1
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
2
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
3
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
4
|
The Lst Sialyltransferase of Neisseria gonorrhoeae Can Transfer Keto-Deoxyoctanoate as the Terminal Sugar of Lipooligosaccharide: a Glyco-Achilles Heel That Provides a New Strategy for Vaccines to Prevent Gonorrhea. mBio 2021; 12:mBio.03666-20. [PMID: 33758087 PMCID: PMC8092323 DOI: 10.1128/mbio.03666-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.
Collapse
|
5
|
A Novel Sialylation Site on Neisseria gonorrhoeae Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infect Immun 2018; 86:IAI.00285-18. [PMID: 29844237 DOI: 10.1128/iai.00285-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.
Collapse
|
6
|
McArthur JB, Yu H, Zeng J, Chen X. Converting Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) to a regioselective α2-6-sialyltransferase by saturation mutagenesis and regioselective screening. Org Biomol Chem 2017; 15:1700-1709. [PMID: 28134951 DOI: 10.1039/c6ob02702d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A microtiter plate-based screening assay capable of determining the activity and regioselectivity of sialyltransferases was developed. This assay was used to screen two single-site saturation libraries of Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) for α2-6-sialyltransferase activity and total sialyltransferase activity. PmST1 double mutant P34H/M144L was found to be the most effective α2-6-sialyltransferase and displayed 50% reduced donor hydrolysis and 50-fold reduced sialidase activity compared to the wild-type PmST1. It retained the donor substrate promiscuity of the wild-type enzyme and was used in an efficient one-pot multienzyme (OPME) system to selectively catalyze the sialylation of the terminal galactose residue in a multigalactose-containing tetrasaccharide lacto-N-neotetraoside.
Collapse
Affiliation(s)
- John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
7
|
Yu CC, Withers SG. Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Watson DC, Wakarchuk WW, Leclerc S, Schur MJ, Schoenhofen IC, Young NM, Gilbert M. Sialyltransferases with enhanced legionaminic acid transferase activity for the preparation of analogs of sialoglycoconjugates. Glycobiology 2015; 25:767-73. [DOI: 10.1093/glycob/cwv017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/10/2015] [Indexed: 11/15/2022] Open
|
9
|
α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 2015; 6:mBio.02465-14. [PMID: 25650401 PMCID: PMC4324315 DOI: 10.1128/mbio.02465-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae modify the terminal lacto-N-neotetraose moiety of their lipooligosaccharide (LOS) with sialic acid. N. gonorrhoeae LOS sialylation blocks killing by complement, which is mediated at least in part by enhanced binding of the complement inhibitor factor H (FH). The role of LOS sialylation in resistance of N. meningitidis to serum killing is less well defined. Sialylation in each species is catalyzed by the enzyme LOS α-2,3-sialyltransferase (Lst). Previous studies have shown increased Lst activity in N. gonorrhoeae compared to N. meningitidis due to an ~5-fold increase in lst transcription. Using isogenic N. gonorrhoeae strains engineered to express gonococcal lst from either the N. gonorrhoeae or N. meningitidislst promoter, we show that decreased expression of lst (driven by the N. meningitidis promoter) reduced LOS sialylation as determined by less incorporation of tritium-labeled cytidine monophospho-N-acetylneuraminic acid (CMP-NANA; the donor molecule for sialic acid). Diminished LOS sialylation resulted in reduced rates of FH binding and increased pathway activation compared to N. gonorrhoeae promoter-driven lst expression. The N. meningitidislst promoter generated sufficient Lst to sialylate N. gonorrhoeae LOS in vivo, and the level of sialylation after 24 h in the mouse genital tract was sufficient to mediate resistance to human serum ex vivo. Despite demonstrable LOS sialylation in vivo, gonococci harboring the N. meningitidislst promoter were outcompeted by those with the N. gonorrhoeaelst promoter during coinfection of the vaginal tract of estradiol-treated mice. These data highlight the importance of high lst expression levels for gonococcal pathogenesis. Neisseria gonorrhoeae has become resistant to nearly every therapeutic antibiotic used and is listed as an “urgent threat” by the Centers for Disease Control and Prevention. Novel therapies are needed to combat drug-resistant N. gonorrhoeae. Gonococci express an α-2,3-sialyltransferase (Lst) that can scavenge sialic acid from the host and use it to modify lipooligosaccharide (LOS). Sialylation of gonococcal LOS converts serum-sensitive strains to serum resistance, decreases antibody binding, and combats killing by neutrophils and antimicrobial peptides. Mutant N. gonorrhoeae that lack Lst (cannot sialylate LOS) are attenuated in a mouse model. Lst expression levels differ among N. gonorrhoeae strains, and N. gonorrhoeae typically expresses more Lst than Neisseria meningitidis. Here we examined the significance of differential lst expression levels and determined that the level of LOS sialylation is critical to the ability of N. gonorrhoeae to combat the immune system and survive in an animal model. LOS sialylation may be an ideal target for novel therapies.
