1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Debold EP. Mini‐ review: Recent insights into the relative timing of myosin’s powerstroke and release of phosphate. Cytoskeleton (Hoboken) 2022; 78:448-458. [DOI: 10.1002/cm.21695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
3
|
Chinthalapudi K, Heissler SM, Preller M, Sellers JR, Manstein DJ. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. eLife 2017; 6:32742. [PMID: 29256864 PMCID: PMC5749951 DOI: 10.7554/elife.32742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/18/2017] [Indexed: 01/10/2023] Open
Abstract
Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å pre-powerstroke state (ADP⋅VO4) crystal structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany.,Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah M Heissler
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Matthias Preller
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | - James R Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Bibó A, Károlyi G, Kovács M. Unrevealed part of myosin's powerstroke accounts for high efficiency of muscle contraction. Biochim Biophys Acta Gen Subj 2017; 1861:2325-2333. [DOI: 10.1016/j.bbagen.2017.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022]
|
5
|
Kiani FA, Fischer S. ATP-dependent interplay between local and global conformational changes in the myosin motor. Cytoskeleton (Hoboken) 2016; 73:643-651. [PMID: 27583666 DOI: 10.1002/cm.21333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 11/07/2022]
Abstract
The ATPase active site of myosin is located at the core of the motor head. During the Lymn-Taylor actomyosin contractile cycle, small conformational changes in the active site upon ATP binding, ATP hydrolysis and ADP/Pi release are accompanied by large conformational transitions of the motor domains, such as opening and closing of the actin binding cleft and the movement of lever arm. Here, our previous computational studies of myosin are summarized in a comprehensive model at the level of atomic detail. Molecular movies show how the successive domain motions during the ATP induced actin dissociation and the recovery stroke are coupled with the precise positioning of the key catalytic groups in the active site. This leads to a precise timing of the activation of the ATPase function: it allows ATP hydrolysis only after unbinding from actin and the priming of the lever arm, both pre-requisites for an efficient functioning of the motor during the subsequent power stroke. These coupling mechanisms constitute essential principles of every myosin motor, of which the ATP-site can be seen as the central allosteric control unit. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farooq Ahmad Kiani
- Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, University of Heidelberg, Heidelberg, D-69120, Germany.,Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 205, University of Heidelberg, Heidelberg, D-69120, Germany
| |
Collapse
|
6
|
Cochran JC, Thompson ME, Kull FJ. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. J Biol Chem 2013; 288:28312-23. [PMID: 23960071 DOI: 10.1074/jbc.m113.466045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.
Collapse
Affiliation(s)
- Jared C Cochran
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
7
|
Nagy NT, Chakraborty S, Harami GM, Sellers JR, Sakamoto T, Kovács M. A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a. PLoS One 2013; 8:e62640. [PMID: 23650521 PMCID: PMC3641075 DOI: 10.1371/journal.pone.0062640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/23/2013] [Indexed: 11/28/2022] Open
Abstract
The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands.
Collapse
Affiliation(s)
- Nikolett T. Nagy
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Saikat Chakraborty
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Gábor M. Harami
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA (Eötvös Loránd University-Hungarian Academy of Sciences) “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
8
|
Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain. Proc Natl Acad Sci U S A 2013; 110:7211-6. [PMID: 23589853 DOI: 10.1073/pnas.1222257110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used transient kinetics, nanosecond time-resolved fluorescence resonance energy transfer (FRET), and kinetics simulations to resolve a structural transition in the Dictyostelium myosin II relay helix during the actin-activated power stroke. The relay helix plays a critical role in force generation in myosin, coupling biochemical changes in the ATPase site with the force-transducing rotation of the myosin light-chain domain. Previous research in the absence of actin showed that ATP binding to myosin induces a dynamic equilibrium between a bent prepower stroke state of the relay helix and a straight postpower stroke state, which dominates in the absence of ATP or when ADP is bound. We now ask whether actin binding reverses this transition and if so, how this reversal is coordinated with actin-activated phosphate release. We labeled a Cys-lite Dictyostelium myosin II motor domain with donor and acceptor probes at two engineered Cys residues designed to detect relay helix bending. We then performed transient time-resolved FRET following stopped-flow mixing of actin with labeled myosin, preincubated with ATP. We determined the kinetics of actin-activated phosphate release, using fluorescent phosphate-binding protein. The results show that actin binding to the myosin.ADP.P complex straightens the relay helix before phosphate dissociation. This actin-activated relay helix straightening is reversible, but phosphate irreversibly dissociates from the postpower stroke state, preventing reversal of the power stroke. Thus, relay helix straightening gates phosphate dissociation, whereas phosphate dissociation provides the thermodynamic driving force underlying force production.
