1
|
Lee B, Park Y, Lee Y, Kwon S, Shim J. Triptolide, a Cancer Cell Proliferation Inhibitor, Causes Zebrafish Muscle Defects by Regulating Notch and STAT3 Signaling Pathways. Int J Mol Sci 2024; 25:4675. [PMID: 38731894 PMCID: PMC11083231 DOI: 10.3390/ijms25094675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yongjin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Younggwang Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Seyoung Kwon
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Jaekyung Shim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| |
Collapse
|
2
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
3
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li J, Liu H, Xing J, Zhang Y, Li N. Triptolide enhances carboplatin-induced apoptosis by inhibiting nucleotide excision repair (NER) activity in melanoma. Front Pharmacol 2023; 14:1157433. [PMID: 37324464 PMCID: PMC10267402 DOI: 10.3389/fphar.2023.1157433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.
Collapse
Affiliation(s)
- Geng Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongmin Guo
- People’s Hospital of Changshou Chongqing, Chongqing, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Xie Y, Ding J, Gao J, Zhang J, Cen S, Zhou J. Triptolide reduces PD-L1 through the EGFR and IFN-γ/IRF1 dual signaling pathways. Int Immunopharmacol 2023; 118:109993. [PMID: 36931170 DOI: 10.1016/j.intimp.2023.109993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023]
Abstract
As the principal ligand of programmed death 1 (PD-1), PD-L1 can induce the exhaustion of effector T cells and the escape of cancer cells through interacting with PD-1 in many solid malignancies. Therefore, targeting the PD-1/PD-L1 axis has become an attractive strategy in cancer immunotherapy. However, at present, no small-molecule agents targeting PD1/PD-L1 pathways have been successfully used in clinical applications. Here, we first found that the natural product Triptolide could significantly reduce the PD-L1 expression on the surface of NSCLC cells. This down-regulation is related to the activity of EGFR signaling pathway. Moreover, the reduction of PD-L1 caused by Triptolide could be substantially rescued by IFN-γ. Furthermore, our findings suggest that Triptolide significantly inhibits the activity of the IFN-γ-JAK-STAT-IRF1 signaling axis, as evidenced by the noticeable reduction in both basal and phosphorylated levels of STAT3. Thus, in NSCLC cells, Triptolide reduces PD-L1 expression both through the EGFR and IFN-γ/JAK1/JAK2/STAT1/STAT3/IRF1 signaling pathways. The results provide new insights into the application of Triptolide in the immune checkpoints treatment of NSCLCs.
Collapse
Affiliation(s)
- Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Jieke Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
5
|
Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:104-123. [PMID: 35487123 DOI: 10.1016/j.plaphy.2022.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as 'hidden hunger.' Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Ya-Ping Lin
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan
| | - Shinya Oba
- Faculty of Applied Biological Science, Gifu University, Gifu, 501-1193, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Ibaraki, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
6
|
Nuzzo G, Senese G, Gallo C, Albiani F, Romano L, d’Ippolito G, Manzo E, Fontana A. Antitumor Potential of Immunomodulatory Natural Products. Mar Drugs 2022; 20:md20060386. [PMID: 35736189 PMCID: PMC9229642 DOI: 10.3390/md20060386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death globally. Anticancer drugs aim to block tumor growth by killing cancerous cells in order to prevent tumor progression and metastasis. Efficient anticancer drugs should also minimize general toxicity towards organs and healthy cells. Tumor growth can also be successfully restrained by targeting and modulating immune response. Cancer immunotherapy is assuming a growing relevance in the fight against cancer and has recently aroused much interest for its wider safety and the capability to complement conventional chemotherapeutic approaches. Natural products are a traditional source of molecules with relevant potential in the pharmacological field. The huge structural diversity of metabolites with low molecular weight (small molecules) from terrestrial and marine organisms has provided lead compounds for the discovery of many modern anticancer drugs. Many natural products combine chemo-protective and immunomodulant activity, thus offering the potential to be used alone or in association with conventional cancer therapy. In this review, we report the natural products known to possess antitumor properties by interaction with immune system, as well as discuss the possible immunomodulatory mechanisms of these molecules.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Giuseppina Senese
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Lucia Romano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Department of Biology, University of Naples Federico II, Via Cinthia–Bld. 7, 80126 Napoli, Italy
| |
Collapse
|
7
|
Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. J Nanobiotechnology 2022; 20:194. [PMID: 35443712 PMCID: PMC9020428 DOI: 10.1186/s12951-022-01389-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
As a natural product with various biological activities, triptolide (TP) has been reported in anti-inflammatory, anti-tumor and anti-autoimmune studies. However, the narrow therapeutic window, poor water solubility, and fast metabolism limit its wide clinical application. To reduce its adverse effects and enhance its efficacy, research and design of targeted drug delivery systems (TDDS) based on nanomaterials is one of the most viable strategies at present. This review summarizes the reports and studies of TDDS combined with TP in recent years, including passive and active targeting of drug delivery systems, and specific delivery system strategies such as polymeric micelles, solid lipid nanoparticles, liposomes, and stimulus-responsive polymer nanoparticles. The reviewed literature presented herein indicates that TDDS is a multifunctional and efficient method for the delivery of TP. In addition, the advantages and disadvantages of TDDS are sorted out, aiming to provide reference for the combination of traditional Chinese medicine and advanced nano drug delivery systems (NDDS) in the future.
Collapse
Affiliation(s)
- Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jingyue Dai
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Mingjian Ling
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China.
| |
Collapse
|
8
|
Triptolide Suppresses NF-κB-Mediated Inflammatory Responses and Activates Expression of Nrf2-Mediated Antioxidant Genes to Alleviate Caerulein-Induced Acute Pancreatitis. Int J Mol Sci 2022; 23:ijms23031252. [PMID: 35163177 PMCID: PMC8835869 DOI: 10.3390/ijms23031252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.
