB1 in TcdB-induced epithelial cell apoptosis. IMPORTANCE Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea. Toxins, especially TcdB, cause epithelial cell apoptosis, but the underlying cell death mechanism is less clear. Through an apoptosis-focused RNAi screen using a bacterium-made small interfering (siRNA) library customized to a human colonic epithelial cell model, we found a novel host factor, plakoglobin (γ-catenin), as a key factor required for cell apoptosis induced by TcdB. Plakoglobin targets and permeabilizes mitochondria after stimulation by TcdB, demonstrating a hitherto underappreciated role of this catenin family member in the apoptosis of intestinal epithelial cells. We also found a previously known cell death-related chromatin factor, HMGB1, and explored the inhibition of HMGB1 for CDI therapy in vivo.
Collapse
|
15
|
Chen B, Liu Z, Perry K, Jin R. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition. Sci Rep 2022; 12:9028. [PMID: 35637242 PMCID: PMC9151644 DOI: 10.1038/s41598-022-12909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, IL, 60439, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
16
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
17
|
Human α-Defensin-6 Neutralizes Clostridioides difficile Toxins TcdA and TcdB by Direct Binding. Int J Mol Sci 2022; 23:ijms23094509. [PMID: 35562899 PMCID: PMC9101188 DOI: 10.3390/ijms23094509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.
Collapse
|
18
|
Chen B, Basak S, Chen P, Zhang C, Perry K, Tian S, Yu C, Dong M, Huang L, Bowen ME, Jin R. Structure and conformational dynamics of Clostridioides difficile toxin A. Life Sci Alliance 2022; 5:5/6/e202201383. [PMID: 35292538 PMCID: PMC8924006 DOI: 10.26508/lsa.202201383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
This study presents a complete structural model of TcdA holotoxin and sheds new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication. Clostridioides difficile toxin A and B (TcdA and TcdB) are two major virulence factors responsible for diseases associated with C. difficile infection (CDI). Here, we report the 3.18-Å resolution crystal structure of a TcdA fragment (residues L843–T2481), which advances our understanding of the complete structure of TcdA holotoxin. Our structural analysis, together with complementary single molecule FRET and limited proteolysis studies, reveal that TcdA adopts a dynamic structure and its CROPs domain can sample a spectrum of open and closed conformations in a pH-dependent manner. Furthermore, a small globular subdomain (SGS) and the CROPs protect the pore-forming region of TcdA in the closed state at neutral pH, which could contribute to modulating the pH-dependent pore formation of TcdA. A rationally designed TcdA mutation that trapped the CROPs in the closed conformation showed drastically reduced cytotoxicity. Taken together, these studies shed new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sujit Basak
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Changcheng Zhang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Jiang M, Shin J, Simeon R, Chang JY, Meng R, Wang Y, Shinde O, Li P, Chen Z, Zhang J. Structural dynamics of receptor recognition and pH-induced dissociation of full-length Clostridioides difficile Toxin B. PLoS Biol 2022; 20:e3001589. [PMID: 35324891 PMCID: PMC8982864 DOI: 10.1371/journal.pbio.3001589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/05/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile secretes Toxin B (TcdB) as one of its major virulence factors, which binds to intestinal epithelial and subepithelial receptors, including frizzled proteins and chondroitin sulfate proteoglycan 4 (CSPG4). Here, we present cryo-EM structures of full-length TcdB in complex with the CSPG4 domain 1 fragment (D1401-560) at cytosolic pH and the cysteine-rich domain of frizzled-2 (CRD2) at both cytosolic and acidic pHs. CSPG4 specifically binds to the autoprocessing and delivery domains of TcdB via networks of salt bridges, hydrophobic and aromatic/proline interactions, which are disrupted upon acidification eventually leading to CSPG4 drastically dissociating from TcdB. In contrast, FZD2 moderately dissociates from TcdB under acidic pH, most likely due to its partial unfolding. These results reveal structural dynamics of TcdB during its preentry step upon endosomal acidification, which provide a basis for developing therapeutics against C. difficile infections.
