1
|
Hazen P, Trossi-Torres G, Timsina R, Khadka NK, Mainali L. Association of Alpha-Crystallin with Human Cortical and Nuclear Lens Lipid Membrane Increases with the Grade of Cortical and Nuclear Cataract. Int J Mol Sci 2024; 25:1936. [PMID: 38339214 PMCID: PMC10855980 DOI: 10.3390/ijms25031936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Laxman Mainali
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| |
Collapse
|
2
|
Timsina R, Hazen P, Trossi-Torres G, Khadka NK, Kalkat N, Mainali L. Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes. Int J Mol Sci 2024; 25:1923. [PMID: 38339200 PMCID: PMC10855794 DOI: 10.3390/ijms25031923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
| | - Navdeep Kalkat
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA; (R.T.); (N.K.K.)
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.); (N.K.)
| |
Collapse
|
3
|
Khadka NK, Hazen P, Haemmerle D, Mainali L. Interaction of β L- and γ-Crystallin with Phospholipid Membrane Using Atomic Force Microscopy. Int J Mol Sci 2023; 24:15720. [PMID: 37958704 PMCID: PMC10649403 DOI: 10.3390/ijms242115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Highly concentrated lens proteins, mostly β- and γ-crystallin, are responsible for maintaining the structure and refractivity of the eye lens. However, with aging and cataract formation, β- and γ-crystallin are associated with the lens membrane or other lens proteins forming high-molecular-weight proteins, which further associate with the lens membrane, leading to light scattering and cataract development. The mechanism by which β- and γ-crystallin are associated with the lens membrane is unknown. This work aims to study the interaction of β- and γ-crystallin with the phospholipid membrane with and without cholesterol (Chol) with the overall goal of understanding the role of phospholipid and Chol in β- and γ-crystallin association with the membrane. Small unilamellar vesicles made of Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (Chol/POPC) membranes with varying Chol content were prepared using the rapid solvent exchange method followed by probe tip sonication and then dispensed on freshly cleaved mica disk to prepare a supported lipid membrane. The βL- and γ-crystallin from the cortex of the bovine lens was used to investigate the time-dependent association of βL- and γ-crystallin with the membrane by obtaining the topographical images using atomic force microscopy. Our study showed that βL-crystallin formed semi-transmembrane defects, whereas γ-crystallin formed transmembrane defects on the phospholipid membrane. The size of semi-transmembrane defects increases significantly with incubation time when βL-crystallin interacts with the membrane. In contrast, no significant increase in transmembrane defect size was observed in the case of γ-crystallin. Our result shows that Chol inhibits the formation of membrane defects when βL- and γ-crystallin interact with the Chol/POPC membrane, where the degree of inhibition depends upon the amount of Chol content in the membrane. At a Chol/POPC mixing ratio of 0.3, membrane defects were observed when both βL- and γ-crystallin interacted with the membrane. However, at a Chol/POPC mixing ratio of 1, no association of γ-crystallin with the membrane was observed, which resulted in a defect-free membrane, and the severity of the membrane defect was decreased when βL-crystallin interacted with the membrane. The semi-transmembrane or transmembrane defects formed by the interaction of βL- and γ-crystallin on phospholipid membrane might be responsible for light scattering and cataract formation. However, Chol suppressed the formation of such defects in the membrane, likely maintaining lens membrane homeostasis and protecting against cataract formation.
Collapse
Affiliation(s)
- Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
| | - Preston Hazen
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (D.H.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| |
Collapse
|
4
|
Hazen P, Trossi-Torres G, Khadka NK, Timsina R, Mainali L. Binding of β L-Crystallin with Models of Animal and Human Eye Lens-Lipid Membrane. Int J Mol Sci 2023; 24:13600. [PMID: 37686406 PMCID: PMC10487507 DOI: 10.3390/ijms241713600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Several discoveries show that with age and cataract formation, β-crystallin binds with the lens membrane or associates with other lens proteins, which bind with the fiber cell plasma membrane, accompanied by light scattering and cataract formation. However, how lipids (phospholipids and sphingolipids) and cholesterol (Chol) influence β-crystallin binding to the membrane is unclear. This research aims to elucidate the role of lipids and Chol in the binding of β-crystallin to the membrane and the membrane's physical properties (mobility, order, and hydrophobicity) with β-crystallin binding. We used electron paramagnetic resonance (EPR) spin-labeling methods to investigate the binding of βL-crystallin with a model of porcine lens-lipid (MPLL), model of mouse lens-lipid (MMLL), and model of human lens-lipid (MHLL) membrane with and without Chol. Our results show that βL-crystallin binds with all of the investigated membranes in a saturation manner, and the maximum parentage of the membrane surface occupied (MMSO) by βL-crystallin and the binding affinity (Ka) of βL-crystallin to the membranes followed trends: MMSO (MPLL) > MMSO (MMLL) > MMSO (MHLL) and Ka (MHLL) > Ka (MMLL) ≈ Ka (MPLL), respectively, in which the presence of Chol reduces the MMSO and Ka for all membranes. The mobility near the headgroup regions of the membranes decreases with an increase in the binding of βL-crystallin; however, the decrease is more pronounced in the MPLL and MMLL membranes than the MHLL membrane. In the MPLL and MMLL membranes, the membranes become slightly ordered near the headgroup with an increase in βL-crystallin binding compared to the MHLL membrane. The hydrophobicity near the headgroup region of the membrane increases with βL-crystallin binding; however, the increase is more pronounced in the MPLL and MMLL membranes than the MHLL membrane, indicating that βL-crystallin binding creates a hydrophobic barrier for the passage of polar molecules, which supports the barrier hypothesis in cataract formation. However, in the presence of Chol, there is no significant increase in hydrophobicity with βL-crystallin binding, suggesting that Chol prevents the formation of a hydrophobic barrier, possibly protecting against cataract formation.
Collapse
Affiliation(s)
- Preston Hazen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
| | - Geraline Trossi-Torres
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (R.T.)
| | - Nawal K. Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (R.T.)
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (R.T.)
| | - Laxman Mainali
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA; (P.H.); (G.T.-T.)
- Department of Physics, Boise State University, Boise, ID 83725, USA; (N.K.K.); (R.T.)
| |
Collapse
|
5
|
Uwineza A, Cummins I, Jarrin M, Kalligeraki AA, Barnard S, Mol M, Degani G, Altomare AA, Aldini G, Schreurs A, Balschun D, Ainsbury EA, Dias IHK, Quinlan RA. Identification and quantification of ionising radiation-induced oxysterol formation in membranes of lens fibre cells. ADVANCES IN REDOX RESEARCH 2023; 7:None. [PMID: 38798747 PMCID: PMC11112148 DOI: 10.1016/j.arres.2022.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/29/2024]
Abstract
Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7β-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7β-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.