Collapse
|
10
|
Keys TG, Fuchs HLS, Galuska SP, Gerardy-Schahn R, Freiberger F. A single amino acid toggles Escherichia coli polysialyltransferases between mono- and bifunctionality. Glycobiology 2013; 23:613-8. [DOI: 10.1093/glycob/cwt003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry 2012; 51:1148-59. [PMID: 22217153 DOI: 10.1021/bi201820p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds.
Collapse
Affiliation(s)
- John F May
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, United States
| | | | | | | | | |
Collapse
|
12
|
Lin LYC, Rakic B, Chiu CPC, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NCJ. Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis. J Biol Chem 2011; 286:37237-48. [PMID: 21880735 DOI: 10.1074/jbc.m111.249920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F((axial))-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F((axial))-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface.
Collapse
Affiliation(s)
- Leo Y-C Lin
- Department of Biochemistry and Molecular Biology, Centre for Blood Research University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Cipolla L, Gabrielli L, Bini D, Russo L, Shaikh N. Kdo: a critical monosaccharide for bacteria viability. Nat Prod Rep 2010; 27:1618-29. [DOI: 10.1039/c004750n] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Szczepina MG, Zheng RB, Completo GC, Lowary TL, Pinto BM. STD-NMR studies suggest that two acceptor substrates for GlfT2, a bifunctional galactofuranosyltransferase required for the biosynthesis of Mycobacterium tuberculosis arabinogalactan, compete for the same binding site. Chembiochem 2009; 10:2052-9. [PMID: 19575371 DOI: 10.1002/cbic.200900202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mycobacterial cell wall is a complex architecture, which has, as its major structural component, a lipidated polysaccharide covalently bound to peptidoglycan. This structure, termed the mycolyl-arabinogalactan-peptidoglycan complex, possesses a core galactan moiety composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating beta-(1-->6) and beta-(1-->5) linkages. Recent studies have shown that the entire galactan is synthesized by the action of only two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2. We report here saturation-transfer difference (STD) NMR spectroscopy studies with GlfT2 using two trisaccharide acceptor substrates, beta-D-Galf-(1-->6)-beta-D-Galf-(1-->5)-beta-D-Galf-O(CH(2))(7)CH(3) (2) and beta-D-Galf-(1-->5)-beta-D-Galf-(1-->6)-beta-D-Galf-O(CH(2))(7)CH(3) (3), as well as the donor substrate for the enzyme, UDP-Galf. Competition STD-NMR titration experiments and saturation transfer double difference (STDD) experiments with 2 and 3 were undertaken to explore the bifunctionality of this enzyme, in particular to answer whether one or two active sites are responsible for the formation of both beta-(1-->5)- and beta-(1-->6)-Galf linkages. It was demonstrated that 2 and 3 bind competitively at the same site; this suggests that GlfT2 has one active site pocket capable of catalyzing both beta-(1-->5) and beta-(1-->6) galactofuranosyl transfer reactions. The addition of UDP-Galf to GlfT2 in the presence of either 2 or 3 generated a tetrasaccharide product; this indicates that the enzyme was catalytically active under the conditions at which the STD-NMR experiments were carried out.
Collapse
Affiliation(s)
- Monica G Szczepina
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia (Canada)
| | | | | | | | | |
Collapse
|
15
|
Sauerzapfe B, Krenek K, Schmiedel J, Wakarchuk WW, Pelantová H, Kren V, Elling L. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj J 2008; 26:141-59. [PMID: 18758940 DOI: 10.1007/s10719-008-9172-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/07/2008] [Accepted: 07/15/2008] [Indexed: 01/15/2023]
Abstract
Poly-N-acetyllactosamine (poly-LacNAc) structures have been identified as important ligands for galectin-mediated cell adhesion to extra-cellular matrix (ECM) proteins. We here present the biofunctionalization of surfaces with poly-LacNAc structures and subsequent binding of ECM glycoproteins. First, we synthesized beta-GlcNAc glycosides carrying a linker for controlled coupling onto chemically functionalized surfaces. Then we produced poly-LacNAc structures with defined lengths using human beta1,4-galactosyltransferase-1 and beta1,3-N-acetylglucosaminyltransferase from Helicobacter pylori. These compounds were also used for kinetic characterization of glycosyltransferases and lectin binding assays. A mixture of poly-LacNAc-structures covalently coupled to functionalized microtiter plates were identified for best binding to our model galectin His(6)CGL2. We further demonstrate for the first time that these poly-LacNAc surfaces are suitable for further galectin-mediated binding of the ECM glycoproteins laminin and fibronectin. This new technology should facilitate cell adhesion to biofunctionalized surfaces by imitating the natural ECM microenvironment.
