1
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
2
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
3
|
Farley FW, McCully RR, Maslo PB, Yu L, Sheff MA, Sadeghi H, Elion EA. Effects of HSP70 chaperones Ssa1 and Ssa2 on Ste5 scaffold and the mating mitogen-activated protein kinase (MAPK) pathway in Saccharomyces cerevisiae. PLoS One 2023; 18:e0289339. [PMID: 37851593 PMCID: PMC10584130 DOI: 10.1371/journal.pone.0289339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses. The majority of purified overexpressed Ste5 associates with Ssa1. Loss of Ssa1 and Ssa2 has deleterious effects on Ste5 abundance, integrity, and localization particularly when Ste5 is expressed at native levels. The status of Ssa1 and Ssa2 influences Ste5 electrophoresis mobility and formation of high molecular weight species thought to be phosphorylated, ubiquitinylated and aggregated and lower molecular weight fragments. A Ste5 VWA domain mutant with greater propensity to form punctate foci has reduced predicted propensity to bind Ssa1 near the mutation sites and forms more punctate foci when Ssa1 Is overexpressed, supporting a dynamic protein quality control relationship between Ste5 and Ssa1. Loss of Ssa1 and Ssa2 reduces activation of Fus3 and Kss1 MAPKs and FUS1 gene expression and impairs mating shmoo morphogenesis. Surprisingly, ssa1, ssa2, ssa3 and ssa4 single, double and triple mutants can still mate, suggesting compensatory mechanisms exist for folding. Additional analysis suggests Ssa1 is the major Hsp70 chaperone for the mating and invasive growth pathways and reveals several Hsp70-Hsp90 chaperone-network proteins required for mating morphogenesis.
Collapse
Affiliation(s)
- Francis W. Farley
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Ryan R. McCully
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Paul B. Maslo
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Lu Yu
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mark A. Sheff
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Homayoun Sadeghi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Elaine A. Elion
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Differential contributions of the proteasome, autophagy, and chaperones to the clearance of arsenite-induced protein aggregates in yeast. J Biol Chem 2022; 298:102680. [PMID: 36356902 PMCID: PMC9723941 DOI: 10.1016/j.jbc.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The poisonous metalloid arsenite induces widespread misfolding and aggregation of nascent proteins in vivo, and this mode of toxic action might underlie its suspected role in the pathology of certain protein misfolding diseases. Evolutionarily conserved protein quality-control systems protect cells against arsenite-mediated proteotoxicity, and herein, we systematically assessed the contribution of the ubiquitin-proteasome system, the autophagy-vacuole pathway, and chaperone-mediated disaggregation to the clearance of arsenite-induced protein aggregates in Saccharomyces cerevisiae. We show that the ubiquitin-proteasome system is the main pathway that clears aggregates formed during arsenite stress and that cells depend on this pathway for optimal growth. The autophagy-vacuole pathway and chaperone-mediated disaggregation both contribute to clearance, but their roles appear less prominent than the ubiquitin-proteasome system. Our in vitro assays with purified components of the yeast disaggregating machinery demonstrated that chaperone binding to aggregates formed in the presence of arsenite is impaired. Hsp104 and Hsp70 chaperone activity was unaffected by arsenite, suggesting that this metalloid influences aggregate structure, making them less accessible for chaperone-mediated disaggregation. We further show that the defect in chaperone-mediated refolding of a model protein was abrogated in a cysteine-free version of the substrate, suggesting that arsenite directly modifies cysteines in non-native target proteins. In conclusion, our study sheds novel light on the differential contributions of protein quality-control systems to aggregate clearance and cell proliferation and extends our understanding of how these systems operate during arsenite stress.
Collapse
|
5
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
6
|
Gao J, Shi H, Juhlin CC, Larsson C, Lui WO. Merkel cell polyomavirus T-antigens regulate DICER1 mRNA stability and translation through HSC70. iScience 2021; 24:103264. [PMID: 34761184 PMCID: PMC8567380 DOI: 10.1016/j.isci.2021.103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 01/07/2023] Open
Abstract
Merkel cell carcinoma is an aggressive skin malignancy, mostly caused by Merkel cell polyomavirus (MCPyV). MCPyV T-antigens can induce mature microRNA expressions through the DnaJ domain, but its underlying mechanism is still unknown. Here, we report that the T-antigens induce protein expression and mRNA stability of DICER1, a key factor in microRNA biogenesis, through heat shock cognate 70 (HSC70). HSC70 directly interacts with the AU-rich elements (ARE) of DICER1 mRNA in both coding and 3′ untranslated region in the presence of MCPyV T-antigen. The T-antigen/HSC70 interaction could induce luciferase activity of synthetic ARE-containing reporter, as well as the stability of ARE-containing mRNAs, suggesting a broader role of MCPyV T-antigens in regulating multiple mRNAs via HSC70. These findings highlight a new role for the interaction of HSC70 and MCPyV T-antigens in mRNA regulation and an undescribed regulatory mechanism of DICER1 mRNA stability and translation through its direct interaction with HSC70. MCPyV T-antigen and HSC70 interaction regulates DICER1 expression HSC70 directly binds to ARE in the 3′UTR of DICER1 for expression regulation An unknown motif in DICER1 CDS is also required for its expression regulation by LT The LT-HSC70 interaction can regulate other ARE-containing mRNAs
Collapse
Affiliation(s)
- Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Hao Shi
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden.,Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet; BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
| |
Collapse
|
7
|
Knowles CM, McIntyre KM, Panepinto JC. Tools for Assessing Translation in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7030159. [PMID: 33668175 PMCID: PMC7995980 DOI: 10.3390/jof7030159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus capable of establishing an infection in a human host. Rapid changes in environments and exposure to the host immune system results in a significant amount of cellular stress, which is effectively combated at the level of translatome reprogramming. Repression of translation following stress allows for the specific reallocation of limited resources. Understanding the mechanisms involved in regulating translation in C. neoformans during host infection is critical in the development of new antifungal drugs. In this review, we discuss the main tools available for assessing changes in translation state and translational output during cellular stress.