Collapse
|
9
|
Haithcock J, Billington N, Choi K, Fordham J, Sellers JR, Stafford WF, White H, Forgacs E. The kinetic mechanism of mouse myosin VIIA. J Biol Chem 2011; 286:8819-28. [PMID: 21212272 DOI: 10.1074/jbc.m110.163592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VIIa is crucial in hearing and visual processes. We examined the kinetic and association properties of the baculovirus expressed, truncated mouse myosin VIIa construct containing the head, all 5IQ motifs and the putative coiled coil domain (myosin VIIa-5IQ). The construct appears to be monomeric as determined by analytical ultracentrifugation experiments, and only single headed molecules were detected by negative stain electron microscopy. The relatively high basal steady-state rate of 0.18 s(-1) is activated by actin only by ∼3.5-fold resulting in a V(max) of 0.7 s(-1) and a K(ATPase) of 11.5 μM. There is no single rate-limiting step of the ATP hydrolysis cycle. The ATP hydrolysis step (M·T M·D·P) is slow (12 s(-1)) and the equilibrium constant (K(H)) of 1 suggests significant reversal of hydrolysis. In the presence of actin ADP dissociates with a rate constant of 1.2 s(-1). Phosphate dissociation is relatively fast (>12 s(-1)), but the maximal rate could not be experimentally obtained at actin concentrations ≤ 50 μM because of the weak binding of the myosin VIIa-ADP-P(i) complex to actin. At higher actin concentrations the rate of attached hydrolysis (0.4 s(-1)) becomes significant and partially rate-limiting. Our findings suggest that the myosin VIIa is a "slow", monomeric molecular motor with a duty ratio of 0.6.
Collapse
Affiliation(s)
- Jessica Haithcock
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nagy NT, Sakamoto T, Takács B, Gyimesi M, Hazai E, Bikádi Z, Sellers JR, Kovács M. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. FASEB J 2010; 24:4480-90. [PMID: 20631329 DOI: 10.1096/fj.10-163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg(2+)-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg(2+)-dependent nucleotide exchange.
Collapse
Affiliation(s)
- Nikolett T Nagy
- Department of Biochemistry, Eötvös University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability. J Mol Biol 2010; 398:625-32. [PMID: 20362584 DOI: 10.1016/j.jmb.2010.03.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022]
Abstract
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (V(max)) by approximately 60% compared to wild-type myosin, but there is no change in apparent actin affinity (K(m)). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by approximately 15% or approximately 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by approximately 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional "cracking" of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.
Collapse
|
12
|
Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. Proc Natl Acad Sci U S A 2010; 107:6799-804. [PMID: 20351242 DOI: 10.1073/pnas.0907585107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The powerstroke of the myosin motor is the basis of cell division and bodily movement, but has eluded empirical description due to the short lifetime and low abundance of intermediates during force generation. To gain insight into this process, we used well-established single-tryptophan and pyrene fluorescent sensors and electron microscopy to characterize the structural and kinetic properties of myosin complexed with ADP and blebbistatin, a widely used inhibitor. We found that blebbistatin does not weaken the tight actin binding of myosin.ADP, but unexpectedly it induces lever priming, a process for which the gamma-phosphate of ATP (or its analog) had been thought necessary. The results indicate that a significant fraction of the myosin.ADP.blebbistatin complex populates a previously inaccessible conformation of myosin resembling the start of the powerstroke.
Collapse
|
13
|
Thomas DD, Kast D, Korman VL. Site-directed spectroscopic probes of actomyosin structural dynamics. Annu Rev Biophys 2009; 38:347-69. [PMID: 19416073 DOI: 10.1146/annurev.biophys.35.040405.102118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieved impressive advances in sensitivity and resolution. Here we highlight the contributions of site-directed spectroscopic probes to understanding the structural dynamics of myosin II and its actin complexes in solution and muscle fibers. We emphasize studies that probe directly the movements of structural elements within the myosin catalytic and light-chain domains, and changes in the dynamics of both actin and myosin due to their alternating strong and weak interactions in the ATPase cycle. A moving picture emerges in which single biochemical states produce multiple structural states, and transitions between states of order and dynamic disorder power the actomyosin engine.