Collapse
Affiliation(s)
- Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Ian Cummins
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
| | - Miguel Jarrin
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Alexia A. Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Stephen Barnard
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
- UK Health Security Agency, Cytogenetics and Pathology Group, Centre for Radiation, Chemical and Environmental Hazards Division, Chilton, Oxon OX11 0RQ, Didcot, United Kingdom
| | - Marco Mol
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Milano 20133, Italy
| | - Genny Degani
- Department of Biosciences, Via Celoria 26, Milano 20133, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Milano 20133, Italy
| | - An Schreurs
- Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Elizabeth A. Ainsbury
- UK Health Security Agency, Cytogenetics and Pathology Group, Centre for Radiation, Chemical and Environmental Hazards Division, Chilton, Oxon OX11 0RQ, Didcot, United Kingdom
| | - Irundika HK Dias
- Aston Medical School, Aston University, B4 7ET, Birmingham, United Kingdom
| | - Roy A. Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States
| |
Collapse
|
6
|
Timsina R, Wellisch S, Haemmerle D, Mainali L. Binding of Alpha-Crystallin to Cortical and Nuclear Lens Lipid Membranes Derived from a Single Lens. Int J Mol Sci 2022; 23:ijms231911295. [PMID: 36232595 PMCID: PMC9570235 DOI: 10.3390/ijms231911295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies reported that α-crystallin concentrations in the eye lens cytoplasm decrease with a corresponding increase in membrane-bound α-crystallin with age and cataracts. The influence of the lipid and cholesterol composition difference between cortical membrane (CM) and nuclear membrane (NM) on α-crystallin binding to membranes is still unclear. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the α-crystallin binding to bovine CM and NM derived from the total lipids extracted from a single lens. Compared to CMs, NMs have a higher percentage of membrane surface occupied by α-crystallin and binding affinity, correlating with less mobility and more order below and on the surface of NMs. α-Crystallin binding to CM and NM decreases mobility with no significant change in order and hydrophobicity below and on the surface of membranes. Our results suggest that α-crystallin mainly binds on the surface of bovine CM and NM and such surface binding of α-crystallin to membranes in clear and young lenses may play a beneficial role in membrane stability. However, with decreased cholesterol content within the CM, which mimics the decreased cholesterol content in the cataractous lens membrane, α-crystallin binding increases the hydrophobicity below the membrane surface, indicating that α-crystallin binding forms a hydrophobic barrier for the passage of polar molecules, supporting the barrier hypothesis in developing cataracts.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Correspondence: ; Tel.: +1-(208)-426-4003
| |
Collapse
|
7
|
Khadka NK, Mortimer MF, Marosvari M, Timsina R, Mainali L. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Exp Eye Res 2022; 220:109131. [PMID: 35636489 PMCID: PMC10131281 DOI: 10.1016/j.exer.2022.109131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | | | - Mason Marosvari
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
8
|
Timsina R, Trossi-Torres G, Thieme J, O'Dell M, Khadka NK, Mainali L. Alpha-Crystallin Association with the Model of Human and Animal Eye Lens-Lipid Membranes is Modulated by Surface Hydrophobicity of Membranes. Curr Eye Res 2022; 47:843-853. [PMID: 35179407 DOI: 10.1080/02713683.2022.2040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This research aims to probe the interaction of α-crystallin with a model of human, porcine, and mouse lens-lipid membranes. METHODS Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes with 0 to 60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin association with these membranes were investigated using the electron paramagnetic resonance spin-labeling approach. RESULTS With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied (MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these membranes. The different MMSO and Ka for different model lens-lipid membranes with different rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity near the surface of these membranes suggested that the lipid composition also modulates α-crystallin association with membranes. Despite different lipid compositions, complete inhibition of α-crystallin association with model lens-lipid membranes was observed at saturating Chol content forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of these membranes. The decreased mobility parameter with increased α-crystallin concentration suggested that membranes near the surface became less mobile due to α-crystallin association. The decreased mobility parameter and increased maximum splitting with increased Chol content suggested that membranes became less mobile and more ordered near the surface with increased Chol content. CONCLUSIONS This study suggested that the interaction of α-crystallin with model lens-lipid membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-crystallin association with lens membrane, likely increase α-crystallin concentration in lens cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens cytoplasm homeostasis.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Jackson Thieme
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA.,Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
9
|
Weigle AT, Carr M, Shukla D. Impact of Increased Membrane Realism on Conformational Sampling of Proteins. J Chem Theory Comput 2021; 17:5342-5357. [PMID: 34339605 DOI: 10.1021/acs.jctc.1c00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) are heavily dependent on the lipid composition. While the field is pushing toward implementing more heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data prevents some membrane protein systems from being modeled with the highest level of realism. Given the additional diversity of real-world cellular membranes and protein-lipid interactions, it is still not fully understood how altering membrane complexity affects modeled membrane protein functions or if it matters over long-timescale simulations. This is especially true for organisms whose membrane environments have little to no computational study, such as the plant plasma membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma membrane with more than 10 different lipid species is constructed herein. Classical MD simulations of pure membrane constructs were performed to evaluate how altering the compositional complexity of the membrane impacted the plant membrane properties. The apo form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid diversity was calculated in either a size-dependent or size-independent manner. An adaptive sampling simulation regime validated by Markov-state models was performed to capture the gating dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b conformational states by ∼1 kcal/mol. The free-energy barriers of intermediate conformational states decrease when realistic membrane complexity is simplified, albeit roughly within sampling error, suggesting that protein-specific responses to membranes differ due to altered packing caused by compositional fluctuations. This work serves as a case study where a more realistic bilayer composition makes unbiased conformational sampling easier to achieve than with simplified bilayers.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew Carr
- Independent Software Development Provider310 East Marlette Avenue, Phoenix, Arizona 85012, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
11
|
Timsina R, Trossi-Torres G, O'Dell M, Khadka NK, Mainali L. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. Exp Eye Res 2021; 206:108544. [PMID: 33744256 PMCID: PMC8087645 DOI: 10.1016/j.exer.2021.108544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens's fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles (SUVs) of PC, SM*, and PS with 0, 23, 33, 50, and 60 mol% Chol and PE* with 0, 9, and 33 mol% Chol were prepared using the rapid solvent exchange method followed by probe-tip sonication. The 1 mol% CSL spin-labels used during SUVs preparation distribute uniformly within the Chol/PL membrane, enabling the investigation of Chol and CBDs' role on α-crystallin binding to the membrane. For PC, SM*, and PS membranes, the binding affinity (Ka) and the maximum percentage of membrane surface occupied (MMSO) by α-crystallin decreased with an increase in Chol concentration. The Ka and MMSO became zero at 50 mol% Chol for PC and 60 mol% Chol for SM* membranes, representing that complete inhibition of α-crystallin binding was possible before the formation of CBDs within the PC membrane but only after the formation of CBDs within the SM* membrane. The Ka and MMSO did not reach zero even at 60 mol% Chol in the PS membrane, representing CBDs at this Chol concentration were not sufficient for complete inhibition of α-crystallin binding to the PS membrane. Both the Ka and MMSO were zero at 0, 9, and 33 mol% Chol in the PE* membrane, representing no binding of α-crystallin to the PE* membrane with and without Chol. The mobility parameter profiles decreased with an increase in α-crystallin binding to the membranes; however, the decrease was more pronounced for the membrane with lower Chol concentration. These results imply that the membranes become more immobilized near the headgroup regions with an increase in α-crystallin binding; however, the Chol antagonizes the capacity of α-crystallin to decrease the mobility near the headgroup regions of the membranes. The maximum splitting profiles remained the same with an increase in α-crystallin concentration, but there was an increase in the maximum splitting with an increase in the Chol concentration in the membranes. It implies that membrane order near the headgroup regions does not change with an increase in α-crystallin concentration but increases with an increase in Chol concentration in the membrane. Based on our data, we hypothesize that the Chol and CBDs decrease hydrophobicity (increase polarity) near the membrane surface, inhibiting the hydrophobic binding of α-crystallin to the membranes. Thus, our data suggest that Chol and CBDs play a positive physiological role by preventing α-crystallin binding to lens membranes and possibly protecting against cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | | | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, 83725, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
