1
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
2
|
Denz CR, Zhang C, Jia P, Du J, Huang X, Dube S, Thomas A, Poiesz BJ, Dube DK. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum). Cardiovasc Toxicol 2011; 11:235-43. [PMID: 21626230 DOI: 10.1007/s12012-011-9117-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.
Collapse
Affiliation(s)
- Christopher R Denz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Serum response factor (SRF) is a transcription factor that regulates many genes involved in cellular activities such as proliferation, migration, differentiation, angiogenesis, and apoptosis. Although it has only been known for about two decades, SRF has been studied extensively. To date, over a thousand SRF studies have been published, but it still remains a hot topic. Due to its critical role in mesoderm-derived tissues, most of the SRF studies focused on muscle structure/function, cardiovascular development/maintenance, and smooth muscle generation/repair. Recently, SRF has received more attention in the digestive field and several important discoveries have been made. This review will summarize what we have learned about SRF in the gastrointestinal tract and provide insights into possible future directions in this area.
Collapse
|
4
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
5
|
Tropomyosin Gene Expression in Vivo and in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-85766-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. ACTA ACUST UNITED AC 2007; 179:1027-42. [PMID: 18056415 PMCID: PMC2099179 DOI: 10.1083/jcb.200708174] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is a critical process occurring during embryonic development and in fibrosis and tumor progression. Dissociation of cell–cell contacts and remodeling of the actin cytoskeleton are major events of the EMT. Here, we show that myocardin-related transcription factors (MRTFs; also known as MAL and MKL) are critical mediators of transforming growth factor β (TGF-β) 1–induced EMT. In all epithelial cell lines examined here, TGF-β1 triggers the nuclear translocation of MRTFs. Ectopic expression of constitutive-active MRTF-A induces EMT, whereas dominant-negative MRTF-A or knockdown of MRTF-A and -B prevents the TGF-β1–induced EMT. MRTFs form complexes with Smad3. Via Smad3, the MRTF–Smad3 complexes bind to a newly identified cis-element GCCG-like motif in the promoter region of Canis familiaris and the human slug gene, which activates slug transcription and thereby dissociation of cell–cell contacts. MRTFs also increase the expression levels of actin cytoskeletal proteins via serum response factor, thereby triggering reorganization of the actin cytoskeleton. Thus, MRTFs are important mediators of TGF-β1–induced EMT.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
7
|
Sun Y, Boyd K, Xu W, Ma J, Jackson CW, Fu A, Shillingford JM, Robinson GW, Hennighausen L, Hitzler JK, Ma Z, Morris SW. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol Cell Biol 2006; 26:5809-26. [PMID: 16847333 PMCID: PMC1592762 DOI: 10.1128/mcb.00024-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription of immediate-early genes--as well as multiple genes affecting muscle function, cytoskeletal integrity, apoptosis control, and wound healing/angiogenesis--is regulated by serum response factor (Srf). Extracellular signals regulate Srf in part via a pathway involving megakaryoblastic leukemia 1 (Mkl1, also known as myocardin-related transcription factor A [Mrtf-a]), which coactivates Srf-responsive genes downstream of Rho GTPases. Here we investigate Mkl1 function using gene targeting and show the protein to be essential for the physiologic preparation of the mammary gland during pregnancy and the maintenance of lactation. Lack of Mkl1 causes premature involution and impairs expression of Srf-dependent genes in the mammary myoepithelial cells, which control milk ejection following oxytocin-induced contraction. Despite the importance of Srf in multiple transcriptional pathways and widespread Mkl1 expression, the spectrum of abnormalities associated with Mkl1 absence appears surprisingly restricted.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Child
- Failure to Thrive
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Gene Targeting
- Heart/anatomy & histology
- Heart/embryology
- Humans
- Infant
- Lactation/physiology
- Leukemia, Megakaryoblastic, Acute
- Male
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Milk
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Oligonucleotide Array Sequence Analysis
- Oxytocin/metabolism
- Pregnancy
- Prolactin/metabolism
- STAT3 Transcription Factor
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Herring BP, El-Mounayri O, Gallagher PJ, Yin F, Zhou J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol 2006; 291:C817-27. [PMID: 16774989 PMCID: PMC2836780 DOI: 10.1152/ajpcell.00198.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mylk1 gene is a large gene spanning approximately 250 kb and comprising at least 31 exons. The mylk1 gene encodes at least four protein products: two isoforms of the 220-kDa myosin light chain kinase (MLCK), a 130-kDa MLCK, and telokin. Transcripts encoding these products are derived from four independent promoters within the mylk1 gene. The kinases expressed from the mylk1 gene have been extensively characterized and function to regulate the activity of nonmuscle and smooth muscle myosin II. Activation of these myosin motors by MLCK modulates a variety of contractile processes, including smooth muscle contraction, cell adhesion, migration, and proliferation. Dysregulation of these processes contributes to a number of diseases. The noncatalytic gene product telokin also has been shown to modulate contraction in smooth muscle cells through its ability to inhibit myosin light chain phosphatase. Given the crucial role of the products of the mylk1 gene in regulating numerous contractile processes, it seems intuitive that alterations in the transcriptional activity of the mylk1 gene also will have a significant impact on many physiological and pathological processes. In this review we highlight some of the recent studies that have described the transcriptional regulation of mylk1 gene products in smooth muscle tissues and discuss the implications of these findings for regulation of expression of other smooth muscle-specific genes.