Collapse
|
9
|
He H, Takahashi A, Mukai T, Hori A, Narita M, Tojo A, Yang T, Nagamura-Inoue T. The Immunomodulatory Effect of Triptolide on Mesenchymal Stromal Cells. Front Immunol 2021; 12:686356. [PMID: 34484183 PMCID: PMC8415460 DOI: 10.3389/fimmu.2021.686356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are known to have immunosuppressive ability and have been used in clinical treatment of acute graft-versus-host disease, one of severe complications of the hematopoietic stem cell transplantation. However, MSCs are activated to suppress the immune system only after encountering an inflammatory stimulation. Thus, it will be ideal if MSCs are primed to be activated and ready to suppress the immune reaction before being administered. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb-Tripterygium wilfordii Hook.f. It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aimed to use TPL to prime umbilical cord-derived MSCs (TPL-primed UC-MSCs) to enter a stronger immunosuppressive status. UC-MSCs were primed with TPL, which was washed out thoroughly, and the TPL-primed UC-MSCs were resuspended in fresh medium. Although TPL inhibited the proliferation of UC-MSCs, 0.01 μM TPL for 24 h was tolerable. The surface markers of TPL-primed UC-MSCs were identical to those of non-primed UC-MSCs. TPL-primed UC-MSCs exhibited stronger anti-proliferative effect for activated CD4+ and CD8+ T cells in the allogeneic mixed lymphocyte reaction assay than the non-primed UC-MSCs. TPL-primed UC-MSCs promoted the expression of IDO-1 in the presence of IFN-γ, but TPL alone was not sufficient. Furthermore, TPL-primed UC-MSCs showed increased expression of PD-L1. Conclusively, upregulation of IDO-1 in the presence of IFN-γ and induction of PD-L1 enhances the immunosuppressive potency of TPL-primed UC-MSCs on the proliferation of activated T cells. Thus, TPL- primed MSCs may provide a novel immunosuppressive cell therapy.
Collapse
Affiliation(s)
- Haiping He
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Department of Hematology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Atsuko Takahashi
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Takeo Mukai
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Akiko Hori
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Miwako Narita
- Laboratory of Hematology and Oncology, School of Health Science, Niigata University Faculty of Medicine, Niigata, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Center for Advanced Medical Research, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| |
Collapse
|
10
|
Liaw K, Sharma R, Sharma A, Salazar S, Appiani La Rosa S, Kannan RM. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J Control Release 2021; 329:434-444. [PMID: 33290796 PMCID: PMC7904646 DOI: 10.1016/j.jconrel.2020.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Novel delivery strategies are necessary to effectively address glioblastoma without systemic toxicities. Triptolide is a therapy derived from the thunder god vine that has shown potent anti-proliferative and immunosuppressive properties but exhibits significant adverse systemic effects. Dendrimer-based nanomedicines have shown great potential for clinical translation of systemic therapies targeting neuroinflammation and brain tumors. Here we present a novel dendrimer-triptolide conjugate that specifically targets tumor-associated macrophages (TAMs) in glioblastoma from systemic administration and exhibits triggered release under intracellular and intratumor conditions. This targeted delivery improves phenotype switching of TAMs from pro- towards anti-tumor expression in vitro. In an orthotopic model of glioblastoma, dendrimer-triptolide achieved significantly improved amelioration of tumor burden compared to free triptolide. Notably, the triggered release mechanism of dendrimer-mediated triptolide delivery significantly reduced triptolide-associated hepatic and cardiac toxicities. These results demonstrate that dendrimers are a promising targeted delivery platform to achieve effective glioblastoma treatment by improving efficacy while reducing systemic toxicities.
Collapse
Affiliation(s)
- Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sebastian Salazar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Santiago Appiani La Rosa
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Wang Y, Wang B, Yang X. The Study of Cellular Mechanism of Triptolide in the Treatment of Cancer, Bone Loss and Cardiovascular Disease and Triptolide's Toxicity. Curr Stem Cell Res Ther 2020; 15:18-23. [PMID: 30834841 DOI: 10.2174/1574888x14666190301155810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Triptolide (TPL), the active component of Tripterygium wilfordii Hook F (Twhf) has been used to treat cancer and bone loss conditions for over two hundred years in traditional Chinese medicine (TCM). In this paper, we reviewed the specific molecular mechanisms in the treatment of cancer, bone loss and cardiovascular disease. In addition, we analyze the toxicity of TPL and collect some optimized derivatives extracted from TPL. Although positive results were obtained in most cell culture and animal studies, further studies are needed to substantiate the beneficial effects of TPL.
Collapse
Affiliation(s)
- Youhan Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Shaanxi University of Traditional Chinese Medicine, Xian Yang, China
| | - Biao Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, Wang Y, Bianco G, Yamashita Y, Crowley VM, Schafroth MA, Yokoyama M, Konrad DB, Lum KM, Simon GM, Kemper EK, Lazear MR, Yin S, Blewett MM, Dix MM, Nguyen N, Shokhirev MN, Chin EN, Lairson LL, Melillo B, Schreiber SL, Forli S, Teijaro JR, Cravatt BF. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 2020; 182:1009-1026.e29. [PMID: 32730809 PMCID: PMC7775622 DOI: 10.1016/j.cell.2020.07.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.
Collapse
Affiliation(s)
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Yamashita
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima 771-0192, Japan
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Yokoyama
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth M Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Esther K Kemper
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael R Lazear
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sifei Yin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nhan Nguyen
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Cui J, Li X, Wang S, Su Y, Chen X, Cao L, Zhi X, Qiu Z, Wang Y, Jiang H, Huang B, Ji F, Su J. Triptolide prevents bone loss via suppressing osteoclastogenesis through inhibiting PI3K-AKT-NFATc1 pathway. J Cell Mol Med 2020; 24:6149-6161. [PMID: 32347017 PMCID: PMC7294126 DOI: 10.1111/jcmm.15229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.