Collapse
|
8
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Klaips CL, Gropp MHM, Hipp MS, Hartl FU. Sis1 potentiates the stress response to protein aggregation and elevated temperature. Nat Commun 2020; 11:6271. [PMID: 33293525 PMCID: PMC7722728 DOI: 10.1038/s41467-020-20000-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cells adapt to conditions that compromise protein conformational stability by activating various stress response pathways, but the mechanisms used in sensing misfolded proteins remain unclear. Moreover, aggregates of disease proteins often fail to induce a productive stress response. Here, using a yeast model of polyQ protein aggregation, we identified Sis1, an essential Hsp40 co-chaperone of Hsp70, as a critical sensor of proteotoxic stress. At elevated levels, Sis1 prevented the formation of dense polyQ inclusions and directed soluble polyQ oligomers towards the formation of permeable condensates. Hsp70 accumulated in a liquid-like state within this polyQ meshwork, resulting in a potent activation of the HSF1 dependent stress response. Sis1, and the homologous DnaJB6 in mammalian cells, also regulated the magnitude of the cellular heat stress response, suggesting a general role in sensing protein misfolding. Sis1/DnaJB6 functions as a limiting regulator to enable a dynamic stress response and avoid hypersensitivity to environmental changes.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Michael H M Gropp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Mark S Hipp
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
10
|
Wang M, Wei K, Qian B, Feiler S, Lemekhova A, Büchler MW, Hoffmann K. HSP70-eIF4G Interaction Promotes Protein Synthesis and Cell Proliferation in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12082262. [PMID: 32823513 PMCID: PMC7464799 DOI: 10.3390/cancers12082262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and features various tumor escape mechanisms from treatment-induced stress. HSP70 plays a critical role in cell protection under stress. eIF4G physiologically regulates the formation of the protein-ribosomal complex and maintains cellular protein synthesis. However, the precise cooperation of both in HCC remains poorly understood. In this study, we demonstrate that HSP70 expression is positively correlated with eIF4G in tumor specimens from 25 HCC patients, in contrast to the adjacent non-tumorous tissues, and that both influence the survival of HCC patients. Mechanistically, this study indicates that HSP70 and eIF4G interact with each other in vitro. We further show that the HSP70–eIF4G interaction contributes to promoting cellular protein synthesis, enhancing cell proliferation, and inhibiting cell apoptosis. Collectively, this study reveals the pivotal role of HSP70–eIF4G interaction as an escape mechanism in HCC. Therefore, modulation of the HSP70–eIF4G interaction might be a potential novel therapeutic target of HCC treatment.
Collapse
|
11
|
Minhas P, Sunil Kumar BV, Verma R. Evaluation of immuno-modulating effect of recombinant heat shock protein 40 of Brucella abortus in mice. 3 Biotech 2019; 9:366. [PMID: 31588390 DOI: 10.1007/s13205-019-1905-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/17/2019] [Indexed: 11/24/2022] Open
Abstract
The present study was aimed to evaluate the immuno-modulatory effect of Brucella-specific recombinant HSP40 (rDnaJ) when co-immunized with Brucella rOmp22 in mice. For this, dnaJ of Brucella abortus was cloned, expressed in E. coli, and purified to homogeneity using Ni-NTA agarose columns. Three groups of mice (n = 6 in each group) were used in the study. The control group was immunized with rOmp22 alone, while group 1 mice were injected subcutaneously with rOmp22 along with conventional adjuvants (FCA, FIA), and group 2 mice with rOmp22 mixed with rDnaJ. IgG isotype (IgG1 and IgG2a) response to rOmp22 immunization was evaluated by enzyme-linked immunosorbent assay which was found to be directed towards the cell-mediated arm of immune system (CMI) in group 2 mice in which rOmp22 was co-immunized with rDnaJ. Expression profiling of IL-4 and IL-12 was checked in all the groups by qRT PCR. IL12 mRNA was up-regulated to a greater extent in group2 mice, suggesting that the CMI arm of immune system was stimulated. Hence, it was concluded that CMI response against rOmp22 is stimulated to a greater extent in mice when co-immunized with Brucella rDnaJ.
Collapse
Affiliation(s)
- Priyanka Minhas
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - B V Sunil Kumar
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Ramneek Verma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| |
Collapse
|
12
|
Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. eLife 2019; 8:47791. [PMID: 31552827 PMCID: PMC6779467 DOI: 10.7554/elife.47791] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Wenjing Kang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Joydeep Roy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Griffith AA, Holmes W. Fine Tuning: Effects of Post-Translational Modification on Hsp70 Chaperones. Int J Mol Sci 2019; 20:ijms20174207. [PMID: 31466231 PMCID: PMC6747426 DOI: 10.3390/ijms20174207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
The discovery of heat shock proteins shaped our view of protein folding in the cell. Since their initial discovery, chaperone proteins were identified in all domains of life, demonstrating their vital and conserved functional roles in protein homeostasis. Chaperone proteins maintain proper protein folding in the cell by utilizing a variety of distinct, characteristic mechanisms to prevent aberrant intermolecular interactions, prevent protein aggregation, and lower entropic costs to allow for protein refolding. Continued study has found that chaperones may exhibit alternative functions, including maintaining protein folding during endoplasmic reticulum (ER) import and chaperone-mediated degradation, among others. Alternative chaperone functions are frequently controlled by post-translational modification, in which a given chaperone can switch between functions through covalent modification. This review will focus on the Hsp70 class chaperones and their Hsp40 co-chaperones, specifically highlighting the importance of post-translational control of chaperones. These modifications may serve as a target for therapeutic intervention in the treatment of diseases of protein misfolding and aggregation.
