1
|
Sun Y, Pan Z, Wang Z, Wang H, Wei L, Cui F, Zou Q, Zhang Z. Single-cell transcriptome analysis reveals immune microenvironment changes and insights into the transition from DCIS to IDC with associated prognostic genes. J Transl Med 2024; 22:894. [PMID: 39363164 PMCID: PMC11448450 DOI: 10.1186/s12967-024-05706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is an early stage of breast cancer, and preventing its progression to invasive ductal carcinoma (IDC) is crucial for the early detection and treatment of breast cancer. Although single-cell transcriptome analysis technology has been widely used in breast cancer research, the biological mechanisms underlying the transition from DCIS to IDC remain poorly understood. RESULTS We identified eight cell types through cell annotation, finding significant differences in T cell proportions between DCIS and IDC. Using this as a basis, we performed pseudotime analysis on T cell subpopulations, revealing that differentially expressed genes primarily regulate immune cell migration and modulation. By intersecting WGCNA results of T cells highly correlated with the subtypes and the differentially expressed genes, we identified six key genes: FGFBP2, GNLY, KLRD1, TYROBP, PRF1, and NKG7. Excluding PRF1, the other five genes were significantly associated with overall survival in breast cancer, highlighting their potential as prognostic biomarkers. CONCLUSIONS We identified immune cells that may play a role in the progression from DCIS to IDC and uncovered five key genes that can serve as prognostic markers for breast cancer. These findings provide insights into the mechanisms underlying the transition from DCIS to IDC, offering valuable perspectives for future research. Additionally, our results contribute to a better understanding of the biological processes involved in breast cancer progression.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Female
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Gene Expression Profiling
- Prognosis
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/immunology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/immunology
- Disease Progression
- Transcriptome/genetics
- Single-Cell Gene Expression Analysis
Collapse
Affiliation(s)
- Yidi Sun
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhuoyu Pan
- International Business School, Hainan University, Haikou, 570228, China
| | - Ziyi Wang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Haofei Wang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Leyi Wei
- Centre for Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
- School of Informatics, Xiamen University, Xiamen, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China.
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Wang Y, Luan T, Wang L, Feng D, Dong Y, Li S, Yang H, Chen Y, Fei Y, Lin L, Pan J, Zhong Z, Zhao W. N-Acetylcysteine Inhibits Coxsackievirus B3 Replication by Downregulating Eukaryotic Translation Elongation Factor 1 Alpha 1. Viruses 2024; 16:1503. [PMID: 39339978 PMCID: PMC11437456 DOI: 10.3390/v16091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Group B Coxsackieviruses (CVB) are one of the causative pathogens of myocarditis, which may progress to cardiomyopathy. The pathogenesis of CVB is not fully understood, and effective antiviral therapy is not available. N-acetylcysteine (NAC), the classic antioxidant, has been used in clinical practice for several decades to treat various medical conditions. In this study, the anti-CVB effect of NAC was investigated. We show that NAC dramatically suppressed viral replication and alleviated cardiac injury induced by CVB3. To further study the antiviral mechanism of NAC, RNA-sequencing was performed for CVB3-infected cells with NAC treatment. We found that eukaryotic elongation factor 1 alpha 1 (EEF1A1) is one of the most upregulated genes in CVB3-infected cells. However, EEF1A2, the highly homologous isoform of EEF1A1, remains unchanged. EEF1A1 expression was significantly suppressed by NAC treatment in CVB3-infected cells, while EEF1A2 was not affected. eEF1A1 knockdown significantly inhibited CVB3 replication, implicating that eEF1A1 facilitates viral replication. Importantly, we show that eEF1A1, which was not expressed in the myocardia of newborn mice, was significantly upregulated by CVB3 infection. NAC markedly downregulated the expression of eEF1A1 but not eEF1A2 in the myocardia of CVB3-infected mice. Furthermore, NAC accelerated eEF1A1 degradation by promoting autophagy in CVB3-infected cells. We show that p62, one of the critical adaptors of autophagic targets, interacts with eEF1A1 and was downregulated in CVB3-infected cells upon NAC treatment. Taken together, this study demonstrated that NAC shows a potent anti-CVB effect through the downregulation of eEF1A1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Danxiang Feng
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Hong Yang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Jiahui Pan
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| |
Collapse
|
3
|
Marshall GF, Fasol M, Davies FCJ, Le Seelleur M, Fernandez Alvarez A, Bennett-Ness C, Gonzalez-Sulser A, Abbott CM. Face-valid phenotypes in a mouse model of the most common mutation in EEF1A2-related neurodevelopmental disorder. Dis Model Mech 2024; 17:dmm050501. [PMID: 38179821 PMCID: PMC10855229 DOI: 10.1242/dmm.050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.
Collapse
Affiliation(s)
- Grant F. Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Melissa Fasol
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Faith C. J. Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matthew Le Seelleur
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alejandra Fernandez Alvarez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Cavan Bennett-Ness
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
4
|
Cardanho-Ramos C, Simões RA, Wang YZ, Faria-Pereira A, Bomba-Warczak E, Craessaerts K, Spinazzi M, Savas JN, Morais VA. Local mitochondrial replication in the periphery of neurons requires the eEF1A1 protein and thetranslation of nuclear-encoded proteins. iScience 2024; 27:109136. [PMID: 38510136 PMCID: PMC10951640 DOI: 10.1016/j.isci.2024.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 03/22/2024] Open
Abstract
In neurons, it is commonly assumed that mitochondrial replication only occurs in the cell body, after which the mitochondria must travel to the neuron's periphery. However, while mitochondrial DNA replication has been observed to occur away from the cell body, the specific mechanisms involved remain elusive. Using EdU-labelling in mouse primary neurons, we developed a tool to determine the mitochondrial replication rate. Taking of advantage of microfluidic devices, we confirmed that mitochondrial replication also occurs locally in the periphery of neurons. To achieve this, mitochondria require de novo nuclear-encoded, but not mitochondrial-encoded protein translation. Following a proteomic screen comparing synaptic with non-synaptic mitochondria, we identified two elongation factors - eEF1A1 and TUFM - that were upregulated in synaptic mitochondria. We found that mitochondrial replication is impaired upon the downregulation of eEF1A1, and this is particularly relevant in the periphery of neurons.