Collapse
Affiliation(s)
- B Paul Herring
- Dept. of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|
9
|
Balza RO, Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 2005; 281:6498-510. [PMID: 16368687 DOI: 10.1074/jbc.m509487200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serum response factor (SRF) is a transcriptional regulator required for mesodermal development, including heart formation and function. Previous studies have described the role of SRF in controlling expression of structural genes involved in conferring the myogenic phenotype. Recent studies by us and others have demonstrated embryonic lethal cardiovascular phenotypes in SRF-null animals, but have not directly addressed the mechanistic role of SRF in controlling broad regulatory programs in cardiac cells. In this study, we used a loss-of-function approach to delineate the role of SRF in cardiomyocyte gene expression and function. In SRF-null neonatal cardiomyocytes, we observed severe defects in the contractile apparatus, including Z-disc and stress fiber formation, as well as mislocalization and/or attenuation of sarcomeric proteins. Consistent with this, gene array and reverse transcription-PCR analyses showed down-regulation of genes encoding key cardiac transcriptional regulatory factors and proteins required for the maintenance of sarcomeric structure, function, and regulation. Chromatin immunoprecipitation analysis revealed that at least a subset of these proteins are likely regulated directly by SRF. The results presented here indicate that SRF is an essential coordinator of cardiomyocyte function due to its ability to regulate expression of numerous genes (some previously identified and at least 28 targets newly identified in this study) that are involved in multiple and disparate levels of sarcomeric function and assembly.
Collapse
Affiliation(s)
- Robert O Balza
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
10
|
El-Mounayri O, Triplett JW, Yates CW, Herring BP. Regulation of smooth muscle-specific gene expression by homeodomain proteins, Hoxa10 and Hoxb8. J Biol Chem 2005; 280:25854-63. [PMID: 15886193 DOI: 10.1074/jbc.m501044200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cells arise from different populations of precursor cells during embryonic development. The mechanisms that specify the smooth muscle cell phenotype in each of these populations of cells are largely unknown. In many tissues and organs, homeodomain transcription factors play a key role in directing cell specification. However, little is known about how these proteins regulate smooth muscle differentiation. Using degenerate reverse transcription-PCR coupled to cDNA library screening we identified two homeodomain proteins, Hoxa10 and Hoxb8, which are expressed in adult mouse smooth muscle tissues. All three of the previously described transcripts of the Hoxa10 gene, Hoxa10-1, Hoxa10-2, and Hoxa10-3, were identified. Hoxa10-1 directly activated the smooth muscle-specific telokin promoter but did not activate the SM22alpha, smooth muscle alpha-actin, or smooth muscle myosin heavy chain promoters. Small interfering RNA-mediated knock-down of Hoxa10-1 demonstrated that Hoxa10-1 is required for high levels of telokin expression in smooth muscle cells from uterus and colon. On the other hand, Hoxb8 inhibited the activity of the telokin, SM22alpha, and smooth muscle alpha-actin promoters. Cotransfection of Hoxa10-1 together with Hoxa10-2 or Hoxb8 suggested that Hoxa10-2 and Hoxb8 act as competitive inhibitors of Hoxa10-1. Results from gel mobility shift assays demonstrated that Hoxa10-1, Hoxa10-2, and Hoxb8 bind directly to multiple sites in the telokin promoter. Mutational analysis of telokin promoter reporter genes demonstrated that the three homeodomain protein binding sites located between -80 and -75, +2 and +6, and +14 and +17 were required for maximal promoter activation by Hoxa10-1 and maximal inhibition by Hoxb8. Together these data demonstrate that the genes encoding smooth muscle-restricted proteins are direct transcriptional targets of clustered homeodomain proteins and that different homeodomain proteins have distinct effects on the promoters of these genes.
Collapse
Affiliation(s)
- Omar El-Mounayri
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
11
|
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767-801. [PMID: 15269336 DOI: 10.1152/physrev.00041.2003] [Citation(s) in RCA: 2554] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in understanding differentiation of the vascular SMC is that this cell can exhibit a wide range of different phenotypes at different stages of development, and even in adult organisms the cell is not terminally differentiated. Indeed, the SMC is capable of major changes in its phenotype in response to changes in local environmental cues including growth factors/inhibitors, mechanical influences, cell-cell and cell-matrix interactions, and various inflammatory mediators. There has been much progress in recent years to identify mechanisms that control expression of the repertoire of genes that are specific or selective for the vascular SMC and required for its differentiated function. One of the most exciting recent discoveries was the identification of the serum response factor (SRF) coactivator gene myocardin that appears to be required for expression of many SMC differentiation marker genes, and for initial differentiation of SMC during development. However, it is critical to recognize that overall