Collapse
Affiliation(s)
- Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Jeng-Yih Chang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Yuhang Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
20
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Xiao X, Sarma S, Menegatti S, Crook N, Magness ST, Hall CK. In Silico Identification and Experimental Validation of Peptide-Based Inhibitors Targeting Clostridium difficile Toxin A. ACS Chem Biol 2022; 17:118-128. [PMID: 34965093 DOI: 10.1021/acschembio.1c00743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infection is mediated by two major exotoxins: toxins A (TcdA) and B (TcdB). Inhibiting the biocatalytic activities of these toxins with targeted peptide-based drugs can reduce the risk of C. difficile infection. In this work, we used a computational strategy that integrates a peptide binding design (PepBD) algorithm and explicit-solvent atomistic molecular dynamics simulation to determine promising toxin A-targeting peptides that can recognize and bind to the catalytic site of the TcdA glucosyltransferase domain (GTD). Our simulation results revealed that two out of three in silico discovered peptides, viz. the neutralizing peptides A (NPA) and B (NPB), exhibit lower binding free energies when bound to the TcdA GTD than the phage-display discovered peptide, viz. the reference peptide (RP). These peptides may serve as potential inhibitors against C. difficile infection. The efficacy of the peptides RP, NPA, and NPB to neutralize the cytopathic effects of TcdA was tested in vitro in human jejunum cells. Both phage-display peptide RP and in silico peptide NPA were found to exhibit strong toxin-neutralizing properties, thereby preventing the TcdA toxicity. However, the in silico peptide NPB demonstrates a relatively low efficacy against TcdA.
Collapse
Affiliation(s)
- Xingqing Xiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sudeep Sarma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Augustyn W, Chruściel A, Hreczuch W, Kalka J, Tarka P, Kierat W. Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020750. [PMID: 35055571 PMCID: PMC8775970 DOI: 10.3390/ijerph19020750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile infections (CDIs) are the most common cause of acquired diseases in hospitalized patients. Effective surface disinfection, focused on the inactivation of the spores of this pathogen, is a decisive factor in reducing the number of nosocomial cases of CDI infections. An efficient disinfection procedure is the result of both the properties of the biocidal agent used and the technology of its implementation as well as a reliable, experimental methodology for assessing the activity of the biocidal active substance based on laboratory models that adequately represent real clinical conditions. This study reviews the state of knowledge regarding the properties and biochemical basis of the action mechanisms of sporicidal substances, with emphasis on chlorine dioxide (ClO2). Among the analyzed biocides, in addition to ClO2, active chlorine, hydrogen peroxide, peracetic acid, and glutaraldehyde were characterized. Due to the relatively high sporicidal effectiveness and effective control of bacterial biofilm, as well as safety in a health and environmental context, the use of ClO2 is an attractive alternative in the control of nosocomial infections of CD etiology. In terms of the methods of assessing the biocidal effectiveness, suspension and carrier standards are discussed.
Collapse
Affiliation(s)
- Weronika Augustyn
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Arkadiusz Chruściel
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
- Correspondence:
| | - Wiesław Hreczuch
- MEXEO-Wiesław Hreczuch, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (W.A.); (W.H.)
| | - Joanna Kalka
- Environmental Biotechnology Department, Silesian University of Technology, Faculty of Power and Environmental Engineering, 44-100 Gliwice, Poland;
| | - Patryk Tarka
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warszawa, Poland;
| | - Wojciech Kierat
- Department of Digital Systems, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
23
|
Aminzadeh A, Larsen CE, Boesen T, Jørgensen R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep 2022; 23:e53597. [PMID: 34817920 PMCID: PMC8728606 DOI: 10.15252/embr.202153597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Christian Engelbrecht Larsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - René Jørgensen
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
- Department of Science and EnvironmentUniversity of RoskildeRoskildeDenmark
| |
Collapse
|
24
|
Klepka C, Sandmann M, Tatge H, Mangan M, Arens A, Henkel D, Gerhard R. Impairment of lysosomal function by Clostridioides difficile TcdB. Mol Microbiol 2021; 117:493-507. [PMID: 34931374 DOI: 10.1111/mmi.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
TcdB is a potent cytotoxin produced by pathogenic Clostridioides difficile that inhibits Rho GTPases by mono-glucosylation. TcdB enters cells via receptor-mediated endocytosis. The pathogenic glucosyltransferase domain (GTD) egresses endosomes by pH-mediated conformational changes, and is subsequently released in an autoproteolytic manner. We here investigated the uptake, localization and degradation of TcdB. TcdB colocalized with lysosomal marker protein LAMP1, verifying the endosomal-lysosomal route of the toxin. In pulse assays endocytosed TcdB declined to a limit of detection within 2 hr, whereas the released GTD accumulated for up to 8 hr. We observed that autoproteolytic deficient TcdB NXN C698S was degraded significantly faster than wildtype TcdB, suggesting interference of TcdB with lysosomal degradation process. In fact, TcdB reduced lysosomal degradation of endosome cargo as tested with DQ-Green BSA. Lysosomal dysfunction was accompanied by perinuclear accumulation of LAMP1 and a weaker detection in immunoblots. Galectin-8 or galectin-3 was not recruited to lysosomes speaking against lysosome membrane damage. Changes in the autophagosomal marker LC3B suggested additional indirect effect of lysosomal dysfunction on the autophagic flux. In contrast to necrotic signaling induced in by TcdB, lysosomal dysfunction was not abolished by calcium channel blocker nifedipin, indicating separate cytopathogenic effects induced by TcdB during endo-lysosomal trafficking.