Collapse
Affiliation(s)
- David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
14
|
The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nat Struct Mol Biol 2009; 16:80-8. [PMID: 19122661 DOI: 10.1038/nsmb.1542] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 12/02/2008] [Indexed: 12/15/2022]
Abstract
We have identified pentabromopseudilin (PBP) as a potent inhibitor of myosin-dependent processes such as isometric tension development and unloaded shortening velocity. PBP-induced reductions in the rate constants for ATP binding, ATP hydrolysis and ADP dissociation extend the time required per myosin ATPase cycle in the absence and presence of actin. Additionally, coupling between the actin and nucleotide binding sites is reduced in the presence of the inhibitor. The selectivity of PBP differs from that observed with other myosin inhibitors. To elucidate the binding mode of PBP, we crystallized the Dictyostelium myosin-2 motor domain in the presence of Mg(2+)-ADP-meta-vanadate and PBP. The electron density for PBP is unambiguous and shows PBP to bind at a previously unknown allosteric site near the tip of the 50-kDa domain, at a distance of 16 A from the nucleotide binding site and 7.5 A away from the blebbistatin binding pocket.
Collapse
|
15
|
Harris MJ, Woo HJ. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:1-12. [PMID: 18568345 DOI: 10.1007/s00249-008-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
Collapse
Affiliation(s)
- Michael J Harris
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
16
|
Gyimesi M, Kintses B, Bodor A, Perczel A, Fischer S, Bagshaw CR, Málnási-Csizmadia A. The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II. J Biol Chem 2008; 283:8153-63. [PMID: 18211892 DOI: 10.1074/jbc.m708863200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate-limiting step of the myosin basal ATPase (i.e. in absence of actin) is assumed to be a post-hydrolysis swinging of the lever arm (reverse recovery step), that limits the subsequent rapid product release steps. However, direct experimental evidence for this assignment is lacking. To investigate the binding and the release of ADP and phosphate independently from the lever arm motion, two single tryptophan-containing motor domains of Dictyostelium myosin II were used. The single tryptophans of the W129+ and W501+ constructs are located at the entrance of the nucleotide binding pocket and near the lever arm, respectively. Kinetic experiments show that the rate-limiting step in the basal ATPase cycle is indeed the reverse recovery step, which is a slow equilibrium step (k(forward) = 0.05 s(-1), k(reverse) = 0.15 s(-1)) that precedes the phosphate release step. Actin directly activates the reverse recovery step, which becomes practically irreversible in the actin-bound form, triggering the power stroke. Even at low actin concentrations the power stroke occurs in the actin-attached states despite the low actin affinity of myosin in the pre-power stroke conformation.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, Institute of Biology, Eötvös University, Pázmány Péter Sétány 1/A, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Halstead MF, Ajtai K, Penheiter AR, Spencer JD, Zheng Y, Morrison EA, Burghardt TP. An unusual transduction pathway in human tonic smooth muscle myosin. Biophys J 2007; 93:3555-66. [PMID: 17704147 PMCID: PMC2072059 DOI: 10.1529/biophysj.106.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network.
Collapse
Affiliation(s)
- Miriam F Halstead
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Málnási-Csizmadia A, Tóth J, Pearson DS, Hetényi C, Nyitray L, Geeves MA, Bagshaw CR, Kovács M. Selective perturbation of the myosin recovery stroke by point mutations at the base of the lever arm affects ATP hydrolysis and phosphate release. J Biol Chem 2007; 282:17658-64. [PMID: 17449872 DOI: 10.1074/jbc.m701447200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After ATP binding the myosin head undergoes a large structural rearrangement called the recovery stroke. This transition brings catalytic residues into place to enable ATP hydrolysis, and at the same time it causes a swing of the myosin lever arm into a primed state, which is a prerequisite for the power stroke. By introducing point mutations into a subdomain interface at the base of the myosin lever arm at positions Lys(84) and Arg(704), we caused modulatory changes in the equilibrium constant of the recovery stroke, which we could accurately resolve using the fluorescence signal of single tryptophan Dictyostelium myosin II constructs. Our results shed light on a novel role of the recovery stroke: fine-tuning of this reversible equilibrium influences the functional properties of myosin through controlling the effective rates of ATP hydrolysis and phosphate release.