Collapse
Affiliation(s)
| | - William Holmes
- Rhode Island College, Biology Department, Providence, RI 02908, USA.
| |
Collapse
|
14
|
Beal DM, Bastow EL, Staniforth GL, von der Haar T, Freedman RB, Tuite MF. Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo. Antioxid Redox Signal 2019; 31:261-274. [PMID: 30880408 PMCID: PMC6602113 DOI: 10.1089/ars.2018.7615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Aims: Efficient oxidative protein folding (OPF) in the endoplasmic reticulum (ER) is a key requirement of the eukaryotic secretory pathway. In particular, protein folding linked to the formation of disulfide bonds, an activity dependent on the enzyme protein disulfide isomerase (PDI), is crucial. For the de novo formation of disulfide bonds, reduced PDI must be reoxidized by an ER-located oxidase (ERO1). Despite some knowledge of this pathway, the kinetic parameters with which these components act and the importance of specific parameters, such as PDI reoxidation by Ero1, for the overall performance of OPF in vivo remain poorly understood. Results: We established an in vitro system using purified yeast (Saccharomyces cerevisiae) PDI (Pdi1p) and ERO1 (Ero1p) to investigate OPF. This necessitated the development of a novel reduction/oxidation processing strategy to generate homogenously oxidized recombinant yeast Ero1p. This new methodology enabled the quantitative assessment of the interaction of Pdi1p and Ero1p in vitro by measuring oxygen consumption and reoxidation of reduced RNase A. The resulting quantitative data were then used to generate a simple model that can describe the oxidizing capacity of Pdi1p and Ero1p in vitro and predict the in vivo effect of modulation of the levels of these proteins. Innovation: We describe a model that can be used to explore the OPF pathway and its control in a quantitative way. Conclusion: Our study informs and provides new insights into how OPF works at a molecular level and provides a platform for the design of more efficient heterologous protein expression systems in yeast.
Collapse
Affiliation(s)
- Dave M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma L. Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gemma L. Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert B. Freedman
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
15
|
Pinheiro GMS, Amorim GC, Iqbal A, Almeida FCL, Ramos CHI. Solution NMR investigation on the structure and function of the isolated J-domain from Sis1: Evidence of transient inter-domain interactions in the full-length protein. Arch Biochem Biophys 2019; 669:71-79. [PMID: 31141701 DOI: 10.1016/j.abb.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
J-domain/Hsp40 proteins cooperate in aiding with folding in the cell by binding partially folded client proteins and delivering them to be folded by Hsp70. The delivery occurs concomitantly to the stimulation of the ATPase activity of Hsp70 via the N-terminally located J-domain. Although several lines of investigation have been used to study J-domain proteins, the presence of highly flexible domains (G/F- and G/M-rich) hold up obtaining a detailed full-length structure. In this work, we present the high-resolution structure of the J-domain and the N-terminal part of the G/F domain of Sis1, solved by NMR, and used chemical-shift perturbation approaches to further study the structure/function relationship of the Sis1/Hsp70 interaction. When the J-domain was compared to the full-length protein and to a G/M domain deletion mutant, an internal interaction patch formed by hydrophobic and positively charged residues (V2, D9, R27, T39, F52 and R73) was identified. Curiously, the same patch is protected by internal contacts in the full-length protein and, in combination with the loop containing the conserved HPD motif, participates in the interaction with Hsp70. Combined, these results suggest that the J-domain in the full-length Sis1 is in a transient intermediate conformation, in which its interacting patch is protected and, at the same time, also in a favorable condition to bind Hsp70, facilitating the interaction between the two proteins. Finally, 1D NMR experiments showed that the addition of ATP is followed by the disruption of the J-domain/Hsp70 complex, a necessary step for aiding the folding of the client protein.
Collapse
Affiliation(s)
| | - Gisele C Amorim
- Institute of Medical Biochemistry and Nucleus for Structural Biology and Bioimaging (CENABIO) - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Núcleo Multidisciplinar de Pesquisa em Biologia, Campus Duque de Caxias, RJ, Brazil
| | - Anwar Iqbal
- Institute of Medical Biochemistry and Nucleus for Structural Biology and Bioimaging (CENABIO) - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry and Nucleus for Structural Biology and Bioimaging (CENABIO) - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e tecnologia em Biologia Estrutural e Bioimagem INBEB, Brazil.
| | - C H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil; Instituto Nacional de Ciência e tecnologia em Biologia Estrutural e Bioimagem INBEB, Brazil.
| |
Collapse
|
16
|
Jung Y, Seong KM, Baek JH, Kim J. Ssb2 is a novel factor in regulating synthesis and degradation of Gcn4 in Saccharomyces cerevisiae. Mol Microbiol 2018; 110:728-740. [PMID: 30039896 DOI: 10.1111/mmi.14088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
Abstract
Yeast cells respond to environmental stress by inducing the master regulator Gcn4 to control genes involved in biosynthesis of amino acids and purine pathways. Gcn4 is a member of the basic leucine Zipper family and binds directly as a homodimer to a conserved regulatory region of target genes. Ssb2 was discovered to rescue the mutant Gcn4 which has a point mutation that decreases DNA-binding affinity. Ssb2 is part of the Hsp70 protein family responsible for protein quality control and it is thought that Ssb2 assists the passage of nascent polypeptide chains from the ribosomes. To characterize the mechanism behind the rescue of the mutant gcn4 phenotype, transcriptional activity and protein levels of Gcn4 were analyzed. We found that Ssb2 improved the expression of Gcn4 target genes by increasing the DNA-binding affinity of gcn4 mutants to target gene promoters under conditions of amino acid starvation. Gcn4 levels increased at both translational and post-translational levels without regulating GCN4 steady-state mRNA levels. We also found that the nuclear export signal of Ssb2 is required for interaction with Gcn4 and rescue of the gcn4 mutant phenotype. These findings suggest that Ssb2 is a critical factor that modulates Gcn4 functions in the nucleus and cytosol.