Collapse
Affiliation(s)
- Carlos Cardanho-Ramos
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben Alves Simões
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katleen Craessaerts
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
- Dementia Research Institute, University College London, London, UK
| | - Marco Spinazzi
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Leuven, Belgium
- Dementia Research Institute, University College London, London, UK
- Neuromuscular Reference Center, Department of Neurology, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vanessa A. Morais
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Davies FCJ, Marshall GF, Pegram E, Gadd D, Abbott CM. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2. Mol Cell Neurosci 2023; 126:103879. [PMID: 37429391 DOI: 10.1016/j.mcn.2023.103879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Eleanor Pegram
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Danni Gadd
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
6
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
7
|
Mealey-Farr R, Jeong J, Park J, Liu S, Hausmann S, Francis JW, Angulo Ibanez M, Cho J, Chua K, Mazur PK, Gozani O. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J Biol Chem 2023; 299:104747. [PMID: 37094697 PMCID: PMC10220242 DOI: 10.1016/j.jbc.2023.104747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.
Collapse
Affiliation(s)
| | - Jinho Jeong
- Department of Biology, Stanford University, Stanford, California, USA
| | - Juhyung Park
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shuo Liu
- Department of Biology, Stanford University, Stanford, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joel W Francis
- Department of Biology, Stanford University, Stanford, California, USA
| | - Maria Angulo Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Joonseok Cho
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Katrin Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
8
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
9
|
Shao E, Zhao S, Dong Y, Wang Y, Fei Y, Li S, Wang L, Bashir T, Luan T, Lin L, Wang Y, Zhao W, Zhong Z. Anisomycin inhibits Coxsackievirus B replication by promoting the lysosomal degradation of eEF1A1. Antiviral Res 2023; 215:105621. [PMID: 37156267 DOI: 10.1016/j.antiviral.2023.105621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Group B Coxsackieviruses (CVB) are non-enveloped small RNA viruses in the genus Enterovirus, family Picornaviridae. CVB infection causes diverse conditions from common cold to myocarditis, encephalitis, and pancreatitis. No specific antiviral is available for the treatment of CVB infection. Anisomycin, a pyrrolidine-containing antibiotic and translation inhibitor, was reported to inhibit the replication of some picornaviruses. However, it is unknown if anisomycin can act as an antiviral against CVB infection. Here we observed that anisomycin showed potent inhibition on CVB type 3 (CVB3) infection with negligible cytotoxicity when applied at the early stage of virus infection. Mice infected with CVB3 showed markedly alleviated myocarditis with reduced viral replication. We found that CVB3 infection significantly increased the transcription of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1). CVB3 replication was suppressed by EEF1A1 knockdown, while elevated by EEF1A1 overexpression. Similar to the effect of CVB3 infection, EEF1A1 transcription was increased in response to anisomycin treatment. However, eEF1A1 protein level was decreased with anisomycin treatment in a dose-dependent manner in CVB3-infected cells. Moreover, anisomycin promoted eEF1A1 degradation, which was inhibited by the treatment of chloroquine but not MG132. We demonstrated that eEF1A1 interacted with the heat shock cognate protein 70 (HSP70), and eEF1A1 degradation was inhibited by LAMP2A knockdown, implicating that eEF1A1 is degraded through chaperone-mediated autophagy. Taken together, we demonstrated that anisomycin, which inhibits CVB replication through promoting the lysosomal degradation of eEF1A1, could be a potential antiviral candidate for the treatment of CVB infection.
Collapse
Affiliation(s)
- Enze Shao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yanru Fei
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Tahira Bashir
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China.
| | - Zhaohuan Zhong
- Department of Microbiology, Harbin Medical University, 196 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
10
|
Romaus-Sanjurjo D, Saikia JM, Kim HJ, Tsai KM, Le GQ, Zheng B. Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discov 2022; 8:390. [PMID: 36123349 PMCID: PMC9485247 DOI: 10.1038/s41420-022-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Although protein synthesis is hypothesized to have a pivotal role in axonal repair after central nervous system (CNS) injury, the role of core components of the protein synthesis machinery has not been examined. Notably, some elongation factors possess non-canonical functions that may further impact axonal repair. Here, we examined whether overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins enhances the collateral sprouting of corticospinal tract (CST) neurons after unilateral pyramidotomy, along with the underlying molecular mechanisms. We found that overexpressing eEF1A proteins in CST neurons increased the levels of pS6, an indicator for mTOR activity, but not pSTAT3 and pAKT levels, in neuronal somas. Strikingly, overexpressing eEF1A2 alone, but neither eEF1A1 alone nor both factors simultaneously, increased protein synthesis and actin rearrangement in CST neurons. While eEF1A1 overexpression only slightly enhanced CST sprouting after pyramidotomy, eEF1A2 overexpression substantially enhanced this sprouting. Surprisingly, co-overexpression of both eEF1A1 and eEF1A2 led to a sprouting phenotype similar to wild-type controls, suggesting an antagonistic effect of overexpressing both proteins. These data provide the first evidence that overexpressing a core component of the translation machinery, eEF1A2, enhances CST sprouting, likely by a combination of increased protein synthesis, mTOR signaling and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Tsai
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Geneva Q Le
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- VA San Diego Research Service, San Diego, CA, 92161, USA.
| |
Collapse
|
11
|
A Potential Role of the Translation Elongation Factor eef1a1 in Gonadal High-Temperature Perception in Chinese Tongue Sole (Cynoglossus semilaevis). Animals (Basel) 2022; 12:ani12131603. [PMID: 35804501 PMCID: PMC9265046 DOI: 10.3390/ani12131603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The eukaryotic elongation factor 1 alpha (eef1a) gene is vital for protein translation by delivering aminoacylated tRNAs to the A/P site of the ribosome via the GTP-dependent reaction. Here, the Chinese tongue sole (Cynoglossus semilaevis) eef1a1 gene was identified, and its potential role in gonadal high-temperature perception was assessed. The full-length sequence of eef1a1 cDNA was 1809 base pair (bp) encoding a putative protein of 461 amino acids. The expression levels of eef1a1 in the ovary were significantly higher than that in the testis from 6 mpf to 3 ypf. Under high-temperature induction during sex differentiation, eef1a1 was significantly down-regulated in males, while the difference was not detected in females. Furthermore, the rapid response of eef1a1 to environmental high temperature was assessed in vitro. Our findings suggest that C. semilaevis eef1a1 might be essential for the molecular response regulatory network of external temperature affecting internal sex differentiation. Abstract The eukaryotic translation elongation factor 1 alpha (eef1a) gene has a well-defined role in protein synthesis. However, its role in external temperature perception and internal sex differentiation and development is still unclear. In this study, eef1a1 was identified and functionally analyzed in Chinese tongue sole (Cynoglossus semilaevis). The eef1a1 cDNA, 1809 bp in length, had a 1386 bp open reading frame (ORF) that encoded a 461 amino acid polypeptide containing one EF-1_alpha domain. eef1a1 expression levels were investigated across different tissues and during gonadal development. In the gonad, eef1a1 showed a sexually dimorphic expression pattern with a statistically higher expression level in the ovary than in the testis from 6 months postfertilization to 3 years postfertilization. Under high temperature (28 °C) treatment during C. semilaevis sex differentiation (from 30 days postfertilization to 3 months postfertilization), eef1a1 was statistically down-regulated in males, while the difference was not detected in females. In addition, the dual-luciferase assay exhibited that eef1a1 can respond to high temperature rapidly. Based on these results, C. semilaevis eef1a1 might have a dual role in the perception of external temperature changes and sex differentiation regulation.