Collapse
|
19
|
Yu H, Ma L, Yang Y, Cui Q. Mechanochemical coupling in the myosin motor domain. II. Analysis of critical residues. PLoS Comput Biol 2007; 3:e23. [PMID: 17305418 PMCID: PMC1800309 DOI: 10.1371/journal.pcbi.0030023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 12/21/2006] [Indexed: 12/02/2022] Open
Abstract
An important challenge in the analysis of mechanochemical coupling in molecular motors is to identify residues that dictate the tight coupling between the chemical site and distant structural rearrangements. In this work, a systematic attempt is made to tackle this issue for the conventional myosin. By judiciously combining a range of computational techniques with different approximations and strength, which include targeted molecular dynamics, normal mode analysis, and statistical coupling analysis, we are able to identify a set of important residues and propose their relevant function during the recovery stroke of myosin. These analyses also allowed us to make connections with previous experimental and computational studies in a critical manner. The behavior of the widely used reporter residue, Trp501, in the simulations confirms the concern that its fluorescence does not simply reflect the relay loop conformation or active-site open/close but depends subtly on its microenvironment. The findings in the targeted molecular dynamics and a previous minimum energy path analysis of the recovery stroke have been compared and analyzed, which emphasized the difference and complementarity of the two approaches. In conjunction with our previous studies, the current set of investigations suggest that the modulation of structural flexibility at both the local (e.g., active-site) and domain scales with strategically placed "hotspot" residues and phosphate chemistry is likely the general feature for mechanochemical coupling in many molecular motors. The fundamental strategies of examining both collective and local changes and combining physically motivated methods and informatics-driven techniques are expected to be valuable to the study of other molecular motors and allosteric systems in general.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Liang Ma
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yang Yang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Yu H, Ma L, Yang Y, Cui Q. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. PLoS Comput Biol 2007; 3:e21. [PMID: 17291159 PMCID: PMC1796662 DOI: 10.1371/journal.pcbi.0030021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 12/21/2006] [Indexed: 12/28/2022] Open
Abstract
Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP), the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide hydrolysis and/or binding).
Collapse
Affiliation(s)
- Haibo Yu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Liang Ma
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yang Yang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Kintses B, Simon Z, Gyimesi M, Tóth J, Jelinek B, Niedetzky C, Kovács M, Málnási-Csizmadia A. Enzyme kinetics above denaturation temperature: a temperature-jump/stopped-flow apparatus. Biophys J 2006; 91:4605-10. [PMID: 17012324 PMCID: PMC1779911 DOI: 10.1529/biophysj.106.092833] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/23/2006] [Indexed: 11/18/2022] Open
Abstract
We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.
Collapse
Affiliation(s)
- Bálint Kintses
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Y, Kovács M, Xu Q, Anderson JB, Sellers JR. Myosin VIIB from Drosophila is a high duty ratio motor. J Biol Chem 2005; 280:32061-8. [PMID: 16055438 DOI: 10.1074/jbc.m506765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VII is an unconventional myosin widely expressed in organisms ranging from amoebae to mammals that has been shown to play vital roles in cell adhesion and phagocytosis. Here we present the first study of the mechanism of action of a myosin VII isoform. We have expressed a truncated single-headed Drosophila myosin VIIB construct in the baculovirus-Sf9 system that bound calmodulin light chains. By using steady-state and transient kinetic methods, we showed that myosin VIIB exhibits a fast release of phosphate and a slower, rate-limiting ADP release from actomyosin. As a result, myosin VIIB will be predominantly strongly bound to actin during steady-state ATP hydrolysis (its duty ratio will be at least 80%). This kinetic pattern is in many respects similar to that of the single-molecule vesicle transporters myosin V and VI. The enzymatic properties of myosin VIIB provide a kinetic basis for processivity upon possible dimerization via the C-terminal domains of the heavy chain. Our experiments also revealed conformational heterogeneity of the actomyosin VIIB complex in the absence of nucleotide.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | | | |
Collapse
|
23
|
Bódis E, Strambini GB, Gonnelli M, Málnási-Csizmadia A, Somogyi B. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain. Biophys J 2005; 87:1146-54. [PMID: 15298917 PMCID: PMC1304453 DOI: 10.1529/biophysj.104.041855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.