Collapse
Affiliation(s)
- Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Je-Hyun Baek
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
17
|
Kalmar B, Greensmith L. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function. Front Mol Neurosci 2017; 10:251. [PMID: 28943839 PMCID: PMC5596081 DOI: 10.3389/fnmol.2017.00251] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (Hsps) are ubiquitously expressed chaperone proteins that enable cells to cope with environmental stresses that cause misfolding and denaturation of proteins. With aging this protein quality control machinery becomes less effective, reducing the ability of cells to cope with damaging environmental stresses and disease-causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), such mutations are known to result in protein misfolding, which in turn results in the formation of intracellular aggregates cellular dysfunction and eventual neuronal death. The exact cellular pathology of ALS and other neurodegenerative diseases has been elusive and thus, hindering the development of effective therapies. However, a common scheme has emerged across these "protein misfolding" disorders, in that the mechanism of disease involves one or more aspects of proteostasis; from DNA transcription, RNA translation, to protein folding, transport and degradation via proteosomal and autophagic pathways. Interestingly, members of the Hsp family are involved in each of these steps facilitating normal protein folding, regulating the rate of protein synthesis and degradation. In this short review we summarize the evidence that suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key role. Overwhelming evidence now indicates that enabling protein homeostasis to cope with disease-causing mutations might be a successful therapeutic strategy in ALS, as well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has shown promising results in cellular and animal models of ALS, as well as other protein misfolding diseases such as Inclusion Body Myositis (IBM). Initial clinical investigations of Arimoclomol have shown promising results. Therefore, it is possible that the long series of unsuccessful clinical trials for ALS may soon be reversed, as optimal targeting of proteostasis in ALS may now be possible, and may deliver clinical benefit to patients.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of NeurologyLondon, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of NeurologyLondon, United Kingdom
- MRC Centre for Neuromuscular Disease, UCL Institute of NeurologyLondon, United Kingdom
| |
Collapse
|
18
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|
19
|
Walters RW, Parker R. Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci 2016; 40:552-559. [PMID: 26410596 DOI: 10.1016/j.tibs.2015.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
Abstract
A key aspect of the control of gene expression is the differential rates of mRNA translation and degradation, including alterations due to extracellular inputs. Surprisingly, multiple examples now argue that Hsp70 protein chaperones and their associated Hsp40 partners modulate both mRNA degradation and translation. Hsp70 proteins affect mRNA metabolism by various mechanisms including regulating nascent polypeptide chain folding, activating signal transduction pathways, promoting clearance of stress granules, and controlling mRNA degradation in an mRNA-specific manner. Taken together, these observations highlight the general principle that mRNA metabolism is coupled to the proteostatic state of the cell, often as assessed by the presence of unfolded or misfolded proteins.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
20
|
Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows. J Therm Biol 2016; 56:68-76. [DOI: 10.1016/j.jtherbio.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
|
21
|
Mathiassen SG, Larsen IB, Poulsen EG, Madsen CT, Papaleo E, Lindorff-Larsen K, Kragelund BB, Nielsen ML, Kriegenburg F, Hartmann-Petersen R. A Two-step Protein Quality Control Pathway for a Misfolded DJ-1 Variant in Fission Yeast. J Biol Chem 2015; 290:21141-21153. [PMID: 26152728 DOI: 10.1074/jbc.m115.662312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/30/2022] Open
Abstract
A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.
Collapse
Affiliation(s)
- Søs G Mathiassen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Ida B Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Esben G Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Christian T Madsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Elena Papaleo
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
22
|
Needham PG, Patel HJ, Chiosis G, Thibodeau PH, Brodsky JL. Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. J Mol Biol 2015; 427:2948-65. [PMID: 25913688 DOI: 10.1016/j.jmb.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023]
Abstract
The major cytoplasmic Hsp70 chaperones in the yeast Saccharomyces cerevisiae are the Ssa proteins, and much of our understanding of Hsp70 biology has emerged from studying ssa mutant strains. For example, Ssa1 catalyzes multiple cellular functions, including protein transport and degradation, and to this end, the ssa1-45 mutant has proved invaluable. However, the biochemical defects associated with the corresponding Ssa1-45 protein (P417L) are unknown. Consequently, we characterized Ssa1 P417L, as well as a P417S variant, which corresponds to a mutation in the gene encoding the yeast mitochondrial Hsp70. We discovered that the P417L and P417S proteins exhibit accelerated ATPase activity that was similar to the Hsp40-stimulated rate of ATP hydrolysis of wild-type Ssa1. We also found that the mutant proteins were compromised for peptide binding. These data are consistent with defects in peptide-stimulated ATPase activity and with results from limited proteolysis experiments, which indicated that the mutants' substrate binding domains were highly vulnerable to digestion. Defects in the reactivation of heat-denatured luciferase were also evident. Correspondingly, yeast expressing P417L or P417S as the only copy of Ssa were temperature sensitive and exhibited defects in Ssa1-dependent protein translocation and misfolded protein degradation. Together, our studies suggest that the structure of the substrate binding domain is altered and that coupling between this domain and the nucleotide binding domain is disabled when the conserved P417 residue is mutated. Our data also provide new insights into the nature of the many cellular defects associated with the ssa1-45 allele.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gabriela Chiosis
- Program in Molecular Pharmacology and Chemistry; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Patrick H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Tarrant D, von der Haar T. Synonymous codons, ribosome speed, and eukaryotic gene expression regulation. Cell Mol Life Sci 2014; 71:4195-206. [PMID: 25038778 PMCID: PMC11113527 DOI: 10.1007/s00018-014-1684-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Quantitative control of gene expression occurs at multiple levels, including the level of translation. Within the overall process of translation, most identified regulatory processes impinge on the initiation phase. However, recent studies have revealed that the elongation phase can also regulate translation if elongation and initiation occur with specific, not mutually compatible rate parameters. Translation elongation then limits the overall amount of protein that can be made from an mRNA. Several recently discovered control mechanisms of biological pathways are based on such elongation control. Here, we review the molecular mechanisms that determine ribosome speed in eukaryotic organisms, and discuss under which conditions ribosome speed can become the controlling parameter of gene expression levels.
Collapse
Affiliation(s)
- Daniel Tarrant
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
24
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
25
|
Beltrao P, Albanèse V, Kenner LR, Swaney DL, Burlingame A, Villén J, Lim WA, Fraser JS, Frydman J, Krogan NJ. Systematic functional prioritization of protein posttranslational modifications. Cell 2012; 150:413-25. [PMID: 22817900 DOI: 10.1016/j.cell.2012.05.036] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 03/21/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Protein function is often regulated by posttranslational modifications (PTMs), and recent advances in mass spectrometry have resulted in an exponential increase in PTM identification. However, the functional significance of the vast majority of these modifications remains unknown. To address this problem, we compiled nearly 200,000 phosphorylation, acetylation, and ubiquitination sites from 11 eukaryotic species, including 2,500 newly identified ubiquitylation sites for Saccharomyces cerevisiae. We developed methods to prioritize the functional relevance of these PTMs by predicting those that likely participate in cross-regulatory events, regulate domain activity, or mediate protein-protein interactions. PTM conservation within domain families identifies regulatory "hot spots" that overlap with functionally important regions, a concept that we experimentally validated on the HSP70 domain family. Finally, our analysis of the evolution of PTM regulation highlights potential routes for neutral drift in regulatory interactions and suggests that only a fraction of modification sites are likely to have a significant biological role.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Figueras MJ, Martin OA, Echeverria PC, de Miguel N, Naguleswaran A, Sullivan WJ, Corvi MM, Angel SO. Toxoplasma gondii Sis1-like J-domain protein is a cytosolic chaperone associated to HSP90/HSP70 complex. Int J Biol Macromol 2011; 50:725-33. [PMID: 22209934 DOI: 10.1016/j.ijbiomac.2011.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/24/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite in which 36 predicted Hsp40 family members were identified by searching the T. gondii genome. The predicted protein sequence from the gene ID TGME49_065310 showed an amino acid sequence and domain structure similar to Saccharomyces cerevisiae Sis1. TgSis1 did not show differences in its expression profile during alkaline stress by microarray analysis. Furthermore, TgSis1 showed to be a cytosolic Hsp40 which co-immunoprecipitated with T. gondii Hsp70 and Hsp90. Structural modeling of the TgSis1 peptide binding fragment revealed structural and electrostatic properties different from the experimental model of human Sis1-like protein (Hdj1). Based on these differences; we propose that TgSis1 may be a potentially attractive drug target for developing a novel anti-T. gondii therapy.