Collapse
Affiliation(s)
- Jin Cui
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Xiaoqun Li
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | - Yiming Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zhi
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zili Qiu
- Jinling High School, Nanjing, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Jiang
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Fang Ji
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.,China-South Korea Bioengineering Center, Shanghai, China
| |
Collapse
|
14
|
Wu Q, Bao G, Pan Y, Qian X, Gao F. Discovery of potential targets of Triptolide through inverse docking in ovarian cancer cells. PeerJ 2020; 8:e8620. [PMID: 32219016 PMCID: PMC7085293 DOI: 10.7717/peerj.8620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TPL) is proposed as an effective anticancer agent known for its anti-proliferation of a variety of cancer cells including ovarian cancer cells. Although some studies have been conducted, the mechanism by which TPL acts on ovarian cancer remains to be clearly described. Herein, systematic work based on bioinformatics was carried out to discover the potential targets of TPL in SKOV-3 cells. TPL induces the early apoptosis of SKOV-3 cells in a dose- and time-dependent manner with an IC50 = 40 ± 0.89 nM when cells are incubated for 48 h. Moreover, 20 nM TPL significantly promotes early apoptosis at a rate of 40.73%. Using a self-designed inverse molecular docking protocol, we fish the top 19 probable targets of TPL from the target library, which was built on 2,250 proteins extracted from the Protein Data Bank. The 2D-DIGE assay reveals that the expression of eight genes is affected by TPL. The results of western blotting and qRT-PCR assay suggest that 40 nM of TPL up-regulates the level of Annexin A5 (6.34 ± 0.07 fold) and ATP syn thase (4.08 ± 0.08 fold) and down-regulates the level of β-Tubulin (0.11 ± 0.12 fold) and HSP90 (0.21 ± 0.09 fold). More details of TPL affecting on Annexin A5 signaling pathway will be discovered in the future. Our results define some potential targets of TPL, with the hope that this agent could be used as therapy for the preclinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qinhang Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Bao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqi Qian
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Furong Gao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019; 10:E47. [PMID: 31892257 PMCID: PMC7022400 DOI: 10.3390/biom10010047] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022] Open
Abstract
The rising burden of cancer worldwide calls for an alternative treatment solution. Herbal medicine provides a very feasible alternative to western medicine against cancer. This article reviews the selected plant species with active phytochemicals, the animal models used for these studies, and their regulatory aspects. This study is based on a meticulous literature review conducted through the search of relevant keywords in databases, Web of Science, Scopus, PubMed, and Google Scholar. Twenty plants were selected based on defined selection criteria for their potent anticancer compounds. The detailed analysis of the research studies revealed that plants play an indispensable role in fighting different cancers such as breast, stomach, oral, colon, lung, hepatic, cervical, and blood cancer cell lines. The in vitro studies showed cancer cell inhibition through DNA damage and activation of apoptosis-inducing enzymes by the secondary metabolites in the plant extracts. Studies that reported in vivo activities of these plants showed remarkable results in the inhibition of cancer in animal models. Further studies should be performed on exploring more plants, their active compounds, and the mechanism of anticancer actions for use as standard herbal medicine.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Ajmal Khan
- Department of Zoology, University of Buner, Sowari 17290, Pakistan;
| | - Parveen Nisar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Mansehra 21120, Pakistan;
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
- National Council for Tibb, Islamabad, Pakistan
| |
Collapse
|
16
|
Downregulation of miR-144 by triptolide enhanced p85α-PTEN complex formation causing S phase arrest of human nasopharyngeal carcinoma cells. Eur J Pharmacol 2019; 855:137-148. [PMID: 31059711 DOI: 10.1016/j.ejphar.2019.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Selective pharmacologic targeting of cell cycle regulators is a potent anti-cancer therapeutic strategy. Here, we show that caspase-3-mediated p21 cleavage involves p53 independent of triptolide (TPL)-induced S phase arrest in human type 1 nasopharyngeal carcinoma (NPC) cells. Coimmunoprecipitation studies demonstrated that TPL causes S phase cell cycle arrest by suppressing the formation of cyclin A-phosphor (p)-cyclin-dependent kinas 2 (CDK2) (Thr 39) complexes. Ectopic expression of constitutively active protein kinase B1 (Akt1) blocks the induction of S phase arrest and the suppression of cyclin A expression and CDK2 Thr 39 phosphorylation by TPL. Expression of the phosphomimetic mutant CDK2 (T39E) rescues the cells from TPL-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TPL-triggered S phase arrest. Treatment with TPL induces an increase in the formation of complexes between unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and p85α in the plasma membrane. Decreased microRNA (miR)-144 expression and increased PTEN expression after TPL treatment were demonstrated, and TPL-enhanced p85α-PTEN complexes and inhibitory effects on Akt (Ser 473) phosphorylation and S phase arrest were suppressed by ectopic PTEN short hairpin RNA or miR-144 expression. Knockdown of endogenous miR-144 by miR-144 Trap upregulated PTEN expression and accordingly enhanced p85α-PTEN complex formation and S phase arrest. Collectively, the effect of TPL on S phase arrest in human NPC cells is likely to enhance the p85α-PTEN interaction in the plasma membrane by suppressing miR-144 expression, resulting in the attenuation of cyclin A-p-CDK2 (Thr 39) complex formation via Akt inactivation.
Collapse
|
17
|
NFκB- and MAP-Kinase Signaling Contribute to the Activation of Murine Myeloid Dendritic Cells by a Flagellin A:Allergen Fusion Protein. Cells 2019; 8:cells8040355. [PMID: 30991709 PMCID: PMC6523117 DOI: 10.3390/cells8040355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Fusion proteins incorporating the TLR5-ligand flagellin are currently undergoing clinical trials as vaccine candidates for many diseases. We recently reported a flagellin:allergen fusion protein containing the TLR5-ligand flagellin A (FlaA) from Listeria monocytogenes and the major birch pollen allergen Bet v 1 (rFlaA:Betv1) to prevent allergic sensitization in an experimental mouse model. This study analyzes the signaling pathways contributing to rFlaA:Betv1-mediated pro- and anti-inflammatory cytokine secretion and cell metabolism in myeloid dendritic cells (mDCs) in vitro. The influence of mammalian target of rapamycin (mTOR)-, NFκB-, and MAP kinase (MAPK)-signaling on cytokine secretion and metabolic activity of bone marrow (BM)-derived mDCs stimulated with rFlaA:Betv1 were investigated by pre-treatment with either mTOR- (rapamycin), NFκB- (dexamethason, BMS-345541, TPCA-1, triptolide, or BAY-11) or MAPK- (SP600125, U0126, or SB202190) inhibitors, respectively. rFlaA:Betv1-mediated IL-10 secretion as well as activation of mDC metabolism, rather than pro-inflammatory cytokine secretion, were inhibited by rapamycin. Inhibition of NFκB-signaling suppressed rFlaA:Betv1-induced IL-12, while inhibition of MAPK-signaling dose-dependently suppressed rFlaA:Betv1-induced IL-10 as well as pro-inflammatory IL-6 and TNF-α production. Notably, with the exception of a partial JNK-dependency, rFlaA:Betv1-mediated effects on mDC metabolism were mostly NFκB- and MAPK-independent. Therefore, MAPK-mediated activation of both NFκB- and mTOR-signaling likely is a key pathway for the production of pro- and anti-inflammatory cytokines by flagellin fusion protein vaccines.