Collapse
Affiliation(s)
- Emöke Bódis
- Hungarian Academy of Sciences, Research Group for Fluorescence Spectroscopy, Office for Academy Research Groups Attached to Universities and Other Institutions, 7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
24
|
Abstract
We have performed a detailed biochemical kinetic and spectroscopic study on a recombinant myosin X head construct to establish a quantitative model of the enzymatic mechanism of this membrane-bound myosin. Our model shows that during steady-state ATP hydrolysis, myosin X exhibits a duty ratio (i.e. the fraction of the cycle time spent strongly bound to actin) of around 16%, but most of the remaining myosin heads are also actin-attached even at moderate actin concentrations in the so-called "weak" actin-binding states. Contrary to the high duty ratio motors myosin V and VI, the ADP release rate constant from actomyosin X is around five times greater than the maximal steady-state ATPase activity, and the kinetic partitioning between different weak actin-binding states is a major contributor to the rate limitation of the enzymatic cycle. Two different ADP states of myosin X are populated in the absence of actin, one of which shows very similar kinetic properties to actomyosin.ADP. The nucleotide-free complex of myosin X with actin shows unique spectral and biochemical characteristics, indicating a special mode of actomyosin interaction.
Collapse
|
25
|
Geeves MA, Holmes KC. The Molecular Mechanism of Muscle Contraction. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:161-93. [PMID: 16230112 DOI: 10.1016/s0065-3233(04)71005-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
26
|
Ohki T, Mikhailenko SV, Morales MF, Onishi H, Mochizuki N. Transmission of force and displacement within the myosin molecule. Biochemistry 2004; 43:13707-14. [PMID: 15504033 DOI: 10.1021/bi048954f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myosin is a repetitive impeller of actin, using its catalysis of ATP hydrolysis to derive repeatedly the required free energy decrements. In each impulsion, changes at the myosin active site are transmitted through a series of structural elements to the myosin propeller (lever arm), almost 5 nm away. While the nature of transmission through most elements is evident, that through the so-called converter is not. To investigate how the converter changes linear displacement into rotation, we tested (one at a time) the effect of two Phe residue mutations (at 721 and 775) in the converter on the overall function of a heavy meromyosin (or subfragment 1) system, after first showing by observing kinetic behaviors that neither mutation affects other elements in the transmission. Using three tests (direct movement of the lever arm, activity in a motility assay with actin filaments, and direct force measurement of lever arm function), we found that these mutations affected only movements of the converter and the lever arm. From interpreting our observations in terms of the structure of the converter, we deduce that the linear-rotational transformation in the converter is mediated by a little machine (two Phe residues linked to a Gly) within a machine.
Collapse
Affiliation(s)
- Takashi Ohki
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | |
Collapse
|
27
|
Kovács M, Tóth J, Málnási-Csizmadia A, Bagshaw CR, Nyitray L. Engineering lysine reactivity as a conformational sensor in the Dictyostelium myosin II motor domain. J Muscle Res Cell Motil 2004; 25:95-102. [PMID: 15160493 DOI: 10.1023/b:jure.0000021352.80800.b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lys84 of skeletal muscle myosin located at the interface between the motor and neck domains has long been utilized as a useful chemical probe sensing motor domain conformational changes and tilting of the lever arm. Here we report the first site-directed mutagenesis study on this side chain and its immediate chemical environment. We made Dictyostelium myosin II motor domain constructs in which Lys84 was replaced by either a methionine or a glutamic acid residue and another mutant containing an Arg704Glu substitution. By following trinitrophenylation of the mutant constructs, we first unambiguously identify Lys84 as the reactive lysine in Dictyostelium myosin. Analysis of the reaction profiles also reveals that the Lys84-Arg704 interaction at the interface of two subdomains of the myosin head has a significant effect on Lys84 reactivity, but it is not the only determinant of this property. Our findings imply that the nucleotide sensitivity of the trinitrophenylation reaction is a general feature of conventional myosins that reflects similar changes in the conformational dynamics of the different orthologs during the ATPase cycle.
Collapse
Affiliation(s)
- Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary.