Collapse
Affiliation(s)
- Maria J Figueras
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR, Tapia PH, Manzanilla EE, Dodson AE, Chakraborty S, Carter M, Young S, Edwards B, Sklar L, Werner-Washburne M. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 2011; 22:988-98. [PMID: 21289090 PMCID: PMC3069023 DOI: 10.1091/mbc.e10-06-0499] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
Collapse
Affiliation(s)
- George S Davidson
- Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:662-72. [PMID: 20226819 DOI: 10.1016/j.bbamcr.2010.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.
Collapse
Affiliation(s)
- Kristin Peisker
- Department of Cell and Molecular Biology, Biomedicinskt Centrum BMC, Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Sharma D, Masison DC. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 2009; 16:571-81. [PMID: 19519514 DOI: 10.2174/092986609788490230] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins protect cells from various conditions of stress. Hsp70, the most ubiquitous and highly conserved Hsp, helps proteins adopt native conformation or regain function after misfolding. Various co-chaperones specify Hsp70 function and broaden its substrate range. We discuss Hsp70 structure and function, regulation by co-factors and influence on propagation of yeast prions.
Collapse
Affiliation(s)
- Deepak Sharma
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National institutes of Health, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
30
|
Shahi P, Gulshan K, Moye-Rowley WS. Negative Transcriptional Regulation of Multidrug Resistance Gene Expression by an Hsp70 Protein. J Biol Chem 2007; 282:26822-26831. [PMID: 17636264 DOI: 10.1074/jbc.m704772200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most common origins of multidrug resistance occurs via the overproduction of ATP-binding cassette (ABC) transporter proteins. These ABC transporters then act as broad specificity drug pumps and efflux a wide range of toxic agents out of the cell. The yeast Saccharomyces cerevisiae exhibits multiple or pleiotropic drug resistance (Pdr) often through the over-production of a plasma membrane-localized ABC transporter protein called Pdr5p. Expression of the PDR5 gene is controlled by two zinc cluster-containing transcription factors called Pdr1p and Pdr3p. Cells that lack their mitochondrial genome (rho(0) cells) strongly induce PDR5 transcription in a Pdr3p-dependent fashion. To identify proteins associated with Pdr3p that might act to regulate this factor, a tandem affinity purification (TAP) moiety was fused to Pdr3p, and this recombinant protein was purified from yeast cells. The cytosolic Hsp70 chaperone Ssa1p co-purified with TAP-Pdr3p. Overexpression of Ssa1p repressed expression of PDR5 but had no effect on expression of other genes involved in the Pdr phenotype. This Ssa1p-mediated repression required the presence of Pdr3p and did not influence Pdr1p-dependent gene expression. Loss of the nucleotide exchange factor Fes1p mimicked Ssa1p-mediated repression of PDR5. Co-immunoprecipitation experiments indicated that Ssa1p was associated with Pdr3p but not Pdr1p in yeast cells. Finally, rho(0) cells had less Ssa1p bound to Pdr3p than rho(+) cells, consistent with Ssa1p-mediated repression of Pdr3p activity serving as a key regulatory step in control of multidrug resistance in yeast.
Collapse
Affiliation(s)
- Puja Shahi
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - Kailash Gulshan
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
31
|
Raue U, Oellerer S, Rospert S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 2007; 282:7809-16. [PMID: 17229726 DOI: 10.1074/jbc.m611436200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome-associated protein biogenesis factors (RPBs) act during a short but critical period of protein biogenesis. The action of RPBs starts as soon as a nascent polypeptide becomes accessible from the outside of the ribosome and ends upon termination of translation. In yeast, RPBs include the chaperones Ssb1/2 and ribosome-associated complex, signal recognition particle, nascent polypeptide-associated complex (NAC), the aminopeptidases Map1 and Map2, and the Nalpha-terminal acetyltransferase NatA. Here, we provide the first comprehensive analysis of RPB binding at the yeast ribosomal tunnel exit as a function of translational status and polypeptide sequence. We measured the ratios of RPBs to ribosomes in yeast cells and determined RPB occupation of translating and non-translating ribosomes. The combined results imply a requirement for dynamic and coordinated interactions at the tunnel exit. Exclusively, NAC was associated with the majority of ribosomes regardless of their translational status. All other RPBs occupied only ribosomal subpopulations, binding with increased apparent affinity to randomly translating ribosomes as compared with non-translating ones. Analysis of RPB interaction with homogenous ribosome populations engaged in the translation of specific nascent polypeptides revealed that the affinities of Ssb1/2, NAC, and, as expected, signal recognition particle, were influenced by the amino acid sequence of the nascent polypeptide. Complementary cross-linking data suggest that not only affinity of RPBs to the ribosome but also positioning can be influenced in a nascent polypeptide-dependent manner.
Collapse
Affiliation(s)
- Uta Raue
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, Freiburg, Germany
| | | | | |
Collapse
|
32
|
Zanelli CF, Maragno ALC, Gregio APB, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR. eIF5A binds to translational machinery components and affects translation in yeast. Biochem Biophys Res Commun 2006; 348:1358-66. [PMID: 16914118 DOI: 10.1016/j.bbrc.2006.07.195] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/20/2022]
Abstract
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation.