Collapse
|
18
|
Triptolide inhibits Epstein-Barr nuclear antigen 1 expression by increasing sensitivity of mitochondria apoptosis of nasopharyngeal carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:192. [PMID: 30111354 PMCID: PMC6094928 DOI: 10.1186/s13046-018-0865-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is widely found in nasopharyngeal carcinoma (NPC) tissue and associated with poor prognosis of patients. EBV nuclear antigen 1 (EBNA1) is expressed in all NPC tumors and plays multiple biological roles in both virus and host cells. Triptolide is a natural product extracted from Tripterygium and shows anti-cancer activities. The goal of this work was to illustrate the anti-cancer effect of triptolide and elucidate a novel anti-apoptotic mechanism of EBNA1 in NPC cells encountered with triptolide. METHODS In the present study, a CCK-8 assay was used to analyze the proliferation of NPC cells treated with triptolide in a dose- and time-dependent ways. Effects of triptolide on NPC cell cycle and apoptosis were investigated by flow cytometric analysis. EBNA1 expression in mRNA and protein levels was determined by quantitative real-time PCR and Western blot, respectively. RESULTS Our results showed that triptolide effectively inhibited proliferation of NPC cells. Triptolide arrested NPC cell cycles in S phase and induced apoptosis through a caspase-9-dependent apoptosis pathway. Low-dose of triptolide reduced the half-life of EBNA1 and significantly decreased EBNA1 expression by promoting the process of proteasome-ubiquitin pathway. Over-expression of EBNA1, which was independent from EBV genome, effectively attenuated the apoptosis induced by triptolide. In addition, triptolide significantly inhibited proliferations of tumors induced by EBV-positive cells in vivo. Furthermore, EBNA1 were expressed in all NPC biopsies of Chinese patients. CONCLUSIONS In summary, our study provides the evidence that triptolide induces EBNA1 degradation and stimulates NPC apoptosis through mitochondria apoptotic pathway. In addition, EBNA1 assists NPC cells to resist triptolide-induced apoptosis through inhibiting caspase-9-dependent apoptotic pathway.
Collapse
|
19
|
Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother 2018; 104:771-780. [DOI: 10.1016/j.biopha.2018.05.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
|
20
|
Huang Y, Wu S, Zhang Y, Wang L, Guo Y. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial-mesenchymal transition via regulating the PI3K/AKT/mTOR pathway. Onco Targets Ther 2018; 11:769-779. [PMID: 29483777 PMCID: PMC5815473 DOI: 10.2147/ott.s149788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION T-cell lymphoblastic lymphoma (T-LBL) is a widely disseminated disease worldwide. Triptolide (TPL) is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. MATERIALS AND METHODS Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. RESULTS TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells) in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. CONCLUSION In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Sun Wu
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yuan Zhang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Lihua Wang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yan Guo
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
21
|
Sakamoto K, Okuwaki T, Ushikubo H, Mori A, Nakahara T, Ishii K. Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. J Pharmacol Sci 2017; 135:S1347-8613(17)30162-7. [PMID: 29110956 DOI: 10.1016/j.jphs.2017.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023] Open
Abstract
We reported that high-mobility group Box-1 (HMGB1) was involved in excitoneurotoxicity in the retina. HMGB1 is known to activate nuclear factor kappa B (NF-κB). However, the role of NF-κB in excitotoxicity is still controversial. Here, we demonstrated that NF-κB activation induced by NMDA led to the retinal neurotoxicity. Male Sprague-Dawley rats were used, and NMDA (200 nmol/eye) and bovine HMGB1 (15 μg/eye) were intravitreally injected. Triptolide (500 pmol/eye), BAY 11-7082 (500 pmol/eye), and IMD-0354 (7.5 nmol/eye), NF-κB inhibitors, were co-injected with NMDA or HMGB1. Retinal sections were obtained seven days after intravitreal injection. Cell loss in the ganglion cell layer was observed in the HMGB1- and the NMDA-treated retina. All of the NF-κB inhibitors used in this study reduced the damage. BAY 11-7082 reduced the expression of phosphorylated NF-κB 12 h after NMDA injection, upregulation of GFAP immunoreactivity induced by NMDA 12 and 48 h after NMDA injection, and the number of TUNEL-positive cells 48 h after NMDA injection. The results suggest that NF-κB activation is one of the mechanisms of the retinal neuronal death that occurs 48 h after NMDA injection or later. Prevention of NF-kB activation is a candidate for the treatment of retinal neurodegeneration associated with excitotoxicity.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan.
| | - Tatsuya Okuwaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Hiroko Ushikubo
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo 108-8641, Japan
| |
Collapse
|
22
|
Wang G, Li N, Lv X, Ahmed N, Li X, Liu H, Ma J, Zhang Y. Triptolide Suppresses Alkali Burn-Induced Corneal Angiogenesis Along with a Downregulation of VEGFA and VEGFC Expression. Anat Rec (Hoboken) 2017; 300:1348-1355. [DOI: 10.1002/ar.23583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Geng Wang
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Na Li
- Department of Histology and Embryology; Harbin Medical University; Harbin 150081 China
| | - Xiaohong Lv
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Naila Ahmed
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Xinlei Li
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Huidong Liu
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Jing Ma
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| | - Yafang Zhang
- Department of Anatomy; Harbin Medical University; Harbin 150081 China
| |
Collapse
|
23
|
Jiang C, Fang X, Zhang H, Wang X, Li M, Jiang W, Tian F, Zhu L, Bian Z. AMD3100 combined with triptolide inhibit proliferation, invasion and metastasis and induce apoptosis of human U2OS osteosarcoma cells. Biomed Pharmacother 2017; 86:677-685. [DOI: 10.1016/j.biopha.2016.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023] Open
|
24
|
Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism. Int J Mol Sci 2016; 17:ijms17122139. [PMID: 27999372 PMCID: PMC5187939 DOI: 10.3390/ijms17122139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated with triptolide, ionizing radiation, or triptolide plus ionizing radiation in vitro. Tumor potency was examined in an in vivo CNE cell xenograft mouse model, which was treated as above. Our results demonstrated that triptolide caused a significant reduction in cell growth and colony number, and induced a marked apoptosis that was further enhanced with increasing doses of ionizing radiation. Combination treatment synergistically reduced tumor weight and volume without obvious toxicity. Western blot analysis in vitro and in vivo showed that triptolide induced apoptotic protein Bax expression and inhibited phosph-NF-κB p65, Bcl-2 and VEGF proteins without affecting other NF-κB related protein expression. In conclusion, our findings revealed that triptolide plus ionizing radiation had synergistic anti-tumor and anti-angiogenesis effects in NPC via down-regulating NF-κB p65 phosphorylation. The combination therapy may provide novel mechanism insights into inhibit NPC.