| | | | | | | | | |
Collapse
|
28
|
Li G, Cui Q. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase. Biophys J 2004; 86:743-63. [PMID: 14747312 PMCID: PMC1303924 DOI: 10.1016/s0006-3495(04)74152-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The structural flexibilities of two molecular machines, myosin and Ca(2+)-ATPase, have been analyzed with normal mode analysis and discussed in the context of their energy conversion functions. The normal mode analysis with physical intermolecular interactions was made possible by an improved implementation of the block normal mode (BNM) approach. The BNM results clearly illustrated that the large-scale conformational transitions implicated in the functional cycles of the two motor systems can be largely captured with a small number of low-frequency normal modes. Therefore, the results support the idea that structural flexibility is an essential part of the construction principle of molecular motors through evolution. Such a feature is expected to be more prevalent in motor proteins than in simpler systems (e.g., signal transduction proteins) because in the former, large-scale conformational transitions often have to occur before the chemical events (e.g., ATP hydrolysis in myosin and ATP binding/phosphorylation in Ca(2+)-ATPase). This highlights the importance of Brownian motions associated with the protein domains that are involved in the functional transitions; in this sense, Brownian molecular machines is an appropriate description of molecular motors, although the normal mode results do not address the origin of the ratchet effect. The results also suggest that it might be more appropriate to describe functional transitions in some molecular motors as intrinsic elastic motions modulating local structural changes in the active site, which in turn gets stabilized by the subsequent chemical events, in contrast with the conventional idea of local changes somehow getting amplified into larger-scale motions. In the case of myosin, for example, we favor the idea that Brownian motions associated with the flexible converter propagates to the Switch I/II region, where the salt-bridge formation gets stabilized by ATP hydrolysis, in contrast with the textbook notion that ATP hydrolysis drives the converter motion. Another useful aspect of the BNM results is that selected low-frequency normal modes have been identified to form a set of collective coordinates that can be used to characterize the progress of a significant fraction of large-scale conformational transitions. Therefore, the present normal mode analysis has provided a stepping-stone toward more elaborate microscopic simulations for addressing critical issues in free energy conversions in molecular machines, such as the coupling and the causal relationship between collective motions and essential local changes at the catalytic active site where ATP hydrolysis occurs.
Collapse
Affiliation(s)
- Guohui Li
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Sasaki N, Ohkura R, Sutoh K. Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation. J Muscle Res Cell Motil 2003; 23:697-702. [PMID: 12952068 DOI: 10.1023/a:1024415409406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During steady-state ATP hydrolysis by actomyosin, myosin cyclically passes through strong actin-binding states and weak actin-binding states, depending on the nature of a nucleotide in the ATPase site. This cyclic change of actin-myosin affinity is coupled with the lever-arm swing and is critical for the sliding motion and force generation of actomyosin. To understand the structure-function relationship of this ATPase-dependent actin-myosin interaction, Dictyostelium myosin II has been extensively used for site-directed mutagenesis. By generating a large number of mutant myosins, two hydrophobic actin-binding sites have been revealed, located at the tip of the upper and lower 50 K subdomains of Dictyostelium myosin, one of which is the 'cardiomyopathy loop'. Furthermore, the slight change in relative orientation of these two hydrophobic sites around the 'strut loop' has been shown to work as a switch to turn on and off the strong binding to actin. Once the switch is turned off, myosin enters in the weak-binding state, where ionic interactions between actin and the 'loop 2' of myosin become the dominant force to maintain the actin-myosin association. The details of actin-myosin interactions revealed by the Dictyostelium system can serve as a framework for further examinations of the myosin superfamily proteins.
Collapse
Affiliation(s)
- Naoya Sasaki
- Center for Interdisciplinary Research, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | | | | |
Collapse
|
30
|
Wakelin S, Conibear PB, Woolley RJ, Floyd DN, Bagshaw CR, Kovács M, Málnási-Csizmadia A. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. J Muscle Res Cell Motil 2003; 23:673-83. [PMID: 12952066 DOI: 10.1023/a:1024411208497] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dictyostelium discoideum is a useful host for the production of constructs for the analysis of structure-function relationships of myosin. Here we describe the use of myosin II constructs containing a single tryptophan residue, at different locations, for probing events at the nucleotide binding site, the relay loop and the communication path between them. GFP fusions have also been expressed at the N- and C-termini of the myosin motor to provide sensitive probes of the actomyosin dissociation reaction in microscope-based kinetic assays. We report on the fluorescence anisotropy of these constructs in the context of their use as resonance energy transfer probes.
Collapse
Affiliation(s)
- Stuart Wakelin
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Ito K, Uyeda TQP, Suzuki Y, Sutoh K, Yamamoto K. Requirement of domain-domain interaction for conformational change and functional ATP hydrolysis in myosin. J Biol Chem 2003; 278:31049-57. [PMID: 12756255 DOI: 10.1074/jbc.m304138200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coordination between the nucleotide-binding site and the converter domain of myosin is essential for its ATP-dependent motor activities. To unveil the communication pathway between these two sites, we investigated contact between side chains of Phe-482 in the relay helix and Gly-680 in the SH1-SH2 helix. F482A myosin, in which Phe-482 was changed to alanine with a smaller side chain, was not functional in vivo. In vitro, F482A myosin did not move actin filaments and the Mg2+-ATPase activity of F482A myosin was hardly activated by actin. Phosphate burst and tryptophan fluorescence analyses, as well as fluorescence resonance energy transfer measurements to estimate the movements of the lever arm domain, indicated that the transition from the open state to the closed state, which precedes ATP hydrolysis, is very slow. In contrast, F482A/G680F doubly mutated myosin was functional in vivo and in vitro. The fact that a larger side chain at the 680th position suppresses the defects of F482A myosin suggests that the defects are caused by insufficient contact between side chains of Ala-482 and Gly-680. Thus, the contact between these two side chains appears to play an important role in the coordinated conformational changes and subsequent ATP hydrolysis.