Collapse
Affiliation(s)
- Carmen Klepka
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Moritz Sandmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthew Mangan
- Institute of Innate Immunology, Biomedical Center, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Annabel Arens
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Daniel Henkel
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Papatheodorou P, Kindig S, Badilla-Lobo A, Fischer S, Durgun E, Thuraisingam T, Witte A, Song S, Aktories K, Chaves-Olarte E, Rodríguez C, Barth H. The Compound U18666A Inhibits the Intoxication of Cells by Clostridioides difficile Toxins TcdA and TcdB. Front Microbiol 2021; 12:784856. [PMID: 34912322 PMCID: PMC8667575 DOI: 10.3389/fmicb.2021.784856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The intestinal pathogen Clostridioides (C.) difficile is a major cause of diarrhea both in hospitals and outpatient in industrialized countries. This bacterium produces two large exotoxins, toxin A (TcdA) and toxin B (TcdB), which are directly responsible for the onset of clinical symptoms of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and the severe, life-threatening pseudomembranous colitis. Both toxins are multidomain proteins and taken up into host eukaryotic cells via receptor-mediated endocytosis. Within the cell, TcdA and TcdB inactivate Rho and/or Ras protein family members by glucosylation, which eventually results in cell death. The cytotoxic mode of action of the toxins is the main reason for the disease. Thus, compounds capable of inhibiting the cellular uptake and/or mode-of-action of both toxins are of high therapeutic interest. Recently, we found that the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates cholesterol content in membranes, is crucial for the intoxication of cells by TcdA and TcdB. Furthermore, it has been shown that membrane cholesterol is required for TcdA- as well as TcdB-mediated pore formation in endosomal membranes, which is a key step during the translocation of the glucosyltransferase domain of both toxins from endocytic vesicles into the cytosol of host cells. In the current study, we demonstrate that intoxication by TcdA and TcdB is diminished in cultured cells preincubated with the compound U18666A, an established inhibitor of cholesterol biosynthesis and/or intracellular transport. U18666A-pretreated cells were also less sensitive against TcdA and TcdB variants from the epidemic NAP1/027 C. difficile strain. Our study corroborates the crucial role of membrane cholesterol for cell entry of TcdA and TcdB, thus providing a valuable basis for the development of novel antitoxin strategies in the context of CDADs.
Collapse
Affiliation(s)
| | - Selina Kindig
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Ebru Durgun
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Tharani Thuraisingam
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Witte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Shuo Song
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
26
|
Guo S, Chen Y, Liu J, Zhang X, Liu Z, Zhou Z, Wei W. Low-density lipoprotein receptor-related protein 1 is a CROPs-associated receptor for Clostridioides difficile toxin B. SCIENCE CHINA-LIFE SCIENCES 2021; 65:107-118. [PMID: 34279819 DOI: 10.1007/s11427-021-1943-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
As the leading cause of worldwide hospital-acquired infection, Clostridioides difficile (C. difficile) infection has caused heavy economic and hospitalized burden, while its pathogenesis is not fully understood. Toxin B (TcdB) is one of the major virulent factors of C. difficile. Recently, CSPG4 and FZD2 were reported to be the receptors that mediate TcdB cellular entry. However, genetic ablation of genes encoding these receptors failed to completely block TcdB entry, implicating the existence of alternative receptor(s) for this toxin. Here, by employing the CRISPR-Cas9 screen in CSPG4-deficient HeLa cells, we identified LDL receptor-related protein-1 (LRP1) as a novel receptor for TcdB. Knockout of LRP1 in both CSPG4-deficient HeLa cells and colonic epithelium Caco2 cells conferred cells with increased TcdB resistance, while LRP1 overexpression sensitized cells to TcdB at a low concentration. Co-immunoprecipitation assay showed that LRP1 interacts with full-length TcdB. Moreover, CROPs domain, which is dispensable for TcdB's interaction with CSPG4 and FZD2, is sufficient for binding to LRP1. As such, our study provided evidence for a novel mechanism of TcdB entry and suggested potential therapeutic targets for treating C. diff.