Collapse
|
25
|
Han B, Ge CQ, Zhang HG, Zhou CG, Ji GH, Yang Z, Zhang L. Effects of tripterygium glycosides on restenosis following endovascular treatment. Mol Med Rep 2016; 13:4959-68. [PMID: 27108914 PMCID: PMC4878561 DOI: 10.3892/mmr.2016.5149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
The mechanism and associated factors of restenosis following intravascular stent implantation remain to be elucidated. The present two‑part experimental and clinical study aimed to investigate the effects of tripterygium glycosides on in‑stent restenosis subsequent to intra‑arterial therapy. Following endovascular stent implantation in rabbit iliac arteries, post‑stent outcomes were evaluated in cyclosporine groups, low‑dose and high‑dose tripterygium glycosides groups and controls. Post‑operative angiography indicated that vessel diameters were similar between groups; however, at 28 days after receiving the therapeutic agents, vessels of the cyclosporine and tripterygium glycosides groups were significantly larger than those of the controls. Furthermore, three groups of patients had comparable baseline levels of interleukin (IL)‑10, IL‑18 and C‑reactive protein, and intima‑media thickness. However, 1 month after stent implantation, levels of IL‑10 and IL‑18 were markedly reduced in the high‑ and low‑dose tripterygium glycosides groups compared with controls. At 6 months after surgery, the stent patency rate in patients with bare stents was significantly lower than in patients receiving tripterygium glycosides (P≤0.009). In addition, the ankle‑brachial index was also higher than in those without tripterygium glycosides (P<0.001). Results of the experimental and clinical studies suggest that tripterygium glycosides may inhibit and possibly aid in the prevention of in‑stent restenosis formation following endovascular treatment of lower‑extremity artery disease.
Collapse
Affiliation(s)
- Bing Han
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Chang-Qing Ge
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Hong-Guang Zhang
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Chen-Guang Zhou
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Guo-Hui Ji
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Zheng Yang
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| | - Liang Zhang
- Department of Vascular Surgery, The Second Hospital of Baoding, Baoding, Hebei 071051, P.R. China
| |
Collapse
|
26
|
Gengatharan A, Dykes GA, Choo WS. Betalains: Natural plant pigments with potential application in functional foods. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.052] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wang G, Wang X, Xu X. Triptolide potentiates lung cancer cells to cisplatin-induced apoptosis by selectively inhibiting the NER activity. Biomark Res 2015; 3:17. [PMID: 26161259 PMCID: PMC4496860 DOI: 10.1186/s40364-015-0043-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2015] [Indexed: 11/24/2022] Open
Abstract
Background Cisplatin and many other platinum-based compounds are important anticancer drugs that are used in treating many cancer types. The development of cisplatin-resistant cancer cells, however, quickly diminishes the effectiveness of these drugs and causes treatment failure. New strategies that reverse cancer cell drug resistance phenotype or sensitize cancer cells to these drugs, therefore, need to be explored in order to improve platinum drug-based cancer treatment. Triptolide is a bioactive ingredient isolated from Tripterygium wilfordii, a Chinese herbal medicine. Triptolide binds to the TFIIH basal transcription factor and is required for both transcription and nucleotide excision repair (NER), a DNA repair pathway involved in repairing DNA damage generated by the platinum-based anticancer drugs. Methods Caspase-3 activation and cell growth inhibition assays were used to determine the effect of triptolide on cisplatin-induced apoptosis and cell growth in lung cancer cells. Real time PCR, immunoblotting, and expression of reef coral red protein were used to determine a mechanism through which the presence of triptolide increased cisplatin-induced apoptosis of the lung cancer cells. Results Our caspase-3 activation studies demonstrated that the presence of low-levels of triptolide greatly increased the cisplatin-induced apoptosis of HTB182, A549, CRL5810, and CRL5922 lung cancer cells. The results of our cell growth inhibition studies revealed that the presence of low-levels triptolide itself had little effect on cell growth but greatly enhanced cisplatin-induced cell growth inhibition in both A549 and HTB182 cells. The results of our reef coral-red protein reporter expression studies indicated that the presence of low-levels triptolide did not affect expression of the reef coral-red protein from pDsRed2-C1 plasmid but greatly inhibited expression of the reef coral-red protein from cisplatin-damaged pDsRed2-C1 plasmid DNA in A549 cells. In addition, the results of our protein phosphorylation studies indicated that the presence of low-levels triptolide caused a decrease for cisplatin-induced CHK1 phosphorylation at Ser317/345 but an increase for cisplatin-induced ATM phosphorylation at Ser1981 in both HTB182 and A549 cells. Conclusion The results of our studies suggest that the presence of low-levels of triptolide potentiates lung cancer cells to cisplatin treatment by selectively inhibiting NER activity, resulting in an increase in apoptosis of the lung cancer cells.
Collapse
Affiliation(s)
- Gan Wang
- Institute of Environmental Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201 USA
| | - Xing Wang
- Array Bridge Inc., St. Louis, MO USA
| | - Xiaoxin Xu
- Institute of Environmental Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201 USA
| |
Collapse
|
28
|
Ding X, Zhou X, Jiang B, Zhao Q, Zhou G. Triptolide suppresses proliferation, hypoxia-inducible factor-1α and c-Myc expression in pancreatic cancer cells. Mol Med Rep 2015; 12:4508-4513. [PMID: 26094625 DOI: 10.3892/mmr.2015.3960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
Abstract
Triptolide (TL) is known to suppress the proliferation of a number of pancreatic cancer cell lines in vitro. Marked antitumor effects were also observed in a xenograft model of pancreatic cancer. Hypoxia‑inducible factor‑1α (HIF‑1α) is highly expressed in pancreatic cancer cells lines. The present study therefore tested the hypothesis that suppression of HIF‑1α is associated with the antitumor activity of TL. Quantitative polymerase chain reaction and western blot analysis were used to determine the level of gene expression. A xenograft tumor model of pancreatic cancer was established in athymic nude mice and the tumor size was measured to evaluate the outcome of TL treatment. Immunohistochemistry was used to detect the expression of HIF‑1α and vascular endothelial growth factor (VEGF), and to assess microvessel density. Microarray was used to investigate gene expression in pancreatic cancer cells following TL treatment. The expression of HIF‑1α was shown to be reduced in pancreatic cell lines following treatment with TL, and this effect occurred in a dose‑dependent manner. In a xenograft model of pancreatic cancer, reduced levels of HIF‑1α were also observed in mice that were treated with TL. Furthermore, the expression of VEGF, which is a direct target of HIF‑1α, was also suppressed, and the microvessel density of tumor tissues was consequently reduced. A microarray analysis of gene expression was performed in order to investigate the potential mechanisms underlying the antitumor activity of TL. The results showed that 11 genes, including c‑Myc, SOX9 and Ets2, were downregulated at an early stage following treatment with TL. A recent study indicated that overexpression of c‑Myc in colon cancer cells promotes increased expression of HIF‑1α and VEGF. Therefore, TL may suppress HIF‑1α through a c‑Myc‑dependent mechanism, which is involved in antitumor effects in mouse models of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoling Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Bo Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qun Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
29
|
Li X, Mao Y, Li K, Shi T, Yao H, Yao J, Wang S. Pharmacokinetics and tissue distribution study in mice of triptolide-loaded lipid emulsion and accumulation effect on pancreas. Drug Deliv 2015; 23:1344-54. [DOI: 10.3109/10717544.2015.1028603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xue Li
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Yuling Mao