Collapse
|
12
|
eEF1A2 knockdown impairs neuronal proliferation and inhibits neurite outgrowth of differentiating neurons. Neuroreport 2022; 33:336-344. [PMID: 35594436 DOI: 10.1097/wnr.0000000000001791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The translation elongation factor-1, alpha-2 (eEF1A2) plays an important role in protein synthesis. Mutations in this gene have been described in individuals with neurodevelopmental disorders. Here, we silenced the expression of eEFA2 in human SH-SY5Y neuroblastoma cells and observed its roles in neuronal proliferation and differentiation upon induction with retinoic acid. METHODS eEF1A2 were silenced using siRNA transfection. Cell proliferation was qualitatively evaluated by Ki-67 immunocytochemistry. Neuronal differentiation was induced with retinoic acid for 3, 5, 7 and 10 days. Neurite length was measured. The expression of microtubule-associated protein 2 (MAP2) was analyzed by western blotting. Tyrosine hydroxylase expression was visualized by immunofluorescence. Cytotoxicity to a neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and western blotting of cleaved caspase-3. RESULTS eEF1A2 knockdown suppressed the proliferative activity of undifferentiated SH-SY5Y cells as shown by decreased Ki-67 immunostaining. Upon retinoic acid-induction, differentiated neurons with eEF1A2 knockdown exhibited shorter neurite length than untransfected cells, which was associated with the reduction of tyrosine hydroxylase and suppression of MAP2 at 10 days of differentiation. eEF1A2 knockdown decreased the survival of neurons, which was clearly observed in undifferentiated and short-term differentiated cells. Upon treatment with MPP+, cells with eEF1A2 knockdown showed a further reduction in cell survival and an increase of cleaved caspase-3 protein. CONCLUSIONS Our results suggest that eEF1A2 may be required for neuronal proliferation and differentiation of SH-SY5Y cells. Increased cell death susceptibility against MPP+ in eEF1A2-knockdown neurons may imply the neuroprotective role of eEF1A2.
Collapse
|
13
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Feng W, Wang L, Veevers J, Liu C, Huang T, Chen J. Loss of eEF1A2 (Eukaryotic Elongation Factor 1 A2) in Murine Myocardium Results in Dilated Cardiomyopathy. Circ Heart Fail 2021; 14:e008665. [PMID: 34555936 PMCID: PMC8530884 DOI: 10.1161/circheartfailure.121.008665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wei Feng
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| | - Li Wang
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| | - Jennifer Veevers
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| | - Canzhao Liu
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| | - Titania Huang
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| | - Ju Chen
- Department of Medicine-Cardiology, University of California San Diego, 9500 Gilman Drive, Mail Code 0613-C, La Jolla, California 92093-0613, USA
| |
Collapse
|
15
|
Davies FCJ, Hope JE, McLachlan F, Marshall GF, Kaminioti-Dumont L, Qarkaxhija V, Nunez F, Dando O, Smith C, Wood E, MacDonald J, Hardt O, Abbott CM. Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum Mol Genet 2021; 29:1592-1606. [PMID: 32160274 DOI: 10.1093/hmg/ddaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Jilly E Hope
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Fiona McLachlan
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura Kaminioti-Dumont
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Vesa Qarkaxhija
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francis Nunez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, United Kingdom
| | - Emma Wood
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Josephine MacDonald
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
16
|
Mendoza MB, Gutierrez S, Ortiz R, Moreno DF, Dermit M, Dodel M, Rebollo E, Bosch M, Mardakheh FK, Gallego C. The elongation factor eEF1A2 controls translation and actin dynamics in dendritic spines. Sci Signal 2021; 14:14/691/eabf5594. [PMID: 34257105 DOI: 10.1126/scisignal.abf5594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.
Collapse
Affiliation(s)
- Mònica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Sara Gutierrez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Sant Cugat del Vallès 08195, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain.
| |
Collapse
|
17
|
Mills A, Gago F. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. Int J Mol Sci 2021; 22:6973. [PMID: 34203525 PMCID: PMC8268798 DOI: 10.3390/ijms22136973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.
Collapse
Affiliation(s)
| | - Federico Gago
- Department of Biomedical Sciences & “Unidad Asociada IQM-CSIC”, School of Medicine and Health Sciences, University of Alcalá, E-28805 Alcalá de Henares, Spain;
| |
Collapse
|
18
|
Translation elongation factor 1A2 is encoded by one of four closely related eef1a genes and is dispensable for survival in zebrafish. Biosci Rep 2021; 40:221899. [PMID: 31950975 PMCID: PMC6997148 DOI: 10.1042/bsr20194191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Zebrafish are valuable model organisms for the study of human single-gene disorders: they are genetically manipulable, their development is well understood, and mutant lines with measurable, disease-appropriate phenotypic abnormalities can be used for high throughput drug screening approaches. However, gene duplication events in zebrafish can result in redundancy of gene function, masking loss-of-function phenotypes and thus confounding this approach to disease modelling. Furthermore, recent studies have yielded contrasting results depending on whether specific genes are targeted using genome editing to make mutant lines, or whether morpholinos are used (morphants). De novo missense mutations in the human gene EEF1A2, encoding a tissue-specific translation elongation factor, cause severe neurodevelopmental disorders; there is a real need for a model system to study these disorders and we wanted to explore the possibility of a zebrafish model. We identified four eef1a genes and examined their developmental and tissue-specific expression patterns: eef1a1l1 is first to be expressed while eef1a2 is only detected later during development. We then determined the effects of introducing null mutations into translation elongation factor 1A2 (eEF1A2) in zebrafish using CRISPR/Cas9 gene editing, in order to compare the results with previously described morphants, and with severe neurodegenerative lethal phenotype of eEF1A2-null mice. In contrast with both earlier analyses in zebrafish using morpholinos and with the mouse eEF1A2-null mice, disruption of the eef1a2 gene in zebrafish is compatible with normal lifespan. The resulting lines, however, may provide a valuable platform for studying the effects of expression of mutant human eEF1A2 mRNA.