Collapse
Affiliation(s)
- Kohji Ito
- Department of Biology, Chiba University, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | |
Collapse
|
32
|
Burghardt TP, Park S, Dong WJ, Xing J, Cheung HC, Ajtai K. Energy transduction optical sensor in skeletal myosin. Biochemistry 2003; 42:5877-84. [PMID: 12741846 DOI: 10.1021/bi026183e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The skeletal myosin cross-bridge in dynamic association with actin is the unitary energy transducer in muscle, converting free energy from ATP hydrolysis into contractile force. Myosin's conserved ATP-sensitive tryptophan (AST) is an energy transduction optical sensor signaling transduction-related transient conformation change by modulating its fluorescence intensity amplitude and relaxation rate. Recently introduced techniques have provided the means of observing the time-resolved intensity decay from this single residue in the native protein to elucidate the mechanism of its ATP sensitivity. AST signal characteristics could be derived from local protein structure by a scenario involving interactions with excited-state tryptophan. This investigation suggests the very different possibility that hypochromism induced in the tryptophan absorption band, a ground-state effect, is a significant structural effector of optical transduction sensing. This possibility makes feasible the interpretation of the transient AST optical signal in terms of dynamical protein structure, thereby raising the empirical signal to the level of a structural determinant. Using the crystallographically based geometry from several myosin structures, the maximum calculated AST hypochromism is <10% to be compared with the value of approximately 30% observed here experimentally. Rationalizing the discrepancy invites further investigation of S1 dynamical structure local to the AST during transduction.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street Southwest, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Wakelin S, Bagshaw CR. A prism combination for near isotropic fluorescence excitation by total internal reflection. J Microsc 2003; 209:143-8. [PMID: 12588531 DOI: 10.1046/j.1365-2818.2003.01118.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is finding increasing application for selectively detecting molecules at or near a glass-water surface. As with all fluorescence methods, the efficiency of excitation of a fluorophore is potentially sensitive to the polarization state of the source. In TIRF, s-polarized excitation produces an evanescent field that is perpendicular to the incident plane (y direction), whereas p-polarized light generates a more complex pattern but one dominated by a field that is vertical to the surface (z direction). Thus, fluorophores whose absorption dipoles are fixed in the x direction are not favourably aligned for excitation. Here we describe a beam-splitting prism arrangement that allows excitation by two orthogonal beams, thus giving isotropic excitation in the x-y plane with s-polarized light. With linearly polarized light at the magic angle, near isotropic excitation in three dimensions should be achieved. This prism design should find application in polarized fluorescence microscopy to investigate the rotational motions of macromolecules or to minimize flickering of fluorescence emission arising from molecular rotations in single molecule studies.
Collapse
Affiliation(s)
- S Wakelin
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
34
|
Sasaki N, Ohkura R, Sutoh K. Dictyostelium myosin II mutations that uncouple the converter swing and ATP hydrolysis cycle. Biochemistry 2003; 42:90-5. [PMID: 12515542 DOI: 10.1021/bi026051l] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the ATP hydrolysis cycle of the Dictyostelium myosin II motor domain, two conserved alpha-helices, the SH1/SH2 helix and the relay helix, rotate in a coordinated way to induce the swing motion of the converter domain. A network of hydrophobic and ionic interactions in these two helices and the converter may ensure that the motions of these helices are effectively transmitted to the converter. To examine the roles of these interactions in the ATPase-dependent converter swing, we disrupted two conserved hydrophobic linkages among them by means of a point mutation (I499A or F692A). The resulting mutations induced only limited changes in the kinetic parameters of ATP hydrolysis, except for a marked increase of basal MgATPase activity. However, the mutant myosins completely lost their in vitro and in vivo motor functions. Measurements of the intrinsic tryptophan fluorescence and the GFP-based FRET revealed that the converter domain of these mutants did not swing during steady-state ATP hydrolysis or in the presence of tightly trapped Mg.ADP.V(i), which shows that the point mutations induced the uncoupling of the converter swing and ATP hydrolysis cycle. These results highlight the importance of these hydrophobic linkages for transmitting the coordinated twist motions of the helices to the converter as well as the requirement of this converter swing for force generation.