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Kai Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Tianyu Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Huimin Yao
- Department of Pharmaceutical and Food Science, Tonghua Normal University, Tonghua, China, and
| | - Jianhua Yao
- Department of Foreign Language, School of Social Sciences and Literary, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| |
Collapse
|
30
|
Wan Z, Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology 2014; 11:88. [PMID: 25323821 PMCID: PMC4205289 DOI: 10.1186/s12977-014-0088-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Plants remain an important source of new drugs, new leads and new chemical entities. Triptolide is a diterpenoid epoxide isolated from Tripterygium wilfordii Hook F that possesses a broad range of bioactivities, including anti-inflammatory, immunosuppressive and anti-tumor properties. The antiviral activity of triptolide against human immunodeficiency virus type 1 (HIV-1) has not been reported. Results In this study, nanomolar concentrations of triptolide were shown to potently inhibit HIV-1 replication in vitro. To identify the step(s) of the HIV-1 replication cycle affected by triptolide, time-of-addition studies, PCR analysis and direct transfection of viral genomic DNA were performed. The results of these experiments indicated that triptolide acts at the stage of viral gene transcription. In addition, a luciferase-based reporter assay that allows quantitative analysis of long terminal repeat (LTR)-driven transcription showed that Tat-induced LTR activation was impaired in the presence of triptolide. Moreover, Western blot analysis of exogenous gene expression (driven by the human elongation factor 1 α subunit promoter) in transiently transfected cells revealed that triptolide specifically reduces the steady-state level of Tat protein, without suppressing global gene expression. Further studies showed that triptolide accelerates Tat protein degradation, which can be rescued by administration of the proteasome inhibitor MG132. Mutation analysis revealed that N-terminal domains of Tat protein and nuclear localization are required for triptolide to reduce steady-state level of Tat. Conclusion This study suggests for the first time that triptolide exerts its anti-HIV-1 activity by specifically prompting the degradation of the virally encoded Tat protein, which is a novel mechanism of action for an anti-HIV-1 compound. This compound may serve as a starting point for developing a novel HIV-1 therapeutic approach or as a basic research tool for interrogating events during viral replication.
Collapse
Affiliation(s)
- Zhitao Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China. .,Current address: China Novartis Institutes for BioMedical Research, Shanghai, People's Republic of China.
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
31
|
Wang BY, Cao J, Chen JW, Liu QY. Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2. Med Oncol 2014; 31:270. [PMID: 25280518 DOI: 10.1007/s12032-014-0270-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
Triptolide has been reported to exhibit antitumor effects in several cancers. This study investigates the mechanism by which triptolide induces apoptosis of gastric cancer cells. Gastric biopsies were collected for histological evaluation and detection of murine double minute 2 (MDM2) expression. Gastric cancer cells were cultured and treated with different concentrations of triptolide at indicated time points. The expression of MDM2, p53 protein, and target proteins including p21, PUMA, and X-linked inhibitor of apoptosis protein (XIAP) was detected. Apoptosis of cells treated with or without triptolide was evaluated. Our results showed that MDM2 protein was overexpressed in gastric cancer (p < 0.01, resp.). Triptolide induced significant apoptosis of gastric cancer cells in a dose- and time-dependent manner (p < 0.05). In addition, treatment with triptolide strongly inhibited the overexpression of MDM2 in gastric cancer cells, and this MDM2 inhibition led to increased levels of p53 protein and inhibition of XIAP (p < 0.05). However, triptolide failed to increase the expression of p53 target protein p21 and PUMA (p > 0.05). In conclusion, triptolide may induce apoptosis of gastric cancer cells via the inhibition of MDM2 overexpression in a p53-independent manner.
Collapse
Affiliation(s)
- Bo-Yong Wang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | | | | | | |
Collapse
|
32
|
Park B. Triptolide, a diterpene, inhibits osteoclastogenesis, induced by RANKL signaling and human cancer cells. Biochimie 2014; 105:129-36. [DOI: 10.1016/j.biochi.2014.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
|
33
|
Chang W, Wei K, Ho L, Berry GJ, Jacobs SS, Chang CH, Rosen GD. A critical role for the mTORC2 pathway in lung fibrosis. PLoS One 2014; 9:e106155. [PMID: 25162417 PMCID: PMC4146613 DOI: 10.1371/journal.pone.0106155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases.
Collapse
Affiliation(s)
- Wenteh Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ke Wei
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Ho
- Division of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan S. Jacobs
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cheryl H. Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Glenn D. Rosen
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kang DW, Choi KY, Min DS. Functional regulation of phospholipase D expression in cancer and inflammation. J Biol Chem 2014; 289:22575-22582. [PMID: 24990948 DOI: 10.1074/jbc.r114.569822] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD) regulates downstream effectors by generating phosphatidic acid. Growing links of dysregulation of PLD to human disease have spurred interest in therapeutics that target its function. Aberrant PLD expression has been identified in multiple facets of complex pathological states, including cancer and inflammatory diseases. Thus, it is important to understand how the signaling network of PLD expression is regulated and contributes to progression of these diseases. Interestingly, small molecule PLD inhibitors can suppress PLD expression as well as enzymatic activity of PLD and have been shown to be effective in pathological mice models, suggesting the potential for use of PLD inhibitors as therapeutics against cancer and inflammation. Here, we summarize recent scientific developments regarding the regulation of PLD expression and its role in cancer and inflammatory processes.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, and; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735,; Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
35
|
Selective tumor cell killing by triptolide in p53 wild-type and p53 mutant ovarian carcinomas. Med Oncol 2014; 31:14. [PMID: 24880464 DOI: 10.1007/s12032-014-0014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/28/2014] [Indexed: 01/17/2023]
Abstract
Triptolide is a traditional Chinese medicinal herb-derived antineoplastic agent. However, its antitumor activity against gynecologic carcinomas has not yet been well described. It is the purpose of this article to investigate the effect and mechanism of triptolide in human ovarian cancer using both A2780 (p53 wild) and OVCAR-3 (p53 mutated) cells. Our results showed that triptolide exerted a potent inhibitory effect on the growth and proliferation of both cell lines in a dose- and time-dependent manner and that the effect was independent of the expression of p53. In contrast, triptolide had only a marginal cytotoxicity in noncancerous ovary cells, lung fibroblast cells, and macrophage cells, indicating differential inhibitory effects of the drug on cell growth between ovarian cancer cells and normal tissue cells. Exposure of the ovarian cancer cells to triptolide induced apoptosis, as evaluated by annexin V/propidium iodide-labeled flow cytometry. Triptolide-induced apoptosis was accompanied by cytochrome c release and caspase-3 activation and was associated with downregulation of Bcl-2 and upregulation of Bax. Cell cycle analysis demonstrated that treatment with triptolide induced cell cycle S phase arrest in A2780 cells and G2/M phase arrest in OVCAR-3 cells. Further detection by Western blotting revealed that the cell cycle arrest by triptolide in both cell lines occurred in concert with increased expression of p21(CIP1/WAF1). This study shows that triptolide selectively kills ovarian cancer cells with different p53 status predominantly through regulating the coordinate and dynamic cellular processes of proliferation and apoptosis, thereby making it a promising chemotherapeutic agent against a broad spectrum of ovarian carcinomas.