Collapse
Affiliation(s)
- Cleslei F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP 14801-902, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 2006; 11:116-28. [PMID: 16817317 PMCID: PMC1484513 DOI: 10.1379/csc-144r.1] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The heat shock chaperones mortalin/mitochondrial heat shock protein 70 (mtHsp70) and Hsp60 are found in multiple subcellular sites and function in the folding and intracellular trafficking of many proteins. The chaperoning activity of these 2 proteins involves different structural and functional mechanisms. In spite of providing an excellent model for an evolutionarily conserved molecular "brotherhood", their individual functions, although overlapping, are nonredundant. As they travel to various locations, both chaperones acquire different binding partners and exert a more divergent involvement in tumorigenesis, cellular senescence, and immunology. An understanding of their functional biology may lead to novel designing and development of therapeutic strategies for cancer and aging.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | |
Collapse
|
34
|
Abstract
The terms chaperone and heat-shock protein are frequently used as synonyms, but this is an oversimplification. Although one subset of chaperones is induced by heat stress, a distinct group fails to respond in the same manner. Recent work reveals that this latter group is linked to the translational apparatus and functions in co-translational processes.
Collapse
Affiliation(s)
- Sabine Rospert
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | |
Collapse
|
35
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
36
|
Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol Biol Cell 2005; 17:1164-75. [PMID: 16381812 PMCID: PMC1382306 DOI: 10.1091/mbc.e05-11-1039] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sphingolipids are required for many cellular functions including response to heat shock. We analyzed the yeast lcb1-100 mutant, which is conditionally impaired in the first step of sphingolipid biosynthesis and shows a strong decrease in heat shock protein synthesis and viability. Transcription and nuclear export of heat shock protein mRNAs is not affected. However, lcb1-100 cells exhibited a strong decrease in protein synthesis caused by a defect in translation initiation under heat stress conditions. The essential lipid is sphingoid base, not ceramide or sphingoid base phosphates. Deletion of the eIF4E-binding protein Eap1p in lcb-100 cells restored translation of heat shock proteins and increased viability. The translation defect during heat stress in lcb1-100 was due at least partially to a reduced function of the sphingoid base-activated PKH1/2 protein kinases. In addition, depletion of the translation initiation factor eIF4G was observed in lcb1-100 cells and ubiquitin overexpression allowed partial recovery of translation after heat stress. Taken together, we have shown a requirement for sphingoid bases during the recovery from heat shock and suggest that this reflects a direct lipid-dependent signal to the cap-dependent translation initiation apparatus.
Collapse
Affiliation(s)
- Karsten D Meier
- Department of Biochemistry, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Cheng Q, Pappas V, Hallmann A, Miller SM. Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox. Dev Biol 2005; 286:537-48. [PMID: 16168403 DOI: 10.1016/j.ydbio.2005.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/26/2022]
Abstract
GlsA, a J-protein chaperone, is required for the asymmetric divisions that set aside germ and somatic cell precursors during embryogenesis in Volvox carteri, and previous evidence indicated that this function requires an intact Hsp70-binding site. To determine if Hsp70A, the only known cytoplasmic Hsp70 in V. carteri, is the chaperone partner of GlsA, we investigated the localization of the two proteins during critical stages of embryogenesis and tested their capacity to interact. We found that a substantial fraction of Hsp70A co-localizes with GlsA, both in interphase and mitotic blastomeres. In addition, Hsp70A coimmunoprecipitated with GlsA, and co-expression of GlsA and Hsp70A variants partially rescued the Gls phenotype of a glsA mutant, whereas neither variant by itself rescued the mutant phenotype. Immunofluorescence analysis demonstrated that GlsA is about equally abundant in all blastomeres at all cleavage stages examined but that Hsp70A is more abundant in anterior (asymmetrically dividing) blastomeres than in posterior (symmetrically dividing) blastomeres during the period of asymmetric division. We conclude that Hsp70A and GlsA function as chaperone partners that regulate asymmetric division and that the relative abundance of Hsp70A in asymmetrically dividing embryos may determine which blastomeres divide asymmetrically and which do not.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
38
|
Ahner A, Whyte FM, Brodsky JL. Distinct but overlapping functions of Hsp70, Hsp90, and an Hsp70 nucleotide exchange factor during protein biogenesis in yeast. Arch Biochem Biophys 2005; 435:32-41. [PMID: 15680904 DOI: 10.1016/j.abb.2004.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/03/2004] [Indexed: 11/20/2022]
Abstract
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels. In contrast, Hsp90 function was primarily necessary to express the FFLux-encoding gene from an inducible promoter. Together, these data indicate previously unknown roles for these proteins and point to the complexity with which chaperones and cochaperones function in the cell.
Collapse
Affiliation(s)
- Annette Ahner
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
39
|
Walsh P, Bursać D, Law YC, Cyr D, Lithgow T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 2005; 5:567-71. [PMID: 15170475 PMCID: PMC1299080 DOI: 10.1038/sj.embor.7400172] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 04/22/2004] [Indexed: 01/01/2023] Open
Abstract
DnaJ is a molecular chaperone and the prototypical member of the J-protein family. J proteins are defined by the presence of a J domain that can regulate the activity of 70-kDa heat-shock proteins. Sequence analysis on the genome of Saccharomyces cerevisiae has revealed 22 proteins that establish four distinguishing structural features of the J domain: predicted helicity in segments I-IV, precisely placed interhelical contact residues, a lysine-rich surface on helix II and placement of the diagnostic sequence HPD between the predicted helices II and III. We suggest that this definition of the J-protein family could be used for other genome-wide studies. In addition, three J-like proteins were identified in yeast that contain regions closely resembling a J domain, but in which the HPD motif is non-conservatively replaced. We suggest that J-like proteins might function to regulate the activity of bona fide J proteins during protein translocation, assembly and disassembly.