Collapse
Affiliation(s)
- Birgit Sauerzapfe
- Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Tsang RSW, Tsai CM, Henderson AM, Tyler S, Law DKS, Zollinger W, Jamieson F. Immunochemical studies and genetic background of two Neisseria meningitidis isolates expressing unusual capsule polysaccharide antigens with specificities of both serogroup Y and W135. Can J Microbiol 2008; 54:229-34. [PMID: 18388994 DOI: 10.1139/w07-132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We described 2 unusual Neisseria meningitidis strains isolated from epidemiologically unrelated invasive meningococcal disease cases in Ontario, Canada. Both isolates have features typical of serogroup Y N. meningitidis: are of serotype 2c, are of the multi-locus sequence types typical of the serogroup Y strains in Canada, and are genotyped as serogroup Y based on a previously described PCR-ELISA method that detects the serogroup-Y-specific siaD gene. However, both strains were poly-agglutinable in both anti-Y and anti-W135 antisera. Further studies on 1 of these 2 isolates showed the presence of glucose and galactose as well as sialic acids in its purified capsular polysaccharide, suggesting the presence of both serogroup Y and serogroup W135 polysaccharides. Rabbit antisera produced to this strain contained antibodies to both purified serogroup Y and serogroup W135 capsular polysaccharides. Absorption experiments with either serogroup Y or serogroup W135 bacteria confirmed the presence of antibodies to these 2 different polysaccharides. DNA sequencing of the cps operon from both isolates revealed a siaD gene with 99.7% homology to the published siaD sequence from a serogroup Y strain but with 3 point mutations that all resulted in amino acid changes. How these strains may affect results of routine surveillance, PCR diagnosis, and immuno-protection by vaccination are discussed.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E3R2, Canada.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tsukamoto H, Takakura Y, Mine T, Yamamoto T. Photobacterium sp. JT-ISH-224 produces two sialyltransferases, alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase. J Biochem 2007; 143:187-97. [PMID: 17984122 DOI: 10.1093/jb/mvm208] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel bacterium, Photobacterium sp. JT-ISH-224, that produces alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase, was isolated from the gut of a Japanese barracuda. The genes that encode the enzymes were cloned from the genomic library of the bacterium using the genes encoding alpha-/beta-galactoside alpha2,3-sialyltransferase from P. phosphoreum and beta-galactoside alpha2,6-sialyltransferase from P. damselae as probes. The nucleotide sequences were determined, and open reading frames of 1,230 and 1,545 bp for encoding an alpha2,3-sialyltransferase and an alpha2,6-sialyltransferase of 409- and 514-amino acid residues, respectively, were identified. The alpha2,3-sialyltransferase had 92% amino acid sequence identity with the P. phosphoreum alpha2,3-sialyltransferase, whereas the alpha2,6-sialyltransferase had 54% amino acid sequence identity with the P. damselae alpha2,6-sialyltransferase. For both enzymes, the DNA fragments that encoded the full-length protein and its truncated form lacking the putative signal peptide sequence were amplified by a polymerase chain reaction and cloned into an expression vector. Each gene was expressed in Escherichia coli, and the lysate from each strain had enzymatic activity. The alpha2,3-sialyltransferase catalysed the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to lactose, alpha-methyl-galactopyranoside and beta-methyl-galactopyranoside with low apparent K(m) and the alpha2,6-sialyltransferase catalysed the transfer of NeuAc from CMP-NeuAc to lactose with low apparent K(m).
Collapse
Affiliation(s)
- Hiroshi Tsukamoto
- Glycotechnology Business Unit, Japan Tobacco Inc., Higashibara, Iwata, Shizuoka, Japan.
| | | | | | | |
Collapse
|
18
|
Rose NL, Completo GC, Lin SJ, McNeil M, Palcic MM, Lowary TL. Expression, purification, and characterization of a galactofuranosyltransferase involved in Mycobacterium tuberculosis arabinogalactan biosynthesis. J Am Chem Soc 2007; 128:6721-9. [PMID: 16704275 DOI: 10.1021/ja058254d] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major structural component of the cell wall of Mycobacterium tuberculosis is a lipidated polysaccharide, the mycoyl-arabinogalactan-peptidoglycan (mAGP) complex. This glycoconjugate plays a key role in the survival of the organism, and thus, enzymes involved in its biosynthesis have attracted attention as sites for drug action. At the core of the mAGP is a galactan composed of D-galactofuranose residues attached via alternating beta-(1-->5) and beta-(1-->6) linkages. A single enzyme, glfT, has been shown to synthesize both glycosidic linkages. We report here the first high-level expression and purification of glfT by expression of the Rv3808c gene in Escherichia coli C41(DE3). Following a three-step purification procedure, 3-7 mg of protein of >95% purity was isolated from each liter of culture. We subsequently probed the substrate specificity of glfT by evaluating a panel of potential mono- and oligosaccharide substrates and demonstrated, for the first time, that trisaccharides are better substrates than disaccharides and that one disaccharide, in which the terminal D-galactofuranose residue is replaced with an L-arabinofuranose moiety, is a weak substrate. Kinetic characterization of the enzyme using four of the oligosaccharide acceptors gave K(m) values ranging from 204 microM to 1.7 mM. Through the use of NMR spectroscopy and mass spectrometry, we demonstrated that this recombinant enzyme, like the wild-type protein, is bifunctional and can synthesize both beta-(1-->6) and beta-(1-->5)-linkages in an alternating fashion. Access to purified glfT is expected to facilitate the development of high-throughput assays for the identification of inhibitors of the enzyme, which are potential antituberculosis agents.