Collapse
|
36
|
Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, Zhu Z, Lv Y, Zou X. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer 2014; 14:271. [PMID: 24742042 PMCID: PMC3997440 DOI: 10.1186/1471-2407-14-271] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/08/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. METHODS CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. RESULTS Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. CONCLUSIONS Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Lv
- Department of Gastroenterology, Drum Tower Hospital, Affiliated to Medical School of Nanjing University, Nanjing, China.
| | | |
Collapse
|
37
|
Fidler JM, An J, Carter BZ, Andreeff M. Preclinical antileukemic activity, toxicology, toxicokinetics and formulation development of triptolide derivative MRx102. Cancer Chemother Pharmacol 2014; 73:961-74. [PMID: 24619497 DOI: 10.1007/s00280-014-2428-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE Triptolide induces cancer cell apoptosis by inhibiting RNA synthesis and signaling pathways like NF-κB. We compared triptolide prodrug MRx102 to triptolide to determine whether it displayed comparable efficacy and improved toxicology and toxicokinetic profiles. METHODS MV4-11 AML cells and cells from AML patients were analyzed for MRx102- and triptolide-induced cytotoxicity/apoptosis. MRx102 and triptolide were compared in toxicology/toxicokinetics studies in rat and dog using a new emulsion formulation. RESULTS MRx102 induced cytotoxicity in MV4-11 cells (IC50 = 15.2 nM, 7.29 nM for triptolide) and apoptosis in cells from AML patients (EC50 = 40.6 nM and 2.13 nM for triptolide). MRx102 and triptolide induced apoptosis in CD34+CD38- AML stem/progenitor cells with a similar difference in activity (EC50, MRx102 = 40.8 nM, triptolide = 2.14 nM). In a rat toxicology comparison using a new intravenous emulsion formulation, the MRx102 MTD was 4.5 mg/kg for males and 3 mg/kg for females; the triptolide MTD was 0.63 mg/kg for males and 0.317 mg/kg for females. The MRx102 NOAEL was 1.5-3.0 mg/kg, and the triptolide NOAEL was 0.05-0.15 mg/kg. Mean plasma concentrations for both MRx102 and triptolide decreased rapidly from a high C max following i.v. injection. Plasma triptolide levels stabilized at a consistent level through 2 h after MRx102 injection. Triptolide T 1/2,e values for MRx102-injected rats (~0.85 to ~3.7 h) were markedly greater than triptolide-injected rats (~0.15 to ~0.39 h), indicating more extended triptolide exposure with MRx102. MRx102 dog toxicology and toxicokinetics results are presented. CONCLUSIONS MRx102 was 20- to 60-fold safer than triptolide comparing rat NOAELs. This may be due to the improved toxicokinetic profile of MRx102 compared to triptolide using the emulsion formulation, with no high C max and more consistent early exposure to triptolide.
Collapse
Affiliation(s)
- John M Fidler
- MyeloRx LLC, 941 Railroad Avenue, Vallejo, CA, 94592, USA,
| | | | | | | |
Collapse
|
38
|
Afreen S, Dermime S. The immunoinhibitory B7-H1 molecule as a potential target in cancer: Killing many birds with one stone. Hematol Oncol Stem Cell Ther 2014; 7:1-17. [DOI: 10.1016/j.hemonc.2013.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
|
39
|
Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur J Med Chem 2014; 73:46-55. [DOI: 10.1016/j.ejmech.2013.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022]
|
40
|
Xu H, Tang H, Feng H, Li Y. Design, Synthesis and Structure-Activity Relationships Studies on the D Ring of the Natural Product Triptolide. ChemMedChem 2013; 9:290-5. [DOI: 10.1002/cmdc.201300409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 11/07/2022]
|
41
|
Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin 2013; 34:1545-53. [PMID: 24241349 DOI: 10.1038/aps.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effects of BIIB021, an inhibitor of heat shock protein 90 (Hsp90) alone or in combination with triptolide (TPL) on T-cell acute lymphoblastic leukemia (T-ALL) and the mechanisms of action. METHODS Human T-ALL cells line Molt-4 was examined. The cell viability was measured using MTT assay. Apoptotic cells were studied with Hoechst 33258 staining. Cell apoptosis and cell cycle were analyzed using flow cytometry with Annexin V/PI staining and PI staining, respectively. The levels of multiple proteins, including Akt, p65, CDK4/6, p18, Bcl-2 family proteins, MDM2, and p53, were examined with Western blotting. The level of MDM2 mRNA was determined using RT-PCR. RESULTS Treatment of Molt-4 cells with BIIB021 (50-800 nmol/L) inhibited the cell growth in a dose-dependent manner (the IC50 value was 384.6 and 301.8 nmol/L, respectively, at 48 and 72 h). BIIB021 dose-dependently induced G0/G1 phase arrest, followed by apoptosis of Molt-4 cells. Furthermore, BIIB021 increased the expression of p18, decreased the expression of CDK4/6, and activated the caspase pathway in Molt-4 cells. Moreover, BIIB021 (50-400 nmol/L) dose-dependently decreased the phospho-MDM2 and total MDM2 protein levels, but slightly increased the phospho-p53 and total p53 protein levels, whereas TPL (5-40 nmol/L) dose-dependently enhanced p53 activation without affecting MDM2 levels. Co-treatment with BIIB021 and TPL showed synergic inhibition on Molt-4 cell growth. The co-treatment disrupted p53-MDM2 balance, thus markedly enhanced p53 activation. In addition, the co-treatment increased the expression of Bak and Bim, followed by increased activation of caspase-9. CONCLUSION The combination of BIIB021 and TPL may provide a novel strategy for treating T-ALL by overcoming multiple mechanisms of apoptosis resistance.