12
|
Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L. Mechanical properties of the high cholesterol-containing membrane: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183625. [PMID: 33891910 DOI: 10.1016/j.bbamem.2021.183625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Erica Rowe
- Department of Biology, Boise State University, Boise, ID, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
13
|
Hazra R, Roy D. Distinctive Weak Interactions Underlie Diverse Nucleation and Small-Angle Scattering Behavior of Aqueous Cholesterol, Cholesteryl Hemisuccinate, and Glycocholic Acid. J Phys Chem B 2021; 125:612-624. [PMID: 33417461 DOI: 10.1021/acs.jpcb.0c08931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increased total cholesterol is a major cause of serious heart ailments leading to an estimated 3 million deaths annually throughout the world. Understanding the flocculation behavior of small lipids is thus quintessential. Nucleation, small-angle scattering, and dynamical behavior of lipids and analogues like cholesterol (CHL), cholesteryl hemisuccinate (CHM), and glycocholic acid (GHL) are studied in water by molecular dynamics simulation. The study shows a distinct aggregation behavior of these physiologically relevant molecules owing to a systematic gradation in their non-bonding interactions with solvents and near neighbors. Spontaneous self-assemblies formed during simulation are observed to have different stability, aggregation patterns, and dynamics depending crucially on the nature of the hydrophobic/hydrophilic tails. With increasing hydrophilicity, in the order CHL < CHM < GHL, the aggregates become breakable and less compact, often interposed by water molecules in the interstitial spaces between the lipids. Small-angle scattering data obtained from our simulations provide insights toward the structural integrity and shape of the aggregates formed. Unique features are noticed while following the time evolution of the packing of the nucleated assemblies from the solution phase in terms of local density and molecular orientation. As hydrophilicity increases from CHL to GHL, the packing becomes progressively erratic with diverse angles between the molecular vectors. Surface electrostatic potential calculation indicates drastic increase in positive surface charge from CHL to CHM, which has strong implication in water and ion transport through membranes. These observations can be further correlated to comprehend the flocculation of cholesterol and bile acids in the human body.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
14
|
Hypothetical Pathway for Formation of Cholesterol Microcrystals Initiating the Atherosclerotic Process. Cell Biochem Biophys 2020; 78:241-247. [PMID: 32602057 PMCID: PMC7403164 DOI: 10.1007/s12013-020-00925-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
Major factors leading to the development of atherosclerosis are a high cholesterol (Chol) level in the blood and oxidative stress. Both promote the formation of Chol microcrystals in blood vessel walls. Deposition of Chol microcrystals in arterial intima causes inflammation, which initiates and accompanies the atherosclerotic process in all its phases. One of the possible sources of Chol in the blood vessel walls is oxidized low-density lipoproteins-this atherosclerotic plaque formation pathway has already been described in the literature. Here, we hypothesize that initiation of the atherosclerotic process may involve Chol domains in the plasma membranes of arterial cells. Increased Chol content and the presence of polyunsaturated phospholipids in these membranes together with oxidative stress (phospholipid peroxidation) may lead to the formation of pure Chol bilayer domains that, with further peroxidation and increased Chol content, may collapse in the form of Chol seed crystals. Independent of their origin, Chol microcrystals activate inflammasomes, thereby stimulate immune responses, and initiate inflammation that may lead to the development of atherosclerosis. This new, hypothetical pathway has not yet been investigated in depth; however, data from the literature and our own results support its feasibility.
Collapse
|
15
|
Raguz M, Kumar SN, Zareba M, Ilic N, Mainali L, Subczynski WK. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Cell Biochem Biophys 2019; 77:309-317. [PMID: 31625023 DOI: 10.1007/s12013-019-00889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. This high Chol content forms pure Chol bilayer domains (CBDs) and Chol crystals in model membranes and membranes formed from the total lipid extracts from human lenses. CBDs have been detected using electron paramagnetic resonance (EPR) spin-labeling approaches. Here, we confirm the presence of CBDs in giant unilamellar vesicles prepared using the electroformation method from Chol/1-palmitoyl-2-oleoylphosphocholine and Chol/distearoylphosphatidylcholine mixtures. Confocal microscopy experiments using phospholipid (PL) analog (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid) and cholesterol analog fluorescent probes (23-(dipyrrometheneboron difluoride)-24-norcholesterol) were performed, allowing us to make three major conclusions: (1) In all membranes with a Chol/PL mixing ratio (expressed as a molar ratio) >2, pure CBDs were formed within the bulk PL bilayer saturated with Chol. (2) CBDs were present as the pure Chol bilayer and not as separate patches of Chol monolayers in each leaflet of the PL bilayer. (3) CBDs, presented as single large domains, were always located at the top of giant unilamellar vesicles, independent of the change in sample orientation (right-side-up/upside-down). Results obtained with confocal microscopy and fluorescent Chol and PL analogs, combined with those obtained using EPR and spin-labeled Chol and PL analogs, contribute to the understanding of the organization of lipids in the fiber cell plasma membranes of the human eye lens.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia. .,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Suresh N Kumar
- Department of Pathology, CRI Imaging Core, Translational and Biomedical Research Center, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Mariusz Zareba
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology, Medical College of Wisconsin Eye Institute, Milwaukee, WI, USA
| | - Nada Ilic
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physics, Boise State University, 1910 University Drive, Boise, Idaho, 83725, USA
| | | |
Collapse
|
16
|
Aleo MD, Doshna CM, Baltrukonis D, Fortner JH, Drupa CA, Navetta KA, Fritz CA, Potter DM, Verdugo ME, Beierschmitt WP. Lens cholesterol biosynthesis inhibition: A common mechanism of cataract formation in laboratory animals by pharmaceutical products. J Appl Toxicol 2019; 39:1348-1361. [DOI: 10.1002/jat.3822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Jay H. Fortner
- Comparative Medicine, Pfizer Worldwide Research and Development Groton Connecticut
| | | | | | | | | | | | | |
Collapse
|
17
|
Why Is Very High Cholesterol Content Beneficial for the Eye Lens but Negative for Other Organs? Nutrients 2019; 11:nu11051083. [PMID: 31096723 PMCID: PMC6566707 DOI: 10.3390/nu11051083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
The plasma membranes of the human lens fiber cell are overloaded with cholesterol that not only saturates the phospholipid bilayer of these membranes but also leads to the formation of pure cholesterol bilayer domains. Cholesterol level increases with age, and for older persons, it exceeds the cholesterol solubility threshold, leading to the formation of cholesterol crystals. All these changes occur in the normal lens without too much compromise to lens transparency. If the cholesterol content in the cell membranes of other organs increases to extent where cholesterol crystals forma, a pathological condition begins. In arterial cells, minute cholesterol crystals activate inflammasomes, induce inflammation, and cause atherosclerosis development. In this review, we will indicate possible factors that distinguish between beneficial and negative cholesterol action, limiting cholesterol actions to those performed through cholesterol in cell membranes and by cholesterol crystals.