Collapse
Affiliation(s)
- Natisha L Rose
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Freiberger F, Claus H, Günzel A, Oltmann-Norden I, Vionnet J, Mühlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K. Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Mol Microbiol 2007; 65:1258-75. [PMID: 17662040 PMCID: PMC2169525 DOI: 10.1111/j.1365-2958.2007.05862.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular polysaccharide capsule is an essential virulence factor of Neisseria meningitidis, a leading cause of severe bacterial meningitis and sepsis. Serogroup B strains, the primary disease causing isolates in Europe and America, are encapsulated in α-2,8 polysialic acid (polySia). The capsular polymer is synthesized from activated sialic acid by action of a membrane-associated polysialyltransferase (NmB-polyST). Here we present a comprehensive characterization of NmB-polyST. Different from earlier studies, we show that membrane association is not essential for enzyme functionality. Recombinant NmB-polyST was expressed, purified and shown to synthesize long polySia chains in a non-processive manner in vitro. Subsequent structure–function analyses of NmB-polyST based on refined sequence alignments allowed the identification of two functional motifs in bacterial sialyltransferases. Both (D/E-D/E-G and HP motif) are highly conserved among different sialyltransferase families with otherwise little or no sequence identity. Their functional importance for enzyme catalysis and CMP-Neu5Ac binding was demonstrated by mutational analysis of NmB-polyST and is emphasized by structural data available for the Pasteurella multocida sialyltransferase PmST1. Together our data are the first description of conserved functional elements in the highly diverse families of bacterial (poly)sialyltransferases and thus provide an advanced basis for understanding structure–function relations and for phylogenetic sorting of these important enzymes.
Collapse
Affiliation(s)
- Friedrich Freiberger
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of WürzburgJosef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Almut Günzel
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Imke Oltmann-Norden
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Justine Vionnet
- Laboratory of Bacterial Toxins, Center for Biologics Evaluation and ResearchUS FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Martina Mühlenhoff
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of WürzburgJosef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Willie F Vann
- Laboratory of Bacterial Toxins, Center for Biologics Evaluation and ResearchUS FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Rita Gerardy-Schahn
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Katharina Stummeyer
- Abteilung Zelluläre Chemie, Medizinische Hochschule HannoverCarl-Neuberg-Str. 1, 30625 Hannover, Germany
- E-mail ; Tel. (+49) 511 532 4503; Fax (+49) 511 532 3956
| |
Collapse
|
20
|
Houliston RS, Koga M, Li J, Jarrell HC, Richards JC, Vitiazeva V, Schweda EKH, Yuki N, Gilbert M. A Haemophilus influenzae strain associated with Fisher syndrome expresses a novel disialylated ganglioside mimic. Biochemistry 2007; 46:8164-71. [PMID: 17567050 DOI: 10.1021/bi700685s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-typeable Haemophilus influenzae strain DH1 was isolated from a 25 year old male patient with Fisher syndrome, a postinfectious autoimmune condition characterized by the presence of anti-GQ1b IgG antibodies that target and initiate damage to peripheral nerves. DH1 was found to display an alphaNeuAc(2-8)alphaNeuAc(2-3)betaGal branch bound to the tetraheptosyl backbone core of its lipooligosaccharide (LOS). The novel sialylation pattern was found to be dependent on the activity of a bifunctional sialyltransferase, Lic3B, which catalyzes the addition of both the terminal and subterminal sialic acid residues. Patient serum IgGs bind to DH1 LOS, and the reactivity is significantly influenced by the presence of sialylated glycoforms. The display by DH1, of a surface glycan that mimics the terminal trisaccharide portion of disialosyl-containing gangliosides, provides strong evidence for its involvement in the development of Fisher syndrome.