Collapse
|
19
|
Dilated cardiomyopathy in a patient with autosomal dominant EEF1A2-related neurodevelopmental disorder. Eur J Med Genet 2020; 64:104121. [PMID: 33307280 DOI: 10.1016/j.ejmg.2020.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022]
Abstract
The EEF1A2 gene encodes eukaryotic translation elongation factor 1α2, an integral component of the elongation factor complex. Heterozygous pathogenic variants in EEF1A2 are associated with neurodevelopmental disorders characterized by epilepsy, global developmental delay, and autism. To date, dilated cardiomyopathy has only been reported in two siblings with neurodevelopmental phenotypes and a homozygous missense variant in EEF1A2. This report describes a nine-year-old female patient who presented with neurodevelopmental phenotypes and dilated cardiomyopathy. Analysis of 193 epilepsy genes by focused exome sequencing revealed a novel heterozygous variant c.46G > C (p.Val16Leu; NM_001958.3) in EEF1A2. The variant was not detected in either parent, confirming its de novo origin. No additional variants that explain the patient's phenotypes were found by subsequent whole exome analysis. Copy number analysis of the exome data and exon-level microarray excluded a deletion in the other allele of EEF1A2. We present the first patient with a heterozygous pathogenic EEF1A2 variant who had dilated cardiomyopathy as well as neurodevelopmental phenotypes, suggesting that this cardiac phenotype may be associated with the autosomal dominant form of the EEF1A2-related disorder.
Collapse
|
20
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
21
|
Wirakiat W, Prommahom A, Dharmasaroja P. Inhibition of the antioxidant enzyme PRDX1 activity promotes MPP +-induced death in differentiated SH-SY5Y cells and may impair its colocalization with eEF1A2. Life Sci 2020; 258:118227. [PMID: 32781074 DOI: 10.1016/j.lfs.2020.118227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
AIM eEF1A2 is highly expressed in postmitotic cells and has been reported to interact with the antioxidant enzyme peroxiredoxin 1 (PRDX1). PRDX1 is involved in motor neuron differentiation. Here, we studied the relationship between eEF1A2 and PRDX1 during dopaminergic neuron differentiation, and examined their possible association in an oxidative stress model of Parkinson's disease (PD). MAIN METHODS Expression of eEF1A2 and PRDX1 in SH-SY5Y cells at various durations of retinoic acid (RA) induction was detected using qRT-PCR, Western blotting and immunofluorescence. Neurons of 10-day differentiation were treated with the PRDX1 inhibitor H7, MPP+ and H7 plus MPP+. The cell viability, the amounts of apoptotic nuclei, DHE signals, and the expression of p53, p-Akt and p-mTOR were determined. The colocalization of eEF1A2 and PRDX1 was visualized using confocal microscopy. KEY FINDINGS eEF1A2 gradually increased after RA-induced differentiation of SH-SY5Y cells, while PRDX1 protein gradually decreased. MPP+ treatment increased eEF1A2 in both undifferentiated and differentiated neurons; however, PRDX1 appeared to elevate only in mature neurons. The inhibition of the PRDX1 activity with H7 promoted MPP+-induced cell death, as evidenced by decreased cell viability, increased apoptotic nuclei, increased the DHE signal, and increased p53. However, H7 induced the activation of the prosurvival Akt and mTOR in MPP+-treated cells. Besides, a colocalization of eEF1A2 and PRDX1 was evidenced in MPP+-treated neurons. This colocalization was possibly prevented by inhibiting the PRDX1 activity, resulting in aggravated neuronal death. SIGNIFICANCE Our results suggest that the possible association between eEF1A2 and PRDX1 may be a promising target for modifying neuronal death in PD.
Collapse
Affiliation(s)
- Wimon Wirakiat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Athinan Prommahom
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Permphan Dharmasaroja
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
22
|
Péladeau C, Adam N, Bronicki LM, Coriati A, Thabet M, Al-Rewashdy H, Vanstone J, Mears A, Renaud JM, Holcik M, Jasmin BJ. Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nat Commun 2020; 11:1990. [PMID: 32332749 PMCID: PMC7181625 DOI: 10.1038/s41467-020-15971-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5’UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway. One potential approach for the treatment of Duchenne muscular dysrophy is to increase expression of the dystrophin homolog utrophin. Here, the authors show that eEF1A2 regulates utrophin expression, and show that 2 FDA-approved drugs upregulate eEIF1A2 and utrophin level in mice, leading to improvement of the dystrophic phenotype.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Nadine Adam
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Adèle Coriati
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Vanstone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Alan Mears
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
23
|
Pregnant rats exposed to low-level methylmercury exhibit cerebellar synaptic and neuritic remodeling during the perinatal period. Arch Toxicol 2020; 94:1335-1347. [DOI: 10.1007/s00204-020-02696-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
|
24
|
Genomic regions associated with principal components for growth, visual score and reproductive traits in Nellore cattle. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Physiochemical properties, protein and metabolite profiles of muscle exudate of chicken meat affected by wooden breast myopathy. Food Chem 2020; 316:126271. [PMID: 32036178 DOI: 10.1016/j.foodchem.2020.126271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
The current study was designed to investigate the physiochemical properties, protein and metabolite profiles of muscle exudate obtained from chicken breast fillets affected by wooden breast (WB) myopathy. Twenty-four fillets were categorized into varying degrees of WB condition including normal, moderate and severe. Results indicated that exudate loss, free hemoglobin concentration, protein and lipid oxidation were affected by WB myopathy. Electrophoresis analysis showed eight distinct protein bands of differential relative abundance in WB samples compared with the normal, and the identified proteins were mostly involved in carbohydrate metabolic process. 1H nuclear magnetic resonance-based metabolomics identified eleven metabolites including amino acids, nucleotides and organic acid as the most influential metabolites affected by WB myopathy. Overall, this study shows differential molecular profiles of myopathic chicken muscle exudate, and provides a valuable resource for further recognition of WB myopathy.