Collapse
|
18
|
Mainali L, O'Brien WJ, Subczynski WK. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes. Exp Eye Res 2018; 178:72-81. [PMID: 30278157 DOI: 10.1016/j.exer.2018.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Four purported lipid domains are expected in plasma membranes of the eye lens fiber cells. Three of these domains, namely, bulk, boundary, and trapped lipids, have been detected. The cholesterol bilayer domain (CBD), which has been detected in lens lipid membranes prepared from the total lipids extracted from fiber cell plasma membranes, has not yet been detected in intact fiber cell plasma membranes. Here, a saturation-recovery electron paramagnetic resonance spin-labeling method has been developed that allows identification of CBDs in intact fiber cell plasma membranes of eye lenses. This method is based on saturation-recovery signal measurements of the cholesterol-analog spin label located in the lipid bilayer portion of intact fiber cell membranes as a function of the partial pressure of molecular oxygen with which the samples are equilibrated. The capabilities and limitations of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses where CBDs were detected in porcine nuclear intact membranes for which CBDs were also detected in lens lipid membranes. CBDs were not detected in porcine cortical intact and lens lipid membranes. CBDs were detected in intact membranes isolated from both cortical and nuclear fiber cells of lenses obtained from human donors. The cholesterol content in fiber cell membranes of these donors was always high enough to induce the formation of CBDs in cortical as well as nuclear lens lipid membranes. The results obtained for intact membranes, when combined with those obtained for lens lipid membranes, advance our understanding of the role of high cholesterol content and CBDs in lens biology, aging, and/or cataract formation.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, USA
| | - William J O'Brien
- Department of Ophthalmology and Visual Science, Eye Institute, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
19
|
Jing J, Wei T, Su W, Liu Y, Yao W, Zhu H, Fu T. Structural Related Effects of Natural Steroid Molecules on Cholesterol Crystallization in Model Bile and Ethanol. ChemistrySelect 2018. [DOI: 10.1002/slct.201800237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Jing
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Tongxin Wei
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Wenqiang Su
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Yonghai Liu
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Weiwei Yao
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Huaxu Zhu
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| | - Tingming Fu
- Schcool of pharmacy; Nanjing university of Chinese medicine; 138 Xianlin Ave. Nanjing China 210023
| |
Collapse
|
20
|
Adams M, Wang E, Zhuang X, Klauda JB. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:2134-2144. [PMID: 29169746 DOI: 10.1016/j.bbamem.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022]
Abstract
The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (SCD), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The SCD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Mark Adams
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xiaohong Zhuang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Cholesterol Bilayer Domains in the Eye Lens Health: A Review. Cell Biochem Biophys 2017; 75:387-398. [PMID: 28660427 PMCID: PMC5691107 DOI: 10.1007/s12013-017-0812-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/15/2017] [Indexed: 11/06/2022]
Abstract
The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.
Collapse
|
22
|
Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr Eye Res 2017; 42:721-731. [PMID: 27791387 PMCID: PMC5409882 DOI: 10.1080/02713683.2016.1231325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/28/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE This research was undertaken to document the changes in the organization and properties of human lens lipid membranes that occur with age. METHODS Human lens lipid membranes prepared from the total lipids extracted from clear lens cortices and nuclei of donors from age groups 0-20 and 21-40 years were investigated. An electron paramagnetic resonance technique and nitroxide spin labels (analogues of phospholipids and cholesterol) were used. RESULTS Two distinct lipid domains, the phospholipid-cholesterol domain (PCD) and the pure cholesterol bilayer domain (CBD), were detected in all investigated membranes. Profiles of the acyl chain order, fluidity, hydrophobicity, and oxygen transport parameter across discriminated coexisting lipid domains were assessed. Independent of the age-related changes in phospholipid composition, the physical properties of the PCD remained the same for all age groups and were practically identical for cortical and nuclear membranes. However, the properties of pure CBDs changed significantly with the age of the donor and were related to the size of the CBD, which increased with the age of the donor and was greater in nuclear than in cortical membranes. A more detailed analysis revealed that the size of the CBD was determined mainly by the cholesterol content in the membrane. CONCLUSIONS This paper presents data from four age groups: 0-20, 21-40, 41-60, and 61-70 years. Data from age groups 41-60 and 61-70 years were published previously. Combining the previously published data with those data obtained in the present work allowed us to show the changes in the organization of cortical and nuclear lens lipid membranes as functions of age and cholesterol. It seems that the balance between age-related changes in membrane phospholipid composition and cholesterol content plays an integral role in the regulation of cholesterol-dependent processes in fiber cell membranes and in the maintenance of fiber cell membrane homeostasis.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J. O’Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
23
|
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochem Biophys 2017; 75:369-385. [PMID: 28417231 DOI: 10.1007/s12013-017-0792-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.
Collapse
|
24
|
Wang Z, Schey KL. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells. Invest Ophthalmol Vis Sci 2016; 56:8349-60. [PMID: 26747763 DOI: 10.1167/iovs.15-18273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. METHODS Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. RESULTS A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. CONCLUSIONS These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Collapse
|
25
|
Subczynski WK, Mainali L, Raguz M, O'Brien WJ. Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp Eye Res 2016; 156:79-86. [PMID: 26988627 DOI: 10.1016/j.exer.2016.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022]
Abstract
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development.