Collapse
Affiliation(s)
- R Scott Houliston
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fox KL, Cox AD, Gilbert M, Wakarchuk WW, Li J, Makepeace K, Richards JC, Moxon ER, Hood DW. Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem 2006; 281:40024-32. [PMID: 17071616 DOI: 10.1074/jbc.m602314200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae (NTHi) can be substituted at various positions by N-acetylneuraminic acid (Neu5Ac). LPS sialylation plays an important role in pathogenesis. The only LPS sialyltransferase characterized biochemically to date in H. influenzae is Lic3A, an alpha-2,3-sialyltransferase responsible for the addition of Neu5Ac to a lactose acceptor (Hood, D. W., Cox, A. D., Gilbert, M., Makepeace, K., Walsh, S., Deadman, M. E., Cody, A., Martin, A., Månsson, M., Schweda, E. K., Brisson, J. R., Richards, J. C., Moxon, E. R., and Wakarchuk, W. W. (2001) Mol. Microbiol. 39, 341-350). Here we describe a second sialyltransferase, Lic3B, that is a close homologue of Lic3A and present in 60% of NTHi isolates tested. A recombinant form of Lic3B was expressed in Escherichia coli and purified by affinity chromatography. We used synthetic fluorescent acceptors with a terminal lactose or sialyllactose to show that Lic3B has both alpha-2,3- and alpha-2,8-sialyltransferase activities. Structural analysis of LPS from lic3B mutant strains of NTHi confirmed that only monosialylated species were detectable, whereas disialylated species were detected upon inactivation of lic3A. Furthermore, introduction of lic3B into a lic3B-deficient strain background resulted in a significant increase in sialylation in the recipient strain. Mass spectrometric analysis of LPS indicated that glycoforms containing two Neu5Ac residues were evident that were not present in the LPS of the parent strain. These findings characterize the activity of a second sialyltransferase in H. influenzae, responsible for the addition of di-sialic acid to the LPS. Modification of the LPS by di-sialylation conferred increased resistance of the organism to the killing effects of normal human serum, as compared with mono-sialylated or non-sialylated species, indicating that this modification has biological significance.
Collapse
Affiliation(s)
- Kate L Fox
- Molecular Infectious Diseases Group, University of Oxford Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lairson LL, Watts AG, Wakarchuk WW, Withers SG. Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Nat Chem Biol 2006; 2:724-8. [PMID: 17057723 DOI: 10.1038/nchembio828] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 09/11/2006] [Indexed: 11/09/2022]
Abstract
Despite their unparalleled catalytic prowess and environmental compatibility, enzymes have yet to see widespread application in synthetic chemistry. This lack of application and the resulting underuse of their enormous potential stems not only from a wariness about aqueous biological catalysis on the part of the typical synthetic chemist but also from limitations on enzyme applicability that arise from the high degree of substrate specificity possessed by most enzymes. This latter perceived limitation is being successfully challenged through rational protein engineering and directed evolution efforts to alter substrate specificity. However, such programs require considerable effort to establish. Here we report an alternative strategy for expanding the substrate specificity, and therefore the synthetic utility, of a given enzyme through a process of "substrate engineering". The attachment of a readily removable functional group to an alternative glycosyltransferase substrate induces a productive binding mode, facilitating rational control of substrate specificity and regioselectivity using wild-type enzymes.
Collapse
|
23
|
Deadman ME, Lundström SL, Schweda EKH, Moxon ER, Hood DW. Specific Amino Acids of the Glycosyltransferase LpsA Direct the Addition of Glucose or Galactose to the Terminal Inner Core Heptose of Haemophilus influenzae Lipopolysaccharide via Alternative Linkages. J Biol Chem 2006; 281:29455-67. [PMID: 16847057 DOI: 10.1074/jbc.m604908200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide is the major glycolipid of the cell wall of the bacterium Haemophilus influenzae, a Gram-negative commensal and pathogen of humans. Lipopolysaccharide is both a virulence determinant and a target for host immune responses. Glycosyltransferases have high donor and acceptor substrate specificities that are generally limited to catalysis of one unique glycosidic linkage. The H. influenzae glycosyltransferase LpsA is responsible for the addition of a hexose to the distal heptose of the inner core of the lipopolysaccharide molecule and belongs to the glycosyltransferase family 25. The hexose added can be either glucose or galactose and linkage to the heptose can be either beta1-2 or beta1-3. Each H. influenzae strain uniquely produces only one of the four possible combinations of linked sugar in its lipopolysaccharide. We show that, in any given strain, a specific allelic variant of LpsA directs the anomeric linkage and the added hexose, glucose, or galactose. Site-directed mutagenesis of a single key amino acid at position 151 changed the hexose added in vivo from glucose to galactose or vice versa. By constructing chimeric lpsA gene sequences, it was shown that the 3' end of the gene directs the anomeric linkage (beta1-2 or beta1-3) of the added hexose. The lpsA gene is the first known example where interstrain variation in lipopolysaccharide core structure is directed by the specific sequence of a genetic locus encoding enzymes directing one of four alternative possible sugar additions from the inner core.
Collapse
Affiliation(s)
- Mary E Deadman
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Packiam M, Shell DM, Liu SV, Liu YB, McGee DJ, Srivastava R, Seal S, Rest RF. Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun 2006; 74:2637-50. [PMID: 16622200 PMCID: PMC1459705 DOI: 10.1128/iai.74.5.2637-2650.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.