Collapse
|
26
|
Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci U S A 2019; 116:10547-10556. [PMID: 31061112 PMCID: PMC6534971 DOI: 10.1073/pnas.1820810116] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major public health issue worldwide. Easy accessibility of junk food is considered a major contributor to the current obesity epidemic. Thus, the impact of maternal overnutrition in determining disease susceptibility in offspring has received wide attention. It has also been shown that the effects of maternal overnutrition are not limited to the immediate offspring but can also be transmitted to successive generations. Among different epigenetic marks, sperm small noncoding RNAs (sncRNAs) have recently been reported as a direct mediator of acquired traits to the progeny following postnatal trauma or paternal diet. Here, we investigate whether sperm sncRNAs contributes to the transmission of metabolic and hedonic phenotypes across generations following maternal overnutrition. There is a growing body of evidence linking maternal overnutrition to obesity and psychopathology that can be conserved across multiple generations. Recently, we demonstrated in a maternal high-fat diet (HFD; MHFD) mouse model that MHFD induced enhanced hedonic behaviors and obesogenic phenotypes that were conserved across three generations via the paternal lineage, which was independent of sperm methylome changes. Here, we show that sperm tRNA-derived small RNAs (tsRNAs) partly contribute to the transmission of such phenotypes. We observe increased expression of sperm tsRNAs in the F1 male offspring born to HFD-exposed dams. Microinjection of sperm tsRNAs from the F1-HFD male into normal zygotes reproduces obesogenic phenotypes and addictive-like behaviors, such as increased preference of palatable foods and enhanced sensitivity to drugs of abuse in the resultant offspring. The expression of several of the differentially expressed sperm tsRNAs predicted targets such as CHRNA2 and GRIN3A, which have been implicated in addiction pathology, are altered in the mesolimbic reward brain regions of the F1-HFD father and the resultant HFD-tsRNA offspring. Together, our findings demonstrate that sperm tsRNA is a potential vector that contributes to the transmission of MHFD-induced addictive-like behaviors and obesogenic phenotypes across generations, thereby emphasizing its role in diverse pathological outcomes.
Collapse
|
27
|
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat 2018; 40:131-141. [PMID: 30370994 DOI: 10.1002/humu.23677] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/06/2022]
Abstract
The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.
Collapse
Affiliation(s)
- Fiona McLachlan
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Anna Martinez Sires
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
28
|
Wen X, Liu Y, Yan Q, Liang M, Tang M, Liu R, Pan J, Liu Q, Chen T, Guo S, Liang J, Lu L, Ding X, Chen W, Wei L. Association of IGFN1 variant with polypoidal choroidal vasculopathy. J Gene Med 2018; 20:e3007. [PMID: 29323771 DOI: 10.1002/jgm.3007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (nAMD) share a similar phenotype but are different in their clinical manifestations, responses to treatment and prognosis. Whether PCV is a subtype of AMD or a distinct entity from nAMD remains unknown. Therefore, we performed a whole-exome sequencing based association analysis to compare the genetic architecture of PCV and nAMD in Han Chinese. METHODS Whole-exome sequencing analysis was performed on 21 nAMD cases, 20 PCV cases and 20 healthy controls. As a follow-up validation, 145 nAMD cases, 160 PCV cases and 193 controls were genotyped using the Sequenom MassARRAY platform (Sequenom, San Diego, CA, USA). RESULTS A novel variant, c.6196A>G in the IGFN1 gene, was significantly associated with only PCV (combined p = 7.1 × 10-11 , odds ratio = 9.44), but not with nAMD (combined p = 0.683, odds ratio = 1.30). The minor allele G conferred an increased risk of PCV. CONCLUSIONS The findings of the present study indicate that, although some of the susceptibility loci are shared between PCV and nAMD, a unique genetic signature may decide the pathogenesis of PCV.
Collapse
Affiliation(s)
- Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Qi Yan
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Minling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Miao Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiuhui Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tingting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Cao S, Smith LL, Padilla-Lopez SR, Guida BS, Blume E, Shi J, Morton SU, Brownstein CA, Beggs AH, Kruer MC, Agrawal PB. Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death. Hum Mol Genet 2017; 26:3545-3552. [PMID: 28911200 PMCID: PMC5886049 DOI: 10.1093/hmg/ddx239] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects.
Collapse
Affiliation(s)
- Siqi Cao
- Division of Newborn Medicine
- Division of Genetics and Genomics
- The Manton Center for Orphan Disease Research
| | | | - Sergio R. Padilla-Lopez
- Department of Child Health, Barrow Neurological Institute, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ 85013, USA
| | - Brandon S. Guida
- Department of Child Health, Barrow Neurological Institute, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ 85013, USA
| | - Elizabeth Blume
- Department of Cardiology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR
| | | | | | - Alan H. Beggs
- Division of Genetics and Genomics
- The Manton Center for Orphan Disease Research
| | - Michael C. Kruer
- Department of Child Health, Barrow Neurological Institute, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ 85013, USA
| | - Pankaj B. Agrawal
- Division of Newborn Medicine
- Division of Genetics and Genomics
- The Manton Center for Orphan Disease Research
| |
Collapse
|
30
|
Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice. Sci Rep 2017; 7:46019. [PMID: 28378778 PMCID: PMC5380952 DOI: 10.1038/srep46019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/09/2017] [Indexed: 01/18/2023] Open
Abstract
De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/- mice, showing that the mutant protein is essentially non-functional.