Collapse
Affiliation(s)
- Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
26
|
Abstract
Cataract is the leading cause of visual impairment, other than uncorrected refractive errors, and the number one cause of preventable blindness worldwide. Common adverse events of statins include statin-related muscle toxicity, elevation of transaminases, diabetes, and possible association with cancer. Publications on the relationship of cataract to statins have reported inconsistent findings. A meta-analysis indicated a 19 % decrease in cataract among statin users. The pleiotropic effects of statins including effects on inflammation and oxidation may mediate a decrease in the rate of cataract formation. On the other hand, bidirectional effects of statins on oxidation and inhibition of appropriate lens epithelial cell development may promote cataractogenesis. Younger age and longer duration of statin therapy was associated with greater benefit while a benefit was not observed among older persons. A definitive way to settle the issue of the relationship of statins to cataract is to perform a randomized clinical trial or include cataract as an end point in epidemiologic studies. An increased risk of cataract may be balanced by the marked benefits of statins for those at high risk for cardiovascular events, while a decreased risk may help increase adherence to statin therapy.
Collapse
|
27
|
Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 44:91-102. [PMID: 25502634 DOI: 10.1007/s00249-014-1004-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/18/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Human lens-lipid membranes prepared from the total lipids extracted from clear and cataractous lens cortexes and nuclei of 61-70-year-old donors by use of a rapid solvent-exchange method were investigated. The measured cholesterol-to-phospholipid (Chol/PL) molar ratio in these membranes was 1.8 and 4.4 for cortex and nucleus of clear lenses, respectively, and 1.14 and 1.45 for cataractous lenses. Properties and organization of the lipid bilayer were investigated by use of electron paramagnetic resonance spin-labeling methods. Formation of Chol crystals was confirmed by use of differential scanning calorimetry. Pure cholesterol bilayer domains (CBDs) were formed in all the membranes investigated. It was shown that in clear lens membranes of the nucleus, Chol exists in three different environments: (1) dispersed in phospholipid bilayers (PCDs), (2) in CBDs, and (3) in Chol crystals. In clear lens membranes of the cortex, and in cortical and nuclear cataractous lens membranes, Chol crystals were not detected, because of the lower Chol content. Profiles of membrane properties (alkyl-chain order, fluidity, oxygen transport, and hydrophobicity) across the PCD were very similar for clear and cataractous membranes. Profiles of the oxygen transport parameter across the CBD were, however, different for cortical clear and cataractous membranes-the amount and size of CBDs was less in cataractous membranes. These results suggest that high Chol content, formation of CBDs, and formation of Chol crystals should not be regarded as major predispositions for the development of age-related cataracts.
Collapse
|
28
|
Whitman JK, Alviar AF, Fleschner CR, Stuart MK. Monoclonal antibody 10A5 recognizes an antigen unique to the water-insoluble 25/45 membrane fraction of the rat ocular lens. SPRINGERPLUS 2013; 2:500. [PMID: 24109564 PMCID: PMC3793078 DOI: 10.1186/2193-1801-2-500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022]
Abstract
The water-insoluble 25/45 fraction and non-sedimenting membrane fraction (NSMF) are two membrane preparations isolated from the ocular lens. The fractions are postulated to represent distinct subdomains of the lens with unique functions. However, attempts to distinguish between the two fractions by detecting proteins present in one fraction but absent from other have been unsuccessful. In this study, we exploited the ability of the mouse immune system to detect antigenic differences between the 25/45 fraction and NSMF isolated from the lenses of 20-day-old rats. We generated a monoclonal antibody (MAb 10A5) that reacts with a ganglioside-like antigen that is present in the 25/45 fraction but absent from the NSMF. Restriction of the antigen to the 25/45 fraction in 20-day-old animals supports the hypothesis that the 25/45 fraction and NSMF represent different subdomains within the ocular lens.
Collapse
Affiliation(s)
- Joseph K Whitman
- Department of Biochemistry, A T Still University, Kirksville College of Osteopathic Medicine, 800 W Jefferson St, Kirksville, MO 63501 USA
| | | | | | | |
Collapse
|
29
|
Plesnar E, Subczynski WK, Pasenkiewicz-Gierula M. Comparative computer simulation study of cholesterol in hydrated unary and binary lipid bilayers and in an anhydrous crystal. J Phys Chem B 2013; 117:8758-69. [PMID: 23848956 DOI: 10.1021/jp402839r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Models created with molecular dynamics simulations are used to compare the organization and dynamics of cholesterol (Chol) molecules in three different environments: (1) a hydrated pure Chol bilayer that models the Chol bilayer domain, which is a pure Chol domain embedded in the bulk membrane; (2) a 2-palmitoyl-3-oleoyl-d-glycerol-1-phosphorylcholine bilayer saturated with cholesterol (POPC-Chol50) that models the bulk membrane; (3) a Chol crystal. The computer model of the hydrated pure Chol bilayer is stable on the microsecond time scale. Some structural characteristics of Chol molecules in the Chol bilayer are similar to those in the POPC-Chol50 bilayer (e.g., tilt of Chol rings and chains), while others are similar to those in Chol crystals (e.g., surface area per Chol, bilayer thickness). The key result of this study is that the Chol bilayer has, unexpectedly, a dynamic structure, with Chol mobility similar to that in the POPC-Chol50 bilayer though slower. This is the major difference compared to Chol crystals, where Chol molecules are immobile. Also, water accessibility to Chol-OH groups in the Chol bilayer is not limited. On average, each Chol molecule makes 2.3 hydrogen bonds with water in the Chol bilayer, compared with 1.7 hydrogen bonds in the POPC-Col50 bilayer.