Collapse
Affiliation(s)
- Mathanraj Packiam
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ni L, Sun M, Yu H, Chokhawala H, Chen X, Fisher AJ. Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 2006; 45:2139-48. [PMID: 16475803 DOI: 10.1021/bi0524013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialyltransferases catalyze reactions that transfer a sialic acid from CMP-sialic acid to an acceptor (a structure terminated with galactose, N-acetylgalactosamine, or sialic acid). They are key enzymes that catalyze the synthesis of sialic acid-containing oligosaccharides, polysaccharides, and glycoconjugates that play pivotal roles in many critical physiological and pathological processes. The structures of a truncated multifunctional Pasteurella multocida sialyltransferase (Delta24PmST1), in the absence and presence of CMP, have been determined by X-ray crystallography at 1.65 and 2.0 A resolutions, respectively. The Delta24PmST1 exists as a monomer in solution and in crystals. Different from the reported crystal structure of a bifunctional sialyltransferase CstII that has only one Rossmann domain, the overall structure of the Delta24PmST1 consists of two separate Rossmann nucleotide-binding domains. The Delta24PmST1 structure, thus, represents the first sialyltransferase structure that belongs to the glycosyltransferase-B (GT-B) structural group. Unlike all other known GT-B structures, however, there is no C-terminal extension that interacts with the N-terminal domain in the Delta24PmST1 structure. The CMP binding site is located in the deep cleft between the two Rossmann domains. Nevertheless, the CMP only forms interactions with residues in the C-terminal domain. The binding of CMP to the protein causes a large closure movement of the N-terminal Rossmann domain toward the C-terminal nucleotide-binding domain. Ser 143 of the N-terminal domain moves up to hydrogen-bond to Tyr 388 of the C-terminal domain. Both Ser 143 and Tyr 388 form hydrogen bonds to a water molecule, which in turn hydrogen-bonds to the terminal phosphate oxygen of CMP. These interactions may trigger the closure between the two domains. Additionally, a short helix near the active site seen in the apo structure becomes disordered upon binding to CMP. This helix may swing down upon binding to donor CMP-sialic acid to form the binding pocket for an acceptor.
Collapse
Affiliation(s)
- Lisheng Ni
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gulati S, Cox A, Lewis LA, Michael FS, Li J, Boden R, Ram S, Rice PA. Enhanced factor H binding to sialylated Gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in Gonococci. Infect Immun 2005; 73:7390-7. [PMID: 16239538 PMCID: PMC1273834 DOI: 10.1128/iai.73.11.7390-7397.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We isolated serologically identical (by serovar determination and porin variable region [VR] typing) strains of Neisseria gonorrhoeae from an infected male and two of his monogamous female sex partners. One strain (termed 398078) expressed the L1 (Galalpha1 --> 4 [corrected] Galbeta1 --> 4Glcbeta1 --> 4HepI) lipooligosaccharide (LOS) structure exclusively; the other (termed 398079) expressed the lacto-N-neotetraose (LNT; Galbeta1 --> 4GlcNAcbeta1 --> 3Galbeta1 --> 4Glcbeta1 --> 4HepI) LOS structure. The strain from the male index case expressed both glycoforms and exhibited both immunotypes. Nuclear magnetic resonance analysis revealed that sialic acid linked to the terminal Gal of L1 LOS via an alpha2 --> 6 linkage and, as expected, to the terminal Gal of LNT LOS via an alpha2--> 3 linkage. Insertional inactivation of the sialyltransferase gene (known to sialylate LNT LOS) abrogated both L1 LOS sialylation and LNT LOS sialylation, suggesting a bifunctional nature of this enzyme in gonococci. Akin to our previous observations, sialylation of the LNT LOS of strain 398079 enhanced the binding of the complement regulatory molecule, factor H. Rather surprisingly, factor H did not bind to sialylated strain 398078. LOS sialylation conferred the LNT LOS-bearing strain complete (100%) resistance to killing by even 50% nonimmune normal human serum (NHS), whereas sialylation of L1 LOS conferred resistance only to 10% NHS. The ability of gonococcal sialylated LNT to bind factor H confers high-level serum resistance, which is not seen with sialylated L1 LOS. Thus, serum resistance mediated by sialylation of gonococcal L1 and LNT LOS occurs by different mechanisms, and specificity of factor H binding to sialylated gonococci is restricted to the LNT LOS species.