Collapse
Affiliation(s)
- Naoya Sasaki
- Center for Interdisciplinary Research, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | | | | |
Collapse
|
35
|
Kovacs M, Malnasi-Csizmadia A, Woolley RJ, Bagshaw CR. Analysis of nucleotide binding to Dictyostelium myosin II motor domains containing a single tryptophan near the active site. J Biol Chem 2002; 277:28459-67. [PMID: 11971905 DOI: 10.1074/jbc.m202180200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium myosin II motor domain constructs containing a single tryptophan residue near the active sites were prepared in order to characterize the process of nucleotide binding. Tryptophan was introduced at positions 113 and 131, which correspond to those naturally present in vertebrate skeletal muscle myosin, as well as position 129 that is also close to the adenine binding site. Nucleotide (ATP and ADP) binding was accompanied by a large quench in protein fluorescence in the case of the tryptophans at 129 and 131 but a small enhancement for that at 113. None of these residues was sensitive to the subsequent open-closed transition that is coupled to hydrolysis (i.e. ADP and ATP induced similar fluorescence changes). The kinetics of the fluorescence change with the F129W mutant revealed at least a three-step nucleotide binding mechanism, together with formation of a weakly competitive off-line intermediate that may represent a nonproductive mode of nucleotide binding. Overall, we conclude that the local and global conformational changes in myosin IIs induced by nucleotide binding are similar in myosins from different species, but the sign and magnitude of the tryptophan fluorescence changes reflect nonconserved residues in the immediate vicinity of each tryptophan. The nucleotide binding process is at least three-step, involving conformational changes that are quite distinct from the open-closed transition sensed by the tryptophan Trp(501) in the relay loop.
Collapse
Affiliation(s)
- Mihaly Kovacs
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | |
Collapse
|
36
|
Abstract
Myosin is the molecular motor in muscle that generates torque and transiently reacts with actin. The mechanical work performed by the motor occurs by successive decrements in the free energy of the myosin-nucleotide system. The seat of these transitions is the globular "head" domain of the myosin molecule (subfragment 1 or S1). A very useful (hitherto empirical) signal of these transitions has been optical, namely, detection of state-dependent changes in absorbance or fluorescence of S1. This effect has now been found to arise in a particular myosin residue (Trp510 in rabbit skeletal muscle), enabling the study of its intimate mechanism. In this work, based on measuring time-dependent signals, we find that the signal change upon nucleotide binding is adequately explained by assuming that nucleotide binding to a remote site causes a transition from a situation in which Trp510 is strongly statically quenched to a situation in which it is weakly statically quenched. The Trp510-static quencher interaction is also responsible, in part, for the changing tryptophan optical density in S1 upon nucleotide binding. Using crystallographically based geometry, calculation of the Trp510 electronic wave function indicates that Tyr503 is the static quencher.
Collapse
Affiliation(s)
- Sungjo Park
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
37
|
Málnási-Csizmadia A, Pearson DS, Kovács M, Woolley RJ, Geeves MA, Bagshaw CR. Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 2001; 40:12727-37. [PMID: 11601998 DOI: 10.1021/bi010963q] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescence emission intensity from a conserved tryptophan residue (W501) located in the relay loop (F466 to L516) of the Dicytostelium discoideum myosin II motor domain is sensitive to ATP binding and hydrolysis. The initial binding process is accompanied by a small quench in fluorescence, and this is followed by a large enhancement that appears coincident with the hydrolysis step. Using temperature and pressure jump methods, we show that the enhancement process is kinetically distinct from but coupled to the hydrolysis step. The fluorescence enhancement corresponds to the open-closed transition (k(obs) approximately 1000 s(-1) at 20 degrees C). From the overall steady-state fluorescence signal and the presence or absence of a relaxation transient, we conclude that the ADP state is largely in the open state, while the ADP.AlF(4) state is largely closed. At 20 degrees C the open-closed equilibria for the AMP.PNP and ADP.BeF(x) complexes are close to unity and are readily perturbed by temperature and pressure. In the case of ATP, the equilibrium of this step slightly favors the open state, but coupling to the subsequent hydrolysis step gives rise to a predominantly closed state in the steady state. Pressure jump during steady-state ATP turnover reveals the distinct transients for the rapid open-closed transition and the slower hydrolysis step.
Collapse
|