Collapse
Affiliation(s)
- Elzbieta Plesnar
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | |
Collapse
|
30
|
Mainali L, Raguz M, O'Brien WJ, Subczynski WK. Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:1432-40. [PMID: 23438364 PMCID: PMC3633468 DOI: 10.1016/j.bbamem.2013.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Human lens lipid membranes prepared using a rapid solvent exchange method from the total lipids extracted from the clear lens cortex and nucleus of 41- to 60-year-old donors were investigated using electron paramagnetic resonance spin-labeling. Profiles of the phospholipid alkyl-chain order, fluidity, oxygen transport parameter, and hydrophobicity were assessed across coexisting membrane domains. Membranes prepared from the lens cortex and nucleus were found to contain two distinct lipid environments, the bulk phospholipid-cholesterol domain and the cholesterol bilayer domain (CBD). The alkyl chains of phospholipids were strongly ordered at all depths, indicating that the amplitude of the wobbling motion of alkyl chains was small. However, profiles of the membrane fluidity, which explicitly contain time (expressed as the spin-lattice relaxation rate) and depend on the rotational motion of spin labels, show relatively high fluidity of alkyl chains close to the membrane center. Profiles of the oxygen transport parameter and hydrophobicity have a rectangular shape and also indicate a high fluidity and hydrophobicity of the membrane center. The amount of CBD was greater in nuclear membranes than in cortical membranes. The presence of the CBD in lens lipid membranes, which at 37°C showed a permeability coefficient for oxygen about 60% smaller than across a water layer of the same thickness, would be expected to raise the barrier for oxygen transport across the fiber cell membrane. Properties of human membranes are compared with those obtained for membranes made of lipids extracted from cortex and nucleus of porcine and bovine eye lenses.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
31
|
Mainali L, Hyde JS, Subczynski WK. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 226:35-44. [PMID: 23207176 PMCID: PMC3529815 DOI: 10.1016/j.jmr.2012.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/15/2012] [Accepted: 11/03/2012] [Indexed: 05/18/2023]
Abstract
Conventional and saturation-recovery (SR) EPR at W-band (94GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T(1)(-1)) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R(perpendicular) and R(||)) and order parameters (S(0)). Spectral analysis at X-band provided one rotational diffusion coefficient, R(perpendicular). T(1)(-1), R(perpendicular), and R(||) profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T(1)(-1), R(perpendicular), and R(||), one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S(0), shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ~30 nL, compared with a representative sample volume of ~3 μL at X-band.
Collapse
Affiliation(s)
| | | | - Witold K. Subczynski
- Author to whom correspondence should be addressed: Witold Karol Subczynski, Ph.D., D.Sc., Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, Phone: (414) 456-4038, Fax: (414) 456-6512,
| |
Collapse
|
32
|
Mainali L, Raguz M, O'Brien WJ, Subczynski WK. Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens. Exp Eye Res 2012; 97:117-29. [PMID: 22326289 DOI: 10.1016/j.exer.2012.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eye lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes, because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes-namely, the domain formed by boundary lipids and the domain formed by trapped lipids-were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region.
Collapse
Affiliation(s)
- Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
33
|
Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. J Membr Biol 2011; 245:51-68. [PMID: 22207480 DOI: 10.1007/s00232-011-9412-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The most unique feature of the eye lens fiber-cell plasma membrane is its extremely high cholesterol content. Cholesterol saturates the bulk phospholipid bilayer and induces formation of immiscible cholesterol bilayer domains (CBDs) within the membrane. Our results (based on EPR spin-labeling experiments with lens-lipid membranes), along with a literature search, have allowed us to identify the significant functions of cholesterol specific to the fiber-cell plasma membrane, which are manifest through cholesterol-membrane interactions. The crucial role is played by the CBD. The presence of the CBD ensures that the surrounding phospholipid bilayer is saturated with cholesterol. The saturating cholesterol content in fiber-cell membranes keeps the bulk physical properties of lens-lipid membranes consistent and independent of changes in phospholipid composition. Thus, the CBD helps to maintain lens-membrane homeostasis when the membrane phospholipid composition changes significantly. The CBD raises the barrier for oxygen transport across the fiber-cell membrane, which should help to maintain a low oxygen concentration in the lens interior. It is hypothesized that the appearance of the CBD in the fiber-cell membrane is controlled by the phospholipid composition of the membrane. Saturation with cholesterol smoothes the phospholipid-bilayer surface, which should decrease light scattering and help to maintain lens transparency. Other functions of cholesterol include formation of hydrophobic and rigidity barriers across the bulk phospholipid-cholesterol domain and formation of hydrophobic channels in the central region of the membrane for transport of small, nonpolar molecules parallel to the membrane surface. In this review, we provide data supporting these hypotheses.
Collapse
|
34
|
Plesnar E, Subczynski WK, Pasenkiewicz-Gierula M. Saturation with cholesterol increases vertical order and smoothes the surface of the phosphatidylcholine bilayer: a molecular simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:520-9. [PMID: 22062420 DOI: 10.1016/j.bbamem.2011.10.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
Molecular dynamics (MD) simulations of a mono-cis-unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer and a POPC bilayer containing 50mol% cholesterol (POPC-Chol50) were carried out for 200ns to compare the spatial organizations of the pure POPC bilayer and the POPC bilayer saturated with Chol. The results presented here indicate that saturation with Chol significantly narrows the distribution of vertical positions of the center-of-mass of POPC molecules and POPC atoms in the bilayer. In the POPC-Chol50 bilayer, the same moieties of the lipid molecules are better aligned at a given bilayer depth, forming the following clearly separated membrane regions: the polar headgroup, the rigid core consisting of steroid rings and upper fragments of the acyl chains, and the fluid hydrocarbon core consisting of Chol chains and the lower fragments of POPC chains. The membrane surface of the POPC-Chol50 bilayer is smooth. The results have biological significance because the POPC-Chol50 bilayer models the bulk phospholipid portion of the fiber-cell membrane in the eye lens. It is hypothesized that in the eye lens cholesterol-induced smoothing of the membrane surface decreases light-scattering and helps to maintain lens transparency.
Collapse
Affiliation(s)
- Elżbieta Plesnar
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
35
|
O’Connor JW, Klauda JB. Lipid Membranes with a Majority of Cholesterol: Applications to the Ocular Lens and Aquaporin 0. J Phys Chem B 2011; 115:6455-64. [DOI: 10.1021/jp108650u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph W. O’Connor
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
36
|
Vejux A, Samadi M, Lizard G. Contribution of cholesterol and oxysterols in the physiopathology of cataract: implication for the development of pharmacological treatments. J Ophthalmol 2011; 2011:471947. [PMID: 21577274 PMCID: PMC3090752 DOI: 10.1155/2011/471947] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 12/22/2022] Open
Abstract
The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest an involvement of cholesterol oxide derivatives (also named oxysterols) in the development of cataract. Oxysterol formation can result either from nonenzymatic or enzymatic processes, and some oxysterols can induce a wide range of cytotoxic effects (overproduction of reactive oxygen species (ROS); phospholipidosis) which might contribute to the initiation and progression of cataract. Thus, the conception of molecules capable of regulating cholesterol homeostasia and oxysterol levels in human lens fibers can have some interests and constitute an alternative to surgery at least at early stages of the disease.