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 2005; 15:805-17. [PMID: 15843597 DOI: 10.1093/glycob/cwi063] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The animal sialyltransferases are Golgi type II transmembrane glycosyltransferases. Twenty distinct sialyltransferases have been identified in both human and murine genomes. These enzymes catalyze transfer of sialic acid from CMP-Neu5Ac to the glycan moiety of glycoconjugates. Despite low overall identities, they share four conserved peptide motifs [L (large), S (small), motif III, and motif VS (very small)] that are hallmarks for sialyltransferase identification. We have identified 155 new putative genes in 25 animal species, and we have exploited two lines of evidence: (1) sequence comparisons and (2) exon-intron organization of the genes. An ortholog to the ancestor present before the split of ST6Gal I and II subfamilies was detected in arthropods. An ortholog to the ancestor present before the split of ST6GalNAc III, IV, V, and VI subfamilies was detected in sea urchin. An ortholog to the ancestor present before the split of ST3Gal I and II subfamilies was detected in ciona, and an ortholog to the ancestor of all the ST8Sia was detected in amphioxus. Therefore, single examples of the four families (ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia) have appeared in invertebrates, earlier than previously thought, whereas the four families were all detected in bony fishes, amphibians, birds, and mammals. As previously hypothesized, sequence similarities among sialyltransferases suggest a common genetic origin, by successive duplications of an ancestral gene, followed by divergent evolution. Finally, we propose predictions on these invertebrates sialyltransferase-related activities that have not previously been demonstrated and that will ultimately need to be substantiated by protein expression and enzymatic activity assays.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Glycobiologie Structurale et Fonctionnelle, UMR CNRS/USTL 8576, Laboratoire de Chimie Biologique, Bâtiment C9, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France. [corrected]
| | | | | | | |
Collapse
|
28
|
Inzana TJ, Glindemann G, Cox AD, Wakarchuk W, Howard MD. Incorporation of N-acetylneuraminic acid into Haemophilus somnus lipooligosaccharide (LOS): enhancement of resistance to serum and reduction of LOS antibody binding. Infect Immun 2002; 70:4870-9. [PMID: 12183531 PMCID: PMC128230 DOI: 10.1128/iai.70.9.4870-4879.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus somnus isolates from cases of thrombotic meningoencephalitis, pneumonia, and other disease sites are capable of undergoing a high rate of phase variation in the oligosaccharide component of their lipooligosaccharides (LOS). In contrast, the LOS of commensal strains isolated from the normal reproductive tract phase vary little or not at all. In addition, the LOS of H. somnus shares conserved epitopes with LOS from Neisseria gonorrhoeae, Haemophilus influenzae, and other species that can incorporate sialic acid into their LOS. We now report that growth of disease isolates of H. somnus with CMP-N-acetylneuraminic acid (CMP-NeuAc) or NeuAc added to the medium resulted in incorporation of NeuAc into the LOS. However, NeuAc was not incorporated into the LOS of commensal isolates and one disease isolate following growth in medium containing CMP-NeuAc or NeuAc. Sialylated LOS was detected by an increase in the molecular size or an increase in the amount of the largest-molecular-size LOS electrophoretic bands, which disappeared following treatment with neuraminidase. Sialylated LOS could also be detected by reactivity with Limax flavus agglutinin lectin, which is specific for sialylated species, by dot blot assay; this reactivity was also reversed by neuraminidase treatment. H. somnus strain 2336 LOS was found to contain some sialic acid when grown in medium lacking CMP-NeuAc or NeuAc, although supplementation enhanced NeuAc incorporation. In contrast strain 738, an LOS phase variant of strain 2336, was less extensively sialylated when the growth medium was supplemented with CMP-NeuAc or NeuAc, as determined by electrophoretic profiles and electrospray mass spectrometry. The sialyltransferase of H. somnus strain 738 was confirmed to preferentially sialylate the Gal(beta)-(1-3)-GlcNAc component of the lacto-N-tetraose structure by capillary electrophoresis assay. Enhanced sialylation of the strain 2336 LOS inhibited the binding of monoclonal antibodies to LOS by enzyme immunoassay and Western blotting. Furthermore, sialylation of the LOS enhanced the resistance of H. somnus to the bactericidal action of antiserum to LOS. Sialylation and increased resistance to killing by normal serum also occurred in a deletion mutant that was deficient in the terminal Gal-GlcNAc disaccharide. LOS sialylation may therefore be an important virulence mechanism to protect H. somnus against the host immune system.
Collapse
Affiliation(s)
- Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061-0342, USA.