Collapse
Affiliation(s)
- Shengjie Guo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yiou Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingze Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
28
|
Chen X, Yang X, de Anda J, Huang J, Li D, Xu H, Shields KS, Džunková M, Hansen J, Patel IJ, Yee EU, Golenbock DT, Grant MA, Wong GCL, Kelly CP. Clostridioides difficile Toxin A Remodels Membranes and Mediates DNA Entry Into Cells to Activate Toll-Like Receptor 9 Signaling. Gastroenterology 2020; 159:2181-2192.e1. [PMID: 32841647 PMCID: PMC8720510 DOI: 10.1053/j.gastro.2020.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.
Collapse
Affiliation(s)
- Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Xiaotong Yang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Institute of Microbiology and Immunology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Huang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Colorectal Surgery, the 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelsey S. Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Joshua Hansen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Eric U. Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Douglas T. Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marianne A. Grant
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA,Corresponding Authors: Xinhua Chen, PhD, , or Gerard C. L. Wong, PhD,
| | - Ciarán P. Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Aminzadeh A, Tiwari MK, Mamah Mustapha SS, Navarrete SJ, Henriksen AB, Møller IM, Krogfelt KA, Bjerrum MJ, Jørgensen R. Detoxification of toxin A and toxin B by copper ion-catalyzed oxidation in production of a toxoid-based vaccine against Clostridioides difficile. Free Radic Biol Med 2020; 160:433-446. [PMID: 32860983 DOI: 10.1016/j.freeradbiomed.2020.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Clostridioides difficile infections (CDI) has emerged worldwide as a serious antimicrobial-resistant healthcare-associated disease resulting in diarrhea and pseudomembranous colitis. The two cytotoxic proteins, toxin A (TcdA) and toxin B (TcdB) are the major virulence factor responsible for the disease symptoms. We examined time-dependent oxidative detoxification of TcdA and TcdB using different molar ratios of protein:Cu2+:H2O2. The metal-catalyzed oxidation (MCO) reaction in molar ratios of 1:60:1000 for protein:Cu2+:H2O2 at pH 4.5 resulted in a significant 6 log10 fold reduction in cytotoxicity after 120-min incubation at 37 °C. Circular dichroism revealed that MCO-detoxified TcdA and TcdB had secondary and tertiary structural folds similar to the native proteins. The conservation of immunogenic epitopes of both proteins was tested using monoclonal antibodies in an ELISA, comparing our MCO-detoxification approach to a conventional formaldehyde-detoxification method. The oxidative detoxification of TcdA and TcdB led to an average 2-fold reduction in antibody binding relative to native proteins, whereas formaldehyde cross-linking resulted in 3-fold and 5-fold reductions, respectively. Finally, we show that mice immunized with a vaccine consisting of MCO-detoxified TcdA and TcdB were fully protected against disease symptoms and death following a C. difficile infection and elicited substantial serum IgG responses against both TcdA and TcdB. The results of this study present copper ion-catalyzed oxidative detoxification of toxic proteins as a method highly suitable for the rapid production of safe, immunogenic and irreversible toxoid antigens for future vaccine development and may have the potential for replacing cross-linking reagents like formaldehyde.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark; University of Copenhagen, Department of Chemistry, Copenhagen, Denmark
| | | | | | | | | | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK, 4200, Slagelse, Denmark
| | | | | | - René Jørgensen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark.