Collapse
|
31
|
Chen J, Jiang D, Tan D, Fan Z, Wei Y, Li M, Wang D. Heterozygous mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in male tilapia, Oreochromis niloticus. Sci Rep 2017; 7:43733. [PMID: 28266557 PMCID: PMC5339811 DOI: 10.1038/srep43733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/27/2017] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic elongation factor 1 alpha (eEF1A) is an essential component of the translational apparatus. In the present study, eEF1A1b was isolated from the Nile tilapia. Real-time PCR and Western blot revealed that eEF1A1b was expressed highly in the testis from 90 dah (days after hatching) onwards. In situ hybridization and immunohistochemistry analyses showed that eEF1A1b was highly expressed in the spermatogonia of the testis. CRISPR/Cas9 mediated mutation of eEF1A1b resulted in spermatogenesis arrest and infertility in the F0 XY fish. Consistently, heterozygous mutation of eEF1A1b (eEF1A1b+/-) resulted in an absence of spermatocytes at 90 dah, very few spermatocytes, spermatids and spermatozoa at 180 dah, and decreased Cyp11b2 and serum 11-ketotestosterone level at both stages. Further examination of the fertilization capacity of the sperm indicated that the eEF1A1b+/- XY fish were infertile due to abnormal spermiogenesis. Transcriptomic analyses of the eEF1A1b+/- testis from 180 dah XY fish revealed that key elements involved in spermatogenesis, steroidogenesis and sperm motility were significantly down-regulated compared with the control XY. Transgenic overexpression of eEF1A1b rescued the spermatogenesis arrest phenotype of the eEF1A1b+/- testis. Taken together, our data suggested that eEF1A1b is crucial for spermatogenesis and male fertility in the Nile tilapia.
Collapse
Affiliation(s)
- Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zheng Fan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yingying Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
32
|
Li J, Chen X, Yi J, Liu Y, Li D, Wang J, Hou D, Jiang X, Zhang J, Wang J, Zen K, Yang F, Zhang CY, Zhang Y. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components. PLoS One 2016; 11:e0163043. [PMID: 27649079 PMCID: PMC5029934 DOI: 10.1371/journal.pone.0163043] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuchen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dameng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YZ); (CZ); (FY)
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (YZ); (CZ); (FY)
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- * E-mail: (YZ); (CZ); (FY)
| |
Collapse
|
33
|
Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum. Toxicol Appl Pharmacol 2016; 298:1-8. [DOI: 10.1016/j.taap.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
|
34
|
Liu T, Yang Y, Wang D, Xiao Y, Du G, Wu L, Ding M, Li L, Wu C. Human eukaryotic elongation factor 1A forms oligomers through specific cysteine residues. Acta Biochim Biophys Sin (Shanghai) 2015; 47:1011-7. [PMID: 26515794 DOI: 10.1093/abbs/gmv113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/15/2015] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) is a multifunctional protein involved in bundling actin, severing microtubule, activating the phosphoinositol-4 kinase, and recruiting aminoacyl-tRNAs to ribosomes during protein biosynthesis. Although evidence has shown the presence of the isoform eEF1A1 oligomers, the substantial mechanism of the self-association remains unclear. Herein, we found that human eEF1A1 could spontaneously form oligomers. Specifically, mutagenesis screen on cysteine residues demonstrated that Cys(234) was essential for eEF1A1 oligomerization. In addition, we also found that hydrogen peroxide treatment could induce the formation of eEF1A oligomers in cells. By cysteine replacement, eEF1A2 isoform displayed the ability to oligomerize in cells under the oxidative environment. In summary, in this study we characterized eEF1A1 oligomerization and demonstrated that specific cysteine residues are required for this oligomerization activity.
Collapse
Affiliation(s)
- Tao Liu
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Yu Yang
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Di Wang
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Yan Xiao
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Guangshi Du
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Lei Wu
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Muran Ding
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Ling Li
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| | - Chuanfang Wu
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Sichuan University, Ministry of Education, Chengdu 610064, China
| |
Collapse
|
35
|
Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tatè R, Rippa E, Arcari P, Lamberti A. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 2015. [PMID: 26212729 DOI: 10.1016/j.biochi.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic translation elongation factor 1A (eEF1A) is a moonlighting protein that besides to its canonical role in protein synthesis is also involved in many other cellular processes such as cell survival and apoptosis. In a previous work, we identified eEF1A Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and apoptosis of human cancer cells. We proposed that the phosphorylation of eEF1A by C-Raf required the presence of both eEF1A isoforms thus suggesting the formation of a potential eEF1A heterodimer owning regulatory properties. This study aimed at investigating the cellular localization and interaction between two eEF1A isoforms. To this end, we developed chimera proteins by adding at the N-terminal end of both eEF1A1 and eEF1A2 cyan fluorescence protein (mCerulean) and yellow fluorescence protein (mVenus), respectively. The fluorescent eEF1A1 and eEF1A2 chimeras were both addressed to COS-7 cells and found co-localized in the cytoplasm at the level of cellular membranes. We highlighted FRET between the labeled N-termini of eEF1A isoforms. The intra-molecular FRET of this chimera was about 17%. Our results provide novel information on the intracellular distribution and interaction of eEF1A isoforms.
Collapse
Affiliation(s)
- Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Sanges
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Arbucci
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
36
|
Gonzalez-Flores JN, Shetty SP, Dubey A, Copeland PR. The molecular biology of selenocysteine. Biomol Concepts 2015; 4:349-65. [PMID: 25436585 DOI: 10.1515/bmc-2013-0007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 01/11/2023] Open
Abstract
Selenium is an essential trace element that is incorporated into 25 human proteins as the amino acid selenocysteine (Sec). The incorporation of this amino acid turns out to be a fascinating problem in molecular biology because Sec is encoded by a stop codon, UGA. Layered on top of the canonical translation elongation machinery is a set of factors that exist solely to incorporate this important amino acid. The mechanism by which this process occurs, put into the context of selenoprotein biology, is the focus of this review.
Collapse
|
37
|
Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, Wagner M, Schäfer K, Wang G, Koerdt SN, Stum M, Jaiswal S, RajBhandary UL, Thomas U, Aberle H, Burgess RW, Yang XL, Dieterich D, Storkebaum E. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun 2015; 6:7520. [PMID: 26138142 PMCID: PMC4506996 DOI: 10.1038/ncomms8520] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/16/2015] [Indexed: 01/06/2023] Open
Abstract
Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
Collapse
Affiliation(s)
- Sven Niehues
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Julia Bussmann
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Georg Steffes
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Ines Erdmann
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Litao Sun
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Marina Wagner
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Kerstin Schäfer
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Guangxia Wang
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Sophia N Koerdt
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Morgane Stum
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hermann Aberle
- Functional Cell Morphology Lab, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Xiang-Lei Yang
- The Scripps Research Institute, La Jolla, California 92037, USA
| | - Daniela Dieterich
- 1] Research Group Neuralomics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany [2] Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Erik Storkebaum
- 1] Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany [2] Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
38
|
Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun 2014; 450:1-6. [PMID: 24853801 DOI: 10.1016/j.bbrc.2014.05.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. METHODS We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. RESULTS Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. CONCLUSION Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.