| | | | | | | | | |
Collapse
|
29
|
Ouzzine M, Gulberti S, Levoin N, Netter P, Magdalou J, Fournel-Gigleux S. The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues. J Biol Chem 2002; 277:25439-45. [PMID: 11986319 DOI: 10.1074/jbc.m201912200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human beta1,3-glucuronosyltransferase I (GlcAT-I) plays a key role in proteoglycan biosynthesis by catalyzing the transfer of glucuronic acid onto the trisaccharide-protein linkage structure Galbeta1,3Galbeta1,4Xylbeta-O-Ser, a prerequisite step for polymerization of glycosaminoglycan chains. In this study, we identified His(308) and Arg(277) residues as essential determinants for the donor substrate (UDP-glucuronic acid) selectivity of the human GlcAT-I. Analysis of the UDP-glucuronic acid-binding site by computational modeling in conjunction with site-directed mutagenesis indicated that both residues interact with glucuronic acid. Substitution of His(308) by arginine induced major changes in the donor substrate specificity of GlcAT-I. Interestingly, the H308R mutant was able to efficiently utilize nucleotide sugars UDP-glucose, UDP-mannose, and UDP-N-acetylglucosamine, which are not naturally accepted by the wild-type enzyme, as co-substrate in the transfer reaction. To gain insight into the role of Arg(277), site-directed mutagenesis in combination with chemical modification was carried out. Substitution of Arg(277) with alanine abrogated the activity of GlcAT-I. Furthermore, the arginine-directed reagent 2,3-butanedione irreversibly inhibited GlcAT-I, which was effectively protected against inactivation by UDP-glucuronic acid but not by UDP-glucose. It is noteworthy that the activity of the H308R mutant toward UDP-glucose was unaffected by the arginine-directed reagent. Our results are consistent with crucial interactions between the His(308) and Arg(277) residues and the glucuronic acid moiety that governs the specificity of GlcAT-I toward the nucleotide sugar donor substrate.
Collapse
Affiliation(s)
- Mohamed Ouzzine
- UMR 7561 CNRS, Université Henri Poincaré Nancy 1, Faculté de Médecine, 54505 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | |
Collapse
|
30
|
Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439-69. [PMID: 11841250 DOI: 10.1021/cr000407m] [Citation(s) in RCA: 946] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Angata
- Glycobiology Research and Training Center, Department of Medicine, University of California-San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|
31
|
Tsai CM, Kao G, Zhu P. Influence of the length of the lipooligosaccharide alpha chain on its sialylation in Neisseria meningitidis. Infect Immun 2002; 70:407-11. [PMID: 11748209 PMCID: PMC127647 DOI: 10.1128/iai.70.1.407-411.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sialylation of lipooligosaccharide (LOS) in Neisseria meningitidis plays a role in the resistance of the organism to killing by normal human serum. The length of the alpha chain extending out from the heptose I [Hep (I)] moiety of LOS influenced sialylation of N. meningitidis LOS in vitro and in vivo. The alpha chain required a terminal Gal and a trisaccharide or longer oligosaccharide to serve as an acceptor for sialylation. The disaccharide lactose (Galbeta1-4Glc) in the alpha chain of immunotype L8 LOS could not function as an acceptor for the sialyltransferase, probably due to steric hindrance imposed by the neighboring Hep (II) with phosphorylethanolamine and another group attached.
Collapse
Affiliation(s)
- Chao-Ming Tsai
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
32
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
33
|
Toivonen S, Aitio O, Renkonen O. alpha 2,3-Sialylation of terminal GalNAc beta 1-3Gal determinants by ST3Gal II reveals the multifunctionality of the enzyme. The resulting Neu5Ac alpha 2-3GalNAc linkage is resistant to sialidases from Newcastle disease virus and Streptococcus pneumoniae. J Biol Chem 2001; 276:37141-8. [PMID: 11479313 DOI: 10.1074/jbc.m105715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic alpha 2,3-sialylation of GalNAc has not been described previously, although some glycoconjugates containing alpha 2,3-sialylated GalNAc residues have been reported. In the present experiments, recombinant soluble alpha 2,3-sialyltransferase ST3Gal II efficiently sialylated the X(2) pentasaccharide GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, globo-N-tetraose GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and the disaccharide GalNAc beta 1-3Gal in vitro. The purified products were identified as Neu5Ac alpha 2-3GalNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc, Neu5Ac alpha 2-3GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc, and Neu5Ac alpha 2-3GalNAc beta 1-3Gal, respectively, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, enzymatic degradations, and one- and two-dimensional NMR-spectroscopy. In particular, the presence of the Neu5Ac alpha 2-3GalNAc linkage was firmly established in all three products by a long range correlation between Neu5Ac C2 and GalNAc H3 in heteronuclear multiple bond correlation spectra. Collectively, the data describe the first successful sialyltransfer reactions to the 3-position of GalNAc in any acceptor. Previously, ST3Gal II has been shown to transfer to the Gal beta 1-3GalNAc determinant. Consequently, the present data show that the enzyme is multifunctional, and could be renamed ST3Gal(NAc) II. In contrast to ST3Gal II, ST3Gal III did not transfer to the X(2) pentasaccharide. The Neu5Ac alpha 2-3GalNAc linkage of sialyl X(2) was cleaved by sialidases from Arthrobacter ureafaciens and Clostridium perfringens, but resisted the action of sialidases from Newcastle disease virus and Streptococcus pneumoniae. Therefore, the latter two enzymes cannot be used to differentiate between Neu5Ac alpha 2-3GalNAc and Neu5Ac alpha 2-6GalNAc linkages, as has been assumed previously.
Collapse
Affiliation(s)
- S Toivonen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|