Collapse
|
42
|
Triptolide induces growth inhibition and apoptosis of human laryngocarcinoma cells by enhancing p53 activities and suppressing E6-mediated p53 degradation. PLoS One 2013; 8:e80784. [PMID: 24244715 PMCID: PMC3828261 DOI: 10.1371/journal.pone.0080784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022] Open
Abstract
Triptolide, an active compound extracted from Chinese herb Leigongteng (Tripterygium wilfordii Hook F.), shows a broad-spectrum of anticancer activity through its cytotoxicity. However, the efficacy of triptolide on laryngocarcinoma rarely been evaluated, and the mechanism by which triptolide-induced cellular apoptosis is still not well understood. In this study, we found that triptolide significantly inhibited the laryngocarcinoma HEp-2 cells proliferation, migration and survivability. Triptolide induces HEp-2 cell cycle arrest at the G1 phase and apoptosis through intrinsic and extrinsic pathways since both caspase-8 and -9 are activated. Moreover, triptolide enhances p53 expression by increasing its stability via down-regulation of E6 and E6AP. Increased p53 transactivates down-stream target genes to initiate apoptosis. In addition, we found that short time treatment with triptolide induced DNA damage, which was consistent with the increase in p53. Furthermore, the cytotoxicity of triptolide is decreased by p53 knockdown or use of caspases inhibitor. In conclusion, our results demonstrated that triptolide inhibits cell proliferation and induces apoptosis in laryngocarcinoma cells by enhancing p53 expression and activating p53 functions through induction of DNA damage and suppression of E6 mediated p53 degradation. These studies indicate that triptolide is a potential anti-laryngocarcinoma drug.
Collapse
|
43
|
Serra AT, Poejo J, Matias AA, Bronze MR, Duarte CM. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.08.043] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Herbal compound triptolide synergistically enhanced antitumor activity of vasostatin120–180. Anticancer Drugs 2013; 24:945-57. [DOI: 10.1097/cad.0b013e3283651862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Ma JX, Sun YL, Wang YQ, Wu HY, Jin J, Yu XF. Triptolide Induces Apoptosis and Inhibits the Growth and Angiogenesis of Human Pancreatic Cancer Cells by Downregulating COX-2 and VEGF. Oncol Res 2013; 20:359-68. [DOI: 10.3727/096504013x13657689382932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Lin Y, Peng N, Li J, Zhuang H, Hua ZC. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminal fragment of urokinase. Mol Cancer 2013; 12:54. [PMID: 23758884 PMCID: PMC3728221 DOI: 10.1186/1476-4598-12-54] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Urokinase (uPA) and its receptor (uPAR) play an important role in tumour growth and metastasis, and overexpression of these molecules is strongly correlated with poor prognosis in a variety of malignant tumours. Targeting the excessive activation of this system as well as the proliferation of the tumour vascular endothelial cell would be expected to prevent tumour neovasculature and halt tumour development. The amino terminal fragment (ATF) of urokinase has been confirmed effective to inhibit the proliferation, migration and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Triptolide (TPL) is a purified diterpenoid isolated from the Chinese herb Tripterygium wilfordii Hook F that has shown antitumor activities in various cancer cell types. However, its therapeutic application is limited by its toxicity in normal tissues and complications caused in patients. In this study, we attempted to investigate the synergistic anticancer activity of TPL and ATF in various solid tumour cells. Methods Using in vitro and in vivo experiments, we investigated the combined effect of TPL and ATF at a low dosage on cell proliferation, cell apoptosis, cell cycle distribution, cell migration, signalling pathways, xenograft tumour growth and angiogenesis. Results Our data showed that the sensitivity of a combined therapy using TPL and ATF was higher than that of TPL or ATF alone. Suppression of NF-κB transcriptional activity, activation of caspase-9/caspase-3, cell cycle arrest, and inhibition of uPAR-mediated signalling pathway contributed to the synergistic effects of this combination therapy. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumour growth by inhibiting angiogenesis as compared with ATF or TPL treatment alone. Conclusions Our study suggests that lower concentration of ATF and TPL used in combination may produce a synergistic anticancer efficacy that warrants further investigation for its potential clinical applications.
Collapse
Affiliation(s)
- Yuli Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, 22 Han Kou Road, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
47
|
TAN BEEJEN, CHIU GIGIN. Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol 2013; 42:1605-12. [DOI: 10.3892/ijo.2013.1843] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/24/2012] [Indexed: 11/06/2022] Open
|
48
|
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev 2013; 113:2958-3043. [DOI: 10.1021/cr300176g] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran,
Iran
| | - Ali Akbari
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| |
Collapse
|
49
|
Huang M, Zhang H, Liu T, Tian D, Gu L, Zhou M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther 2012; 12:184-94. [PMID: 23243057 DOI: 10.1158/1535-7163.mct-12-0425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triptolide, a natural product derived from the Chinese plant Tripterygium wilfordii, is reported to exhibit antitumor effects in a broad range of cancers. The antitumor activity of triptolide is associated with its biologic activities, as it inhibits various proproliferative or antiapoptotic factors that are dominantly expressed in given types of cancer cells. Herein, we show that triptolide induced apoptosis in a subgroup of acute lymphoblastic leukemia (ALL) cells overexpressing the MDM2 oncoprotein by inhibiting MDM2 expression. More specifically, we found that triptolide inhibited MDM2 at the transcriptional level by suppressing its mRNA synthesis. This MDM2 inhibition led in turn to increased levels of p53 protein; however, p53 functionality was not activated due to the fact that triptolide-treated cells lacked induction of p21 and PUMA as well as in G(1) cell-cycle arrest. Triptolide-mediated downregulation of MDM2 increased inhibition of X-linked inhibitor of apoptosis protein (XIAP), its translational target, in a manner distinct from reactions to cellular stress and DNA-damaging agent ionizing radiation that induce XIAP due to p53-activated MDM2. These results suggest that increased inhibition of XIAP due to downregulation of MDM2 may play a critical role in triptolide-induced apoptosis in MDM2-overexpressing cancers.
Collapse
Affiliation(s)
- Mei Huang
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
50
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21:1801-18. [DOI: 10.1517/13543784.2012.727395] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|