| |
Collapse
|
30
|
Characteristics of the Protein Complexes and Pores Formed by Bacillus cereus Hemolysin BL. Toxins (Basel) 2020; 12:toxins12110672. [PMID: 33114414 PMCID: PMC7694065 DOI: 10.3390/toxins12110672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus Hemolysin BL is a tripartite toxin responsible for a diarrheal type of food poisoning. Open questions remain regarding its mode of action, including the extent to which complex formation prior to cell binding contributes to pore-forming activity, how these complexes are composed, and the properties of the pores formed in the target cell membrane. Distinct complexes of up to 600 kDa were found on native gels, whose structure and size were primarily defined by Hbl B. Hbl L1 and L2 were also identified in these complexes using Western blotting and an LC-MS approach. LC-MS also revealed that many other proteins secreted by B. cereus exist in complexes. Further, a decrease of toxic activity at temperatures ≥60 °C was shown, which was unexpectedly restored at higher temperatures. This could be attributed to a release of Hbl B monomers from tight complexation, resulting in enhanced cell binding. In contrast, Hbl L1 was rather susceptible to heat, while heat treatment of Hbl L2 seemed not to be crucial. Furthermore, Hbl-induced pores had a rather small single-channel conductance of around 200 pS and a probable channel diameter of at least 1 nm on planar lipid bilayers. These were highly instable and had a limited lifetime, and were also slightly cation-selective. Altogether, this study provides astonishing new insights into the complex mechanism of Hbl pore formation, as well as the properties of the pores.
Collapse
|
31
|
Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. SCIENCE ADVANCES 2020; 6:eaaz2094. [PMID: 32195351 PMCID: PMC7065874 DOI: 10.1126/sciadv.aaz2094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.
Collapse
Affiliation(s)
- G. Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Institut für Biologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Xenia Bogdanović
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wei-Chun Kao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Philipp J. K. Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Thomas Jank
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Corresponding author.
| |
Collapse
|
32
|
Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat Microbiol 2019; 4:1760-1769. [PMID: 31160825 PMCID: PMC6754795 DOI: 10.1038/s41564-019-0464-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Clostridium difficile toxin A (TcdA) is a major exotoxin contributing to disruption of the colonic epithelium during C. difficile infection. TcdA contains a carbohydrate-binding combined repetitive oligopeptides (CROPs) domain that mediates its attachment to cell surfaces, but recent data suggest the existence of CROPs-independent receptors. Here, we carried out genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated screens using a truncated TcdA lacking the CROPs, and identified sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR) as host factors contributing to binding and entry of TcdA. TcdA recognizes the sulfation group in sGAGs. Blocking sulfation and glycosaminoglycan synthesis reduces TcdA binding and entry into cells. Binding of TcdA to the colonic epithelium can be reduced by surfen, a small molecule that masks sGAGs, by GM-1111, a sulfated heparan sulfate analogue, and by sulfated cyclodextrin, a sulfated small molecule. Cells lacking LDLR also show reduced sensitivity to TcdA, although binding between LDLR and TcdA are not detected, suggesting that LDLR may facilitate endocytosis of TcdA. Finally, GM-1111 reduces TcdA-induced fluid accumulation and tissue damage in the colon in a mouse model in which TcdA is injected into the caecum. These data demonstrate in vivo and pathological relevance of TcdA-sGAGs interactions, and reveal a potential therapeutic approach of protecting colonic tissues by blocking these interactions.
Collapse
|
33
|
Simeon R, Jiang M, Chamoun-Emanuelli AM, Yu H, Zhang Y, Meng R, Peng Z, Jakana J, Zhang J, Feng H, Chen Z. Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biol 2019; 17:e3000311. [PMID: 31233493 PMCID: PMC6590788 DOI: 10.1371/journal.pbio.3000311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.
Collapse
Affiliation(s)
- Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| |
Collapse
|
34
|
Deletion of a 19-Amino-Acid Region in Clostridioides difficile TcdB2 Results in Spontaneous Autoprocessing and Reduced Cell Binding and Provides a Nontoxic Immunogen for Vaccination. Infect Immun 2019; 87:IAI.00210-19. [PMID: 31138612 DOI: 10.1128/iai.00210-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile toxin B (TcdB) is an intracellular toxin responsible for many of the pathologies of C. difficile infection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2Δ1769-1787, exhibited no detectable cytotoxicity. TcdB2Δ1769-1787 underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2Δ1769-1787 induced a TcdB2-neutralizing antibody response and protected against C. difficile disease in a mouse model. These findings indicate that the 19-amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2Δ1769-1787 is a promising candidate for vaccination.