Collapse
Affiliation(s)
- Anne Vejux
- Inserm-CIT 808, CHU de Besançon, 25030 Besançon, France
- Equipe Biochimie Métabolique et Nutritionnelle Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer), Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Mohammad Samadi
- LCME/Département de Chimie, Université Paul Verlaine-Metz, 57012 Metz, France
| | - Gérard Lizard
- Equipe Biochimie Métabolique et Nutritionnelle Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer), Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
37
|
Raguz M, Mainali L, Widomska J, Subczynski WK. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1072-80. [PMID: 21192917 PMCID: PMC3062709 DOI: 10.1016/j.bbamem.2010.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 11/18/2022]
Abstract
Electron paramagnetic resonance (EPR) spin-labeling methods were used to study the organization of cholesterol and phospholipids in membranes formed from Chol/POPS (cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine) mixtures, with mixing ratios from 0 to 3. It was confirmed using the discrimination by oxygen transport and polar relaxation agent accessibility methods that the immiscible cholesterol bilayer domain (CBD) was present in all of the suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST) in the POPS membrane. The behavior of phospholipid molecules was monitored with phospholipid analogue spin labels (n-PCs), and the behavior of cholesterol was monitored with the cholesterol analogue spin labels CSL and ASL. Results indicated that phospholipid and cholesterol mixtures can form a membrane suspension up to a mixing ratio of ~2. Additionally, EPR spectra for n-PC, ASL, and CSL indicated that both phospholipids and cholesterol exist in these suspensions in the lipid-bilayer-like structures. EPR spectral characteristics of n-PCs (spin labels located in the phospholipid cholesterol bilayer, outside the CBD) change with increase in the cholesterol content up to and beyond the CST. These results present strong evidence that the CBD forms an integral part of the phospholipid bilayer when formed from a Chol/POPS mixture up to a mixing ratio of ~2. Interestingly, CSL in cholesterol alone (without phospholipids) when suspended in buffer does not detect formation of bilayer-like structures. A broad, single-line EPR signal is given, similar to that obtained for the dry film of cholesterol before addition of the buffer. This broad, single-line signal is also observed in suspensions formed for Chol/POPS mixtures (as a background signal) when the Chol/POPS ratio is much greater than 3. It is suggested that the EPR spin-labeling approach can discriminate and characterize the fraction of cholesterol that forms the CBD within the phospholipid bilayer.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
38
|
Transbilayer organization of membrane cholesterol at low concentrations: Implications in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:19-25. [PMID: 21035427 DOI: 10.1016/j.bbamem.2010.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
Cholesterol is an essential and representative lipid in higher eukaryotic cellular membranes and is often found distributed nonrandomly in domains in biological membranes. A large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content. However, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol such as the endoplasmic reticulum or inner mitochondrial membranes. In this review, we have traced the discovery and subsequent development of the concept of transbilayer cholesterol dimers (domains) in membranes at low concentrations. We have further discussed the role of membrane curvature and thickness on the transbilayer organization of cholesterol. Interestingly, this type of cholesterol organization could be relevant in cellular sorting and trafficking, and in pathological conditions.
Collapse
|
39
|
Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res 2010; 51:2473-88. [PMID: 20407021 PMCID: PMC2918433 DOI: 10.1194/jlr.r004119] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/29/2010] [Indexed: 11/20/2022] Open
Abstract
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Because the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
40
|
Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 2010; 51:439-66. [PMID: 20213554 DOI: 10.1007/978-90-481-8622-8_16] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent 'nonannular' binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin(1A) receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin(1A) receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin(1A) receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin(1A) receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500 007, India
| | | |
Collapse
|
41
|
Solomonov I, Daillant J, Fragneto G, Kjaer K, Micha JS, Rieutord F, Leiserowitz L. Hydrated cholesterol: phospholipid domains probed by synchrotron radiation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:215-221. [PMID: 19629553 DOI: 10.1140/epje/i2009-10498-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/12/2009] [Accepted: 05/26/2009] [Indexed: 05/28/2023]
Abstract
X-ray scattering experiments on mixed films of cholesterol and phospholipids at air-water and Si solid-water interfaces were undertaken to glean information on pathological crystallization of cholesterol bilayers. Grazing-incidence X-ray diffraction patterns at the air-water interface of various cholesterol:dipalmitoyl-phosphatidylcholine (Ch:DPPC) monolayer mixtures compressed beyond monolayer collapse yielded the established 10 x 7.5 Ų Ch bilayer motif, for Ch:DPPC molar ratios higher than 2.5:1. Attempts to obtain a diffraction signal from various Ch:phospholipid film mixtures at the Si solid-water interface, indicative of the presence of the Ch bilayer motif, were unsuccessful. Only after removal of sufficient water from the cell was a weak diffraction signal obtained suggestive of a cholesterol film two bilayers thick. Off-specular X-ray reflectivity measurements made on a 1.75:1 mixture of Ch and bovine cardiac phosphatidylcholine (BCPC) deposited as a bilayer on a Si wafer and placed in a cell filled with water yielded positive results. The derived electron density profile showed the presence of a bilayer mixture consistent with a phase separation of cholesterol and BCPC, and possible formation of a crystalline cholesterol bilayer within the hydrated mixed bilayer, but not a proof thereof.
Collapse
Affiliation(s)
- I Solomonov
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
43
|
Raguz M, Widomska J, Dillon J, Gaillard ER, Subczynski WK. Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1079-90. [PMID: 18298944 PMCID: PMC2711027 DOI: 10.1016/j.bbamem.2008.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/18/2008] [Accepted: 01/30/2008] [Indexed: 12/01/2022]
Abstract
The physical properties of membranes derived from the total lipid extract of porcine lenses before and after the addition of cholesterol were investigated using EPR spin-labeling methods. Conventional EPR spectra and saturation-recovery curves indicate that the spin labels detect a single homogenous environment in membranes before the addition of cholesterol. After the addition of cholesterol (when cholesterol-to-phospholipid mole to mole ratio of 1.55-1.80 was achieved), two domains were detected by the discrimination by oxygen transport method using a cholesterol analogue spin label. The domains were assigned to a bulk phospholipid-cholesterol bilayer made of the total lipid mixture and to a cholesterol crystalline domain. Because the phospholipid analogue spin labels cannot partition into the pure cholesterol crystalline domain, they monitor properties of the phospholipid-cholesterol domain outside the pure cholesterol crystalline domain. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are identical within experimental error in this domain when measured in the absence and presence of a cholesterol crystalline domain. This indicates that both domains, the phospholipid-cholesterol bilayer and the pure cholesterol crystalline domain, can be treated as independent, weakly interacting membrane regions. The upper limit of the oxygen permeability coefficient across the cholesterol crystalline domain at 35 degrees C had a calculated value of 42.5 cm/s, indicating that the cholesterol crystalline domain can significantly reduce oxygen transport to the lens center. This work was undertaken to better elucidate the major factors that determine membrane resistance to oxygen transport across the lens lipid membrane, with special attention paid to the cholesterol crystalline domain.