Collapse
Affiliation(s)
- Peter Walsh
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
| | - Dejan Bursać
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
| | - Yin Chern Law
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
- Present address: Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | - Douglas Cyr
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | - Trevor Lithgow
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
- Tel: +61 3 8344 4131; Fax: +61 3 9348 2251;
| |
Collapse
|
40
|
Windgassen M, Sturm D, Cajigas IJ, González CI, Seedorf M, Bastians H, Krebber H. Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol Cell Biol 2004; 24:10479-91. [PMID: 15542855 PMCID: PMC529038 DOI: 10.1128/mcb.24.23.10479-10491.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/08/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
A major challenge in current molecular biology is to understand how sequential steps in gene expression are coupled. Recently, much attention has been focused on the linkage of transcription, processing, and mRNA export. Here we describe the cytoplasmic rearrangement for shuttling mRNA binding proteins in Saccharomyces cerevisiae during translation. While the bulk of Hrp1p, Nab2p, or Mex67p is not associated with polysome containing mRNAs, significant amounts of the serine/arginine (SR)-type shuttling mRNA binding proteins Npl3p, Gbp2p, and Hrb1p remain associated with the mRNA-protein complex during translation. Interestingly, a prolonged association of Npl3p with polysome containing mRNAs results in translational defects, indicating that Npl3p can function as a negative translational regulator. Consistent with this idea, a mutation in NPL3 that slows down translation suppresses growth defects caused by the presence of translation inhibitors or a mutation in eIF5A. Moreover, using sucrose density gradient analysis, we provide evidence that the import receptor Mtr10p, but not the SR protein kinase Sky1p, is involved in the timely regulated release of Npl3p from polysome-associated mRNAs. Together, these data shed light onto the transformation of an exporting to a translating mRNP.
Collapse
Affiliation(s)
- Merle Windgassen
- Institut für Molekularbiologie und Tumorforschung der Philipps-Universität Marburg, Emil-Mannkopff-Str. 2, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
42
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Strub A, Zufall N, Voos W. The putative helical lid of the Hsp70 peptide-binding domain is required for efficient preprotein translocation into mitochondria. J Mol Biol 2004; 334:1087-99. [PMID: 14643668 DOI: 10.1016/j.jmb.2003.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mitochondrial Hsp70 (Ssc1) is an essential component of the preprotein import machinery, responsible for the unfolding and movement of polypeptide chains through the mitochondrial membranes into the matrix. Here, we have analyzed the role of the carboxy-terminal variable domain during the protein translocation reaction. This segment is thought to form an alpha-helical lid over the substrate binding site. Truncated Ssc1 molecules lacking parts or all of the lid region showed reduced binding to substrate proteins but were able to interact with the co-chaperone Mge1 and the inner membrane anchor Tim44. Deletions of the complete lid resulted in a lethal phenotype in vivo, caused by the inability to sustain a productive preprotein import function. The translocation defect in vitro was not overcome by artificial unfolding of the preprotein prior to the import reaction. Despite a reduced substrate affinity, the presence of a minimal lid segment in Ssc1 was sufficient to support preprotein import. However, at low reaction temperatures or low matrix ATP levels, protein import rates were significantly reduced due to an unproductive interaction with the preprotein in transit. We conclude that the carboxy-terminal domain performs a crucial role in the import process by enhancing the import motor function of Ssc1 during polypeptide translocation.
Collapse
Affiliation(s)
- Andreas Strub
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
44
|
Fan CY, Lee S, Ren HY, Cyr DM. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 2003; 15:761-73. [PMID: 14657253 PMCID: PMC329391 DOI: 10.1091/mbc.e03-03-0146] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hsp40 family members regulate Hsp70s ability to bind nonnative polypeptides and thereby play an essential role in cell physiology. Type I and type II Hsp40s, such as yeast Ydj1 and Sis1, form chaperone pairs with cytosolic Hsp70 Ssa1 that fold proteins with different efficiencies and carry out specific cellular functions. The mechanism by which Ydj1 and Sis1 specify Hsp70 functions is not clear. Ydj1 and Sis1 share a high degree of sequence identity in their amino and carboxyl terminal ends, but each contains a structurally unique and centrally located protein module that is implicated in chaperone function. To test whether the chaperone modules of Ydj1 and Sis1 function in the specification of Hsp70 action, we constructed a set of chimeric Hsp40s in which the chaperone domains of Ydj1 and Sis1 were swapped to form YSY and SYS. Purified SYS and YSY exhibited protein-folding activity and substrate specificity that mimicked that of Ydj1 and Sis1, respectively. In in vivo studies, YSY exhibited a gain of function and, unlike Ydj1, could complement the lethal phenotype of sis1 Delta and facilitate maintenance of the prion [RNQ+]. Ydj1 and Sis1 contain exchangeable chaperone modules that assist in specification of Hsp70 function.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
45
|
Duttagupta R, Vasudevan S, Wilusz CJ, Peltz SW. A yeast homologue of Hsp70, Ssa1p, regulates turnover of the MFA2 transcript through its AU-rich 3' untranslated region. Mol Cell Biol 2003; 23:2623-32. [PMID: 12665566 PMCID: PMC152564 DOI: 10.1128/mcb.23.8.2623-2632.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many eukaryotic mRNAs exhibit regulated decay in response to cellular signals. AU-rich elements (AREs) identified in the 3' untranslated region (3'-UTR) of several such mRNAs play a critical role in controlling the half-lives of these transcripts. The yeast ARE-containing mRNA, MFA2, has been studied extensively and is degraded by a deadenylation-dependent mechanism. However, the trans-acting factors that promote the rapid decay of MFA2 have not been identified. Our results suggest that the chaperone protein Hsp70, encoded by the SSA family of genes, is involved in modulating MFA2 mRNA decay. MFA2 is specifically stabilized in a strain bearing a temperature-sensitive mutation in the SSA1 gene. Furthermore, an AU-rich region within the 3'-UTR of the message is both necessary and sufficient to confer this regulation. Stabilization occurs as a result of slower deadenylation in the ssa1(ts) strain, suggesting that Hsp70 is required for activation of the turnover pathway.