Collapse
|
35
|
Ost GS, Ng'ang'a PN, Lang AE, Aktories K. Photorhabdus luminescens
Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells. Cell Microbiol 2018; 21:e12978. [DOI: 10.1111/cmi.12978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Gerhard Stefan Ost
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg Germany
| | - Alexander E. Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Centre for Biological Signalling Studies (BIOSS); University of Freiburg; Freiburg Germany
| |
Collapse
|
36
|
The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 2018; 115:9580-9585. [PMID: 30181275 DOI: 10.1073/pnas.1807658115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various bacterial protein toxins, including Clostridium difficile toxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.
Collapse
|
37
|
Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. J Mol Biol 2018; 430:3190-3199. [DOI: 10.1016/j.jmb.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
|
38
|
Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR, Azad AF. A Tangled Web: Origins of Reproductive Parasitism. Genome Biol Evol 2018; 10:2292-2309. [PMID: 30060072 PMCID: PMC6133264 DOI: 10.1093/gbe/evy159] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
While typically a flea parasite and opportunistic human pathogen, the presence of Rickettsia felis (strain LSU-Lb) in the non-blood-feeding, parthenogenetically reproducing booklouse, Liposcelis bostrychophila, provides a system to ascertain factors governing not only host transitions but also obligate reproductive parasitism (RP). Analysis of plasmid pLbAR, unique to R. felis str. LSU-Lb, revealed a toxin–antitoxin module with similar features to prophage-encoded toxin–antitoxin modules utilized by parasitic Wolbachia strains to induce another form of RP, cytoplasmic incompatibility, in their arthropod hosts. Curiously, multiple deubiquitinase and nuclease domains of the large (3,841 aa) pLbAR toxin, as well the entire antitoxin, facilitated the detection of an assortment of related proteins from diverse intracellular bacteria, including other reproductive parasites. Our description of these remarkable components of the intracellular mobilome, including their presence in certain arthropod genomes, lends insight on the evolution of RP, while invigorating research on parasite-mediated biocontrol of arthropod-borne viral and bacterial pathogens.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| | | | | | | | - Kevin R Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine
| |
Collapse
|
39
|
Rampersaud R, Lewis EL, LaRocca TJ, Ratner AJ. Environmental pH modulates inerolysin activity via post-binding blockade. Sci Rep 2018; 8:1542. [PMID: 29367601 PMCID: PMC5784117 DOI: 10.1038/s41598-018-19994-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
The cholesterol dependent cytolysins (CDCs) are a family of pore-forming toxins produced by a wide range of bacteria. Some CDCs are important virulence factors for their cognate organisms, but their activity must be tightly regulated to ensure they operate at appropriate times and within the appropriate subcellular compartments. pH-dependent activity has been described for several CDCs, but the mechanism of such regulation has been studied in depth only for listeriolysin O (LLO), which senses environmental pH through a triad of acidic residues that mediate protein unfolding. Here we present data supporting a distinct mechanism for pH-dependence for inerolysin (INY), the CDC produced by Lactobacillus iners. Inerolysin (INY) has an acidic pH optimum with loss of activity at neutral pH. INY pH-dependence is characterized by reversible loss of pore formation with preservation of membrane binding. Fluorescent membrane probe assays indicated that INY insertion into host cell membranes, but not oligomerization, was defective at neutral pH. These data support the existence of a newly appreciated form of CDC pH-dependence functioning at a late stage of pore formation.