Collapse
|
39
|
Doig J, Griffiths LA, Peberdy D, Dharmasaroja P, Vera M, Davies FJC, Newbery HJ, Brownstein D, Abbott CM. In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy. FEBS J 2014; 280:6528-40. [PMID: 24460877 PMCID: PMC4163635 DOI: 10.1111/febs.12554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2‐null mutant wasted mice develop an aggressive, early‐onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue‐specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle‐specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene‐derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term.
Collapse
Affiliation(s)
- Jennifer Doig
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shimoda N, Izawa T, Yoshizawa A, Yokoi H, Kikuchi Y, Hashimoto N. Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging. AGE (DORDRECHT, NETHERLANDS) 2014; 36:103-15. [PMID: 23736955 PMCID: PMC3889898 DOI: 10.1007/s11357-013-9548-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/20/2013] [Indexed: 05/13/2023]
Abstract
Age-related changes in DNA methylation have been demonstrated in mammals, but it remains unclear as to the generality of this phenomenon in vertebrates, which is a criterion for the fundamental cause of senescence. Here we showed that the zebrafish genome gradually and clearly lost methylcytosine in somatic cells, but not in male germ cells during aging, and that age-dependent hypomethylation preferentially occurred at a particular domain called the CpG island shore, which is associated with vertebrates' genes and has been shown to be hypomethylated in humans with age. We also found that two CpG island shores hypomethylated in zebrafish oocytes were de novo methylated in fertilized eggs, which suggests that the zebrafish epigenome is reset upon fertilization, enabling new generations to restart with a heavily methylated genome. Furthermore, we observed an increase in cleavage of the zebrafish genome to an oligonucleosome length in somatic cells from the age of 12 months, which is suggestive of an elevated rate of apoptosis in the senescent stage.
Collapse
Affiliation(s)
- Nobuyoshi Shimoda
- />Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Ōbu, Aichi, 474-8522 Japan
| | - Toshiaki Izawa
- />Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Akio Yoshizawa
- />Research Institute for Radiation Biology and Medicine, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Hayoto Yokoi
- />Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumi-Dori Amamiya-Machi, Aoba-Ku, Sendai 981-8555 Japan
| | - Yutaka Kikuchi
- />Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Naohiro Hashimoto
- />Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Ōbu, Aichi, 474-8522 Japan
| |
Collapse
|
41
|
Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, Brahmendra Swamy CV, Kumar A, Idris MM. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One 2013; 8:e63302. [PMID: 23691016 PMCID: PMC3653931 DOI: 10.1371/journal.pone.0063302] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anxiety and depression are major chronic mood disorders, and the etiopathology for each appears to be repeated exposure to diverse unpredictable stress factors. Most of the studies on anxiety and related mood disorders are performed in rodents, and a good model is chronic unpredictable stress (CUS). In this study, we have attempted to understand the molecular basis of the neuroglial and behavioral changes underlying CUS-induced mood disorders in the simplest vertebrate model, the zebrafish, Danio rerio. Zebrafish were subjected to a CUS paradigm in which two different stressors were used daily for 15 days, and thorough behavioral analyses were performed to assess anxiety and related mood disorder phenotypes using the novel tank test, shoal cohesion and scototaxis. Fifteen days of exposure to chronic stressors appears to induce an anxiety and related mood disorder phenotype. Decreased neurogenesis, another hallmark of anxiety and related disorders in rodents, was also observed in this zebrafish model. The common molecular markers of rodent anxiety and related disorders, corticotropin-releasing factor (CRF), calcineurin (ppp3r1a) and phospho cyclic AMP response element binding protein (pCREB), were also replicated in the fish model. Finally, using 2DE FTMS/ITMSMS proteomics analyses, 18 proteins were found to be deregulated in zebrafish anxiety and related disorders. The most affected process was mitochondrial function, 4 of the 18 differentially regulated proteins were mitochondrial proteins: PHB2, SLC25A5, VDAC3 and IDH2, as reported in rodent and clinical samples. Thus, the zebrafish CUS model and proteomics can facilitate not only uncovering new molecular targets of anxiety and related mood disorders but also the routine screening of compounds for drug development.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- * E-mail: (SC); (MMI)
| | - Bommana R. Reddy
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Sreesha R. Sudhakar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Tapatee Das
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Vuppalapaty Meghah
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | | | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
- * E-mail: (SC); (MMI)
| |
Collapse
|
42
|
Lee MH, Choi BY, Cho YY, Lee SY, Huang Z, Kundu JK, Kim MO, Kim DJ, Bode AM, Surh YJ, Dong Z. Tumor suppressor p16(INK4a) inhibits cancer cell growth by downregulating eEF1A2 through a direct interaction. J Cell Sci 2013; 126:1744-52. [PMID: 23444377 DOI: 10.1242/jcs.113613] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor protein p16(INK4a) is a member of the INK4 family of cyclin-dependent kinase (Cdk) inhibitors, which are involved in the regulation of the eukaryotic cell cycle. However, the mechanisms underlying the anti-proliferative effects of p16(INK4a) have not been fully elucidated. Using yeast two-hybrid screening, we identified the eukaryotic elongation factor (eEF)1A2 as a novel interacting partner of p16(INK4a). eEF1A2 is thought to function as an oncogene in cancers. The p16(INK4a) protein interacted with all but the D2 (250-327 aa) domain of eEF1A2. Ectopic expression of p16(INK4a) decreased the expression of eEF1A2 and inhibited cancer cell growth. Furthermore, suppression of protein synthesis by expression of p16(INK4a) ex vivo was verified by luciferase reporter activity. Microinjection of p16(INK4a) mRNA into the cytoplasm of Xenopus embryos suppressed the luciferase mRNA translation, whereas the combination of p16(INK4a) and morpholino-eEF1A2 resulted in a further reduction in translational activity. We conclude that the interaction of p16(INK4a) with eEF1A2, and subsequent downregulation of the expression and function of eEF1A2 is a novel mechanism explaining the anti-proliferative effects of p16(INK4a).
Collapse
Affiliation(s)
- Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, MN 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Roeseler DA, Sachdev S, Buckley DM, Joshi T, Wu DK, Xu D, Hannink M, Waters ST. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2. PLoS One 2012; 7:e47366. [PMID: 23144817 PMCID: PMC3493575 DOI: 10.1371/journal.pone.0047366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.