Collapse
Affiliation(s)
- Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Justyna Widomska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - James Dillon
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Elizabeth R. Gaillard
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, 60115,USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
44
|
Widomska J, Raguz M, Subczynski WK. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2635-45. [PMID: 17662231 PMCID: PMC2093700 DOI: 10.1016/j.bbamem.2007.06.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 11/15/2022]
Abstract
The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. 1768 (2007) 1454-1465). At 35 degrees C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
45
|
Widomska J, Raguz M, Dillon J, Gaillard ER, Subczynski WK. Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1454-65. [PMID: 17451639 PMCID: PMC2041941 DOI: 10.1016/j.bbamem.2007.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/09/2007] [Accepted: 03/13/2007] [Indexed: 11/23/2022]
Abstract
The physical properties of a membrane derived from the total lipids of a calf lens were investigated using EPR spin labeling and were compared with the properties of membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in all three membranes. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are practically identical in lens lipid and POPC/Chol membranes, but differ drastically from profiles in pure POPC membranes. In both lens lipid and POPC/Chol membranes, the lipids are strongly immobilized at all depths, which is in contrast to the high fluidity of the POPC membrane. Hydrophobicity and oxygen transport parameter profiles in lens lipid and POPC/Chol membranes have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. At this position, hydrophobicity increases from the level of methanol to the level of hexane, and the oxygen transport parameter increases by a factor of 2-3. These profiles in POPC membranes are bell-shaped. It is concluded that the high level of cholesterol in lens lipids makes the membrane stable, immobile, and impermeable to both polar and nonpolar molecules.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - James Dillon
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | - Elizabeth R. Gaillard
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, 60115, USA
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
46
|
Jacob RF, Mason RP. Lipid Peroxidation Induces Cholesterol Domain Formation in Model Membranes. J Biol Chem 2005; 280:39380-7. [PMID: 16195227 DOI: 10.1074/jbc.m507587200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous reports have established that lipid peroxidation contributes to cell injury by altering the basic physical properties and structural organization of membrane components. Oxidative modification of polyunsaturated phospholipids has been shown, in particular, to alter the intermolecular packing, thermodynamic, and phase parameters of the membrane bilayer. In this study, the effects of oxidative stress on membrane phospholipid and sterol organization were measured using small angle x-ray diffraction approaches. Model membranes enriched in dilinoleoylphosphatidylcholine were prepared at various concentrations of cholesterol and subjected to lipid peroxidation at physiologic conditions. At cholesterol-to-phospholipid mole ratios (C/P) as low as 0.4, lipid peroxidation induced the formation of discrete, membrane-restricted cholesterol domains having a unit cell periodicity or d-space value of 34 A. The formation of cholesterol domains correlated directly with lipid hydroperoxide levels and was inhibited by treatment with vitamin E. In the absence of oxidative stress, similar cholesterol domains were observed only at C/P ratios of 1.0 or higher. In addition to changes in sterol organization, lipid peroxidation also caused reproducible changes in overall membrane structure, including a 10 A reduction in the width of the surrounding, sterol-poor membrane bilayer. These data provided direct evidence that lipid peroxidation alters the essential organization and structure of membrane lipids in a manner that may contribute to changes in membrane function during aging and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Robert F Jacob
- Elucida Research, Beverly, Massachusetts 01915-0091, USA.
| | | |
Collapse
|
47
|
Jernigan HM, Blum PS, Chakrabarti I, Su Y, Zigler JS. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs. Ophthalmic Res 2005; 37:7-12. [PMID: 15604593 DOI: 10.1159/000082764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effects of cataractogenesis on phospholipid (P-lipid) synthesis in sugar cataracts from galactosemic rats and in hereditary cataracts from 13/N guinea pigs. Cataractous lenses from rats fed a 50% galactose diet for 7 days were incubated 24 h with radiolabeled choline or ethanolamine and the P-lipids were extracted. The galactosemic cataracts synthesized twice as much phosphatidylcholine (PtdCho) as control rat lenses, and phosphatidylethanolamine synthesis also was increased. Similar analysis of cataractous lenses from 3-week-old 13/N guinea pigs showed a 3-fold increase in PtdCho synthesis compared with control lenses. In all cases, the P-lipid precursor pool was lower in cataracts than in control lenses. The increased P-lipid synthesis in these cataracts may represent a membrane repair response to cataractogenic stress.
Collapse
Affiliation(s)
- Howard M Jernigan
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
48
|
Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:597-615. [PMID: 15862574 DOI: 10.1016/j.ijpara.2005.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
The fast intracellular multiplication of apicomplexan parasites including Toxoplasma and Plasmodium, requires large amounts of lipids necessary for the membrane biogenesis of new progenies. Hence, the study of lipids is fundamental in order to understand the biology and pathogenesis of these deadly organisms. Much has been reported on the importance of polar lipids, e.g. phospholipids in Plasmodium. Comparatively, little attention has been paid to the metabolism of neutral lipids, including sterols, steryl esters and acylglycerols. In eukaryotic cells, free sterols are membrane components whereas steryl esters and acylglycerols are stored in cytosolic lipid inclusions. The first part of this review describes the recent advances in neutral lipid synthesis and storage in Toxoplasma and Plasmodium. New potential pharmacological targets in the pathways producing neutral lipids are outlined. In addition to lipid bodies, Apicomplexa contain unique secretory organelles involved in parasite invasion named rhoptries. These compartments appear to sequester most of the cholesterol found in the exocytic pathway. The second part of the review focuses on rhoptry cholesterol and its potential roles in the biogenesis, structural organisation and function of these unique organelles among eukaryotes.
Collapse
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2223, USA.
| | | |
Collapse
|
49
|
Mukherjee S, Chattopadhyay A. Monitoring cholesterol organization in membranes at low concentrations utilizing the wavelength-selective fluorescence approach. Chem Phys Lipids 2004; 134:79-84. [PMID: 15752466 DOI: 10.1016/j.chemphyslip.2004.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/22/2022]
Abstract
We previously showed using a fluorescent analogue of cholesterol (NBD-cholesterol, or 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol), that cholesterol may exhibit local organization at low concentrations in membranes by the formation of transbilayer tail-to-tail dimers of cholesterol (Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001. Biophys. J. 81, 2122-2134). In this report, we have monitored the microenvironmental features of cholesterol monomers and dimers utilizing wavelength-selective fluorescence spectroscopy. Our results utilizing red edge excitation shift (REES) and wavelength-dependent change in fluorescence anisotropy show that the microenvironment around the NBD moieties in the dimer form is more rigid possibly due to steric constraints imposed by the dimer conformation. These results provide new information and are relevant in understanding the organization of cholesterol in membranes at low concentrations.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
50
|
Solomonov I, Weygand MJ, Kjaer K, Rapaport H, Leiserowitz L. Trapping crystal nucleation of cholesterol monohydrate: relevance to pathological crystallization. Biophys J 2004; 88:1809-17. [PMID: 15596496 PMCID: PMC1305235 DOI: 10.1529/biophysj.104.044834] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers in a monoclinic cholesterol.H(2)O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before transformation to the triclinic phase of cholesterol.H(2)O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol.H(2)O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|