Collapse
Affiliation(s)
- Ryan Rampersaud
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Emma L Lewis
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Timothy J LaRocca
- College of Physicians & Surgeons, Columbia University, New York, NY, USA.,Department of Basic & Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Adam J Ratner
- College of Physicians & Surgeons, Columbia University, New York, NY, USA. .,Department of Pediatrics, New York University School of Medicine, New York, NY, USA. .,Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
43
|
Orrell KE, Zhang Z, Sugiman-Marangos SN, Melnyk RA. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. Crit Rev Biochem Mol Biol 2017; 52:461-473. [DOI: 10.1080/10409238.2017.1325831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathleen E. Orrell
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Zhifen Zhang
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Roman A. Melnyk
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Alvin JW, Lacy DB. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue. J Struct Biol 2017; 198:203-209. [PMID: 28433497 DOI: 10.1016/j.jsb.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 11/28/2022]
Abstract
Clostridium difficile is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis worldwide. The organism produces two homologous toxins, TcdA and TcdB, which enter and disrupt host cell function by glucosylating and thereby inactivating key signalling molecules within the host. As a toxin-mediated disease, there has been a significant interest in identifying small molecule inhibitors of the toxins' glucosyltransferase activities. This study was initiated as part of an effort to identify the mode of inhibition for a small molecule inhibitor of glucosyltransferase activity called apigenin. In the course of trying to get co-crystals with this inhibitor, we determined five different structures of the TcdA and TcdB glucosyltransferase domains and made use of a non-hydrolyzable UDP-glucose substrate. While we were able to visualize apigenin bound in one of our structures, the site was a crystal packing interface and not likely to explain the mode of inhibition. Nevertheless, the structure allowed us to capture an apo-state (one without the sugar nucleotide substrate) of the TcdB glycosyltransferase domain that had not been previously observed. Comparison of this structure with structures obtained in the presence of a non-hydrolyzable UDP-glucose analogue have allowed us to document multiple conformations of a C-terminal loop important for catalysis. We present our analysis of these five new structures with the hope that it will advance inhibitor design efforts for this important class of biological toxins.
Collapse
Affiliation(s)
- Joseph W Alvin
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA
| | - D Borden Lacy
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Ruhe F, Olling A, Abromeit R, Rataj D, Grieschat M, Zeug A, Gerhard R, Alekov A. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB. Front Cell Infect Microbiol 2017; 7:67. [PMID: 28348980 PMCID: PMC5346576 DOI: 10.3389/fcimb.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.
Collapse
Affiliation(s)
- Frederike Ruhe
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Alexandra Olling
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Rasmus Abromeit
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Dennis Rataj
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | | | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Alexi Alekov
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
46
|
Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol 2017; 429:1030-1044. [PMID: 28232034 DOI: 10.1016/j.jmb.2017.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
The exotoxins toxin A (TcdA) and toxin B (TcdB) are produced by the bacterial pathogen Clostridium difficile and are responsible for the pathology associated with C. difficile infection (CDI). The antitoxin antibodies actoxumab and bezlotoxumab bind to and neutralize TcdA and TcdB, respectively. Bezlotoxumab was recently approved by the FDA for reducing the recurrence of CDI. We have previously shown that a single molecule of bezlotoxumab binds to two distinct epitopes within the TcdB combined repetitive oligopeptide (CROP) domain, preventing toxin binding to host cells. In this study, we characterize the binding of actoxumab to TcdA and examine its mechanism of toxin neutralization. Using a combination of approaches including a number of biophysical techniques, we show that there are two distinct actoxumab binding sites within the CROP domain of TcdA centered on identical amino acid sequences at residues 2162-2189 and 2410-2437. Actoxumab binding caused the aggregation of TcdA especially at higher antibody:toxin concentration ratios. Actoxumab prevented the association of TcdA with target cells demonstrating that actoxumab neutralizes toxin activity by inhibiting the first step of the intoxication cascade. This mechanism of neutralization is similar to that observed with bezlotoxumab and TcdB. Comparisons of the putative TcdA epitope sequences across several C. difficile ribotypes and homologous repeat sequences within TcdA suggest a structural basis for observed differences in actoxumab binding and/or neutralization potency. These data provide a mechanistic basis for the protective effects of the antibody in vitro and in vivo, including in various preclinical models of CDI.
Collapse
|
47
|
Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells. Sci Rep 2017; 7:41252. [PMID: 28128281 PMCID: PMC5269596 DOI: 10.1038/srep41252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells.