Collapse
Affiliation(s)
- David A. Roeseler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Desire M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Doris K. Wu
- Laboratory of Molecular Biology, NIDCD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
44
|
Griffiths LA, Doig J, Churchhouse AMD, Davies FCJ, Squires CE, Newbery HJ, Abbott CM. Haploinsufficiency for translation elongation factor eEF1A2 in aged mouse muscle and neurons is compatible with normal function. PLoS One 2012; 7:e41917. [PMID: 22848658 PMCID: PMC3405021 DOI: 10.1371/journal.pone.0041917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.
Collapse
Affiliation(s)
- Lowri A. Griffiths
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer Doig
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Antonia M. D. Churchhouse
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Faith C. J. Davies
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Charlotte E. Squires
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Helen J. Newbery
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Catherine M. Abbott
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Cho SJ, Lee HS, Dutta S, Seog DH, Moon IS. Translation elongation factor-1A1 (eEF1A1) localizes to the spine by domain III. BMB Rep 2012; 45:227-32. [DOI: 10.5483/bmbrep.2012.45.4.227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Yaremchuk A, Shalak VF, Novosylna OV, Negrutskii BS, Crépin T, El'skaya AV, Tukalo M. Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian translation elongation factor eEF1A2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:295-7. [PMID: 22442226 DOI: 10.1107/s1744309112000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
Abstract
Translation elongation factor eEF1A2 was purified to homogeneity from rabbit muscle by two consecutive ion-exchange column-chromatography steps and this mammalian eEF1A2 was successfully crystallized for the first time. Protein crystals obtained using ammonium sulfate as precipitant diffracted to 2.5 Å resolution and belonged to space group P6(1)22 or P6(3)22 (unit-cell parameters a = b = 135.4, c = 304.6 Å). A complete native data set was collected to 2.7 Å resolution.
Collapse
Affiliation(s)
- A Yaremchuk
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, 03680 Kyiv-143, Ukraine
| | | | | | | | | | | | | |
Collapse
|
47
|
Newbery HJ, Stancheva I, Zimmerman LB, Abbott CM. Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level. Biochem Biophys Res Commun 2011; 411:19-24. [DOI: 10.1016/j.bbrc.2011.06.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/08/2011] [Indexed: 11/15/2022]
|
48
|
Abstract
Translation elongation factor eEF1A (eukaryotic elongation factor 1A) exists as two individually encoded variants in mammals, which are 98% similar and 92% identical at the amino acid level. One variant, eEF1A1, is almost ubiquitously expressed, the other variant, eEF1A2, shows a very restricted pattern of expression. A spontaneous mutation was described in 1972, which gives rise to the wasted phenotype: homozygous wst/wst mice develop normally until shortly after weaning, but then lose muscle bulk, acquire tremors and gait abnormalities and die by 4 weeks. This mutation has been shown to be a deletion of 15 kb that removes the promoter and first exon of the gene encoding eEF1A2. The reciprocal pattern of expression of eEF1A1 and eEF1A2 in muscle fits well with the timing of onset of the phenotype of wasted mice: eEF1A1 declines after birth until it is undetectable by 3 weeks, whereas eEF1A2 expression increases over this time. No other gene is present in the wasted deletion, and transgenic studies have shown that the phenotype is due to loss of eEF1A2. We have shown that eEF1A2, but not eEF1A1, is also expressed at high levels in motor neurons in the spinal cord. Wasted mice develop many pathological features of motor neuron degeneration and may represent a good model for early onset of motor neuron disease. Molecular modelling of the eEF1A1 and eEF1A2 protein structures highlights differences between the two variants that may be critical for functional differences. Interactions between eEF1A2 and ZPR1 (zinc-finger protein 1), which interacts with the SMN (survival motor neuron) protein, may be important in motor neuron biology.
Collapse
|
49
|
Abstract
The first evidence for the role of the protein elongation factor eEF1A2 in tumorigenesis was reported by Anand and colleagues who demonstrated that eEF1A2 is overexpressed in about 30% of ovarian tumors and some established ovarian cancer cells. This abnormal expression correlates with a poor prognosis. Since this discovery, there have been several reports suggesting eEF1A2 as a diagnostic marker in various cancers. This review highlights the oncogenic potential of eEF1A2.
Collapse
Affiliation(s)
- Mee-Hyun Lee
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy and Cancer Research Institute, Seoul National University, Seoul, Korea
| | | |
Collapse
|
50
|
Lee MH, Choi BY, Kundu JK, Shin YK, Na HK, Surh YJ. Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 2009; 69:7449-58. [PMID: 19738051 DOI: 10.1158/0008-5472.can-09-1266] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The eukaryotic elongation factor 1A2 (eEF1A2) is known to retain oncogenic potential and is recognized as a novel target for cancer prevention and therapy. Resveratrol (trans-3,4',5-trihydroxystilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the growth-inhibitory effects of resveratrol in human ovarian cancer PA-1 cells, considering eEF1A2 as a potential molecular target. Pretreatment with resveratrol attenuated proliferation of serum-starved PA-1 cells stimulated with insulin or serum. Resveratrol also activated caspase-9, -7, and -3 and induced apoptosis in PA-1 cells in the presence of insulin or serum. Insulin or serum stimulation of PA-1 cells resulted in the marked induction of eEF1A2, which was suppressed by pretreatment with resveratrol. Moreover, resveratrol inhibited insulin- or serum-induced soft-agar colony formation in eEF1A2-transfected NIH3T3 cells. An antibody array directed to assess the phosphorylation of protein kinases revealed that treatment with insulin or serum induced the phosphorylation of Akt in PA-1 cells. Pharmacologic inhibition of Akt with LY294002 abrogated insulin- or serum-induced eEF1A2 expression and increased the caspase-3 activity. In another experiment, i.p. administration of resveratrol retarded the growth of PA-1 cell xenograft and the expression of eEF1A2 in athymic nude mice in association with decreased bromodeoxyuridine positivity, reduced expression of proliferating cell nuclear antigen, increased the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and caspase-3 staining, and diminished CD31 positivity. Taken together, eEF1A2 may be considered as a potential molecular target for the antiproliferative effects of resveratrol in PA-1 ovarian cancer cells.
Collapse
Affiliation(s)
- Mee-Hyun Lee
- Department of Pharmacy, College of Pharmacy, and Cancer Research Institute, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|