Collapse
Affiliation(s)
- Radharani Duttagupta
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
46
|
Götte M. Screening for suppressors of temperature sensitivity in a yeast mutant defective in vacuolar protein degradation. Genet Mol Biol 2003. [DOI: 10.1590/s1415-47572003000100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Martin Götte
- Protogeneia, Incorporation, Germany; Max-Planck-Institute for Biophysical Chemistry, Germany
| |
Collapse
|
47
|
Uchida N, Hoshino SI, Imataka H, Sonenberg N, Katada T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 2002; 277:50286-92. [PMID: 12381739 DOI: 10.1074/jbc.m203029200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian GSPT, which consists of amino-terminal (N) and carboxyl-terminal (C) domains, functions as the eukaryotic releasing factor 3 (eRF3) by interacting with eRF1 in translation termination. This function requires only the C-domain that is homologous to the elongation factor (EF) 1alpha, while the N-domain interacts with polyadenylate-binding protein (PABP), which binds the poly(A) tail of mRNA and associates with the eukaryotic initiation factor (eIF) 4G. Here we describe a novel role of GSPT in translation. We first determined an amino acid sequence required for the PABP interaction in the N-domain. Inhibition of this interaction significantly attenuated translation of capped/poly(A)-tailed mRNA not only in an in vitro translation system but also in living cells. There was a PABP-dependent linkage between the termination factor complex eRF1-GSPT and the initiation factor eIF4G associating with 5' cap through eIF4E. Although the inhibition of the GSPT-PABP interaction did not affect the de novo formation of an 80 S ribosomal initiation complex, it appears to suppress the subsequent recycle of ribosome. These results indicate that GSPT/eRF3 plays an important role in translation cycle through the interaction with PABP, in addition to mediating the termination with eRF1.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
48
|
Kabani M, Beckerich JM, Brodsky JL. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol Cell Biol 2002; 22:4677-89. [PMID: 12052876 PMCID: PMC133915 DOI: 10.1128/mcb.22.13.4677-4689.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification of Fes1p (yBR101cp) as a cytosolic homologue of Sls1p, an endoplasmic reticulum (ER) protein previously shown to act as a nucleotide exchange factor for yeast BiP (M. Kabani, J.-M. Beckerich, and C. Gaillardin, Mol. Cell. Biol. 20:6923-6934, 2000). We found that Fes1p associates preferentially to the ADP-bound form of the cytosolic Hsp70 molecular chaperone Ssa1p and promotes nucleotide release. Fes1p activity was shown to be compartment and species specific since Sls1p and Escherichia coli GrpE could not substitute for Fes1p. Surprisingly, whereas Sls1p stimulated the ATPase activity of BiP in cooperation with luminal J proteins, Fes1p was shown to inhibit the Ydj1p-mediated activation of Ssa1p ATPase activity in steady-state and single-turnover assays. Disruption of FES1 in several wild-type backgrounds conferred a strong thermosensitive phenotype but partially rescued ydj1-151 thermosensitivity. The Delta fes1 strain was proficient for posttranslational protein translocation, as well as for the ER-associated degradation of two substrates. However, the Delta fes1 mutant showed increased cycloheximide sensitivity and a general translational defect, suggesting that Fes1p acts during protein translation, a process in which Ssa1p and Ydj1p are known to be involved. In support of this hypothesis, Fes1p was found to be associated with ribosomes.
Collapse
Affiliation(s)
- Mehdi Kabani
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
49
|
Lee S, Fan CY, Younger JM, Ren H, Cyr DM. Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding. J Biol Chem 2002; 277:21675-82. [PMID: 11919183 DOI: 10.1074/jbc.m111075200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sis1 is an essential yeast Type II Hsp40 protein that assists cytosolic Hsp70 Ssa1 in the facilitation of processes that include translation initiation, the prevention of protein aggregation, and proteasomal protein degradation. An essential function of Sis1 and other Hsp40 proteins is the binding and delivery of non-native polypeptides to Hsp70. How Hsp40s function as molecular chaperones is unknown. The crystal structure of a Sis1 fragment that retains peptide-binding activity suggests that Type II Hsp40s utilize hydrophobic residues located in a solvent-exposed patch on carboxyl-terminal domain I to bind non-native polypeptides. To test this model, amino acid residues Val-184, Leu-186, Lys-199, Phe-201, Ile-203, and Phe-251, which form a depression in carboxyl-terminal domain I, were mutated, and the ability of Sis1 mutants to support cell viability and function as molecular chaperones was examined. We report that Lys-199, Phe-201, and Phe-251 are essential for cell viability and required for Sis1 polypeptide binding activity. Sis1 I203T could support normal cell growth, but when purified it exhibited severe defects in chaperone function. These data identify essential residues in Sis1 that function in polypeptide binding and help define the nature of the polypeptide-binding site in Type II Hsp40 proteins.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | |
Collapse
|
50
|
Strub A, Röttgers K, Voos W. The Hsp70 peptide-binding domain determines the interaction of the ATPase domain with Tim44 in mitochondria. EMBO J 2002; 21:2626-35. [PMID: 12032075 PMCID: PMC126037 DOI: 10.1093/emboj/21.11.2626] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 04/02/2002] [Accepted: 04/05/2002] [Indexed: 11/12/2022] Open
Abstract
Ssc1, a molecular chaperone of the Hsp70 family, drives preprotein import into the mitochondrial matrix by a specific interaction with the translocase component Tim44. Two other mitochondrial Hsp70s, Ssc3 (Ecm10) and Ssq1, show high sequence homology to Ssc1 but fail to replace Ssc1 in vivo, possibly due to their inability to interact with Tim44. We analyzed the structural basis of the Tim44 interaction by the construction of chimeric Hsp70 proteins. The ATPase domains of all three mitochondrial Hsp70s were shown to bind to Tim44, supporting the active motor model for the Hsp70 mechanism during preprotein translocation. The peptide-binding domain of Ssc1 sustained binding of Tim44, while the peptide-binding domains of Ssc3 and Ssq1 exerted a negative effect on the interaction of the ATPase domains with Tim44. A mutation in the peptide-binding domain of Ssc1 resulted in a similar negative effect not only on the ATPase domain of Ssc1, but also of Ssq1 and Ssc3. Hence, the determination of a crucial Hsp70 function via the peptide-binding domain suggests a new regulatory principle for Hsp70 domain cooperation.
Collapse
Affiliation(s)
- Andreas Strub
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, Freiburg and Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany Corresponding author e-mail:
| | - Karin Röttgers
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, Freiburg and Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany Corresponding author e-mail:
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, Freiburg and Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany Corresponding author e-mail:
| |
Collapse
|