Collapse
|
48
|
Chandrasekaran R, Kenworthy AK, Lacy DB. Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis. PLoS Pathog 2016; 12:e1006070. [PMID: 27942025 PMCID: PMC5152916 DOI: 10.1371/journal.ppat.1006070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection affects a significant number of hospitalized patients in the United States. Two homologous exotoxins, TcdA and TcdB, are the major virulence factors in C. difficile pathogenesis. The toxins are glucosyltransferases that inactivate Rho family-GTPases to disrupt host cellular function and cause fluid secretion, inflammation, and cell death. Toxicity depends on receptor binding and subsequent endocytosis. TcdB has been shown to enter cells by clathrin-dependent endocytosis, but the mechanism of TcdA uptake is still unclear. Here, we utilize a combination of RNAi-based knockdown, pharmacological inhibition, and cell imaging approaches to investigate the endocytic mechanism(s) that contribute to TcdA uptake and subsequent cytopathic and cytotoxic effects. We show that TcdA uptake and cellular intoxication is dynamin-dependent but does not involve clathrin- or caveolae-mediated endocytosis. Confocal microscopy using fluorescently labeled TcdA shows significant colocalization of the toxin with PACSIN2-positive structures in cells during entry. Disruption of PACSIN2 function by RNAi-based knockdown approaches inhibits TcdA uptake and toxin-induced downstream effects in cells indicating that TcdA entry is PACSIN2-dependent. We conclude that TcdA and TcdB utilize distinct endocytic mechanisms to intoxicate host cells. Clostridium difficile is a bacterial pathogen that causes nearly half a million infections each year in the United States. It infects the human colon and causes diarrhea, colitis and, in some cases, death. C. difficile infection is mediated by the action of two large homologous toxins, TcdA and TcdB. Disruption of host cell function by these toxins requires entry into cells. There are multiple ways for pathogens and virulence factors such as viruses and toxins to enter host cells. The entry mechanism is often directed by a cell surface receptor and can impact the trafficking and virulence properties of the pathogenic factor. Investigating the internalization strategy can provide critical insight into the mechanism of action for specific pathogens and virulence factors. In our current study, we sought to determine the strategy utilized by TcdA to enter host cells. We show that TcdA uptake occurs by a clathrin- and caveolae-independent endocytic mechanism that is mediated by PACSIN2 and dynamin. We also show that TcdA and TcdB can utilize different routes of entry, which may have implications regarding their cytotoxic mechanisms. In summary, our results provide new insights into the mechanism of cellular intoxication by TcdA and the role of PACSIN2 in endocytosis.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lambert GS, Baldwin MR. Evidence for dual receptor-binding sites in Clostridium difficile toxin A. FEBS Lett 2016; 590:4550-4563. [PMID: 27861794 DOI: 10.1002/1873-3468.12487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
TcdA (308 kDa) and TcdB (270 kDa) disrupt the integrity of the intestinal epithelial barrier and provide an environment favorable for Clostridium difficile colonization. Recent evidence suggests that entry of TcdA into cells is mediated by at least two domains. Here, we report the characterization of a second receptor-binding domain (RBD2) for TcdA. While both the isolated combined repetitive oligopeptides (CROPs) and RBD2 fragments are rapidly internalized into cells under physiologic conditions, only the CROPs domain appreciably accumulates at the cell surface. Once internalized, CROPs and RBD2 are trafficked to late endosomal compartments. An internal deletion of RBD2 from TcdA holotoxin ablated toxicity in HT29 cells. These data are consistent with the recently proposed dual receptor model of cellular entry.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
50
|
Recombinant Mucin-Type Fusion Proteins with a Galα1,3Gal Substitution as Clostridium difficile Toxin A Inhibitors. Infect Immun 2016; 84:2842-52. [PMID: 27456831 DOI: 10.1128/iai.00341-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 02/04/2023] Open
Abstract
The capability of a recombinant mucin-like fusion protein, P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG2b), carrying Galα1,3Galβ1,4GlcNAc determinants to bind and inhibit Clostridium difficile toxin A (TcdA) was investigated. The fusion protein, produced by a glyco-engineered stable CHO-K1 cell line and designated C-PGC2, was purified by affinity and gel filtration chromatography from large-scale cultures. Liquid chromatography-mass spectrometry was used to characterize O-glycans released by reductive β-elimination, and new diagnostic ions to distinguish Galα1,3Gal- from Galα1,4Gal-terminated O-glycans were identified. The C-PGC2 cell line, which was 20-fold more sensitive to TcdA than the wild-type CHO-K1, is proposed as a novel cell-based model for TcdA cytotoxicity and neutralization assays. The C-PGC2-produced fusion protein could competitively inhibit TcdA binding to rabbit erythrocytes, making it a high-efficiency inhibitor of the hemagglutination property of TcdA. The fusion protein also exhibited a moderate capability for neutralization of TcdA cytotoxicity in both C-PGC2 and CHO-K1 cells, the former with and the latter without cell surface Galα1,3Galβ1,4GlcNAc sequences. Future studies in animal models of C. difficile infection will reveal its TcdA-inhibitory effect and therapeutic potential in C. difficile-associated diseases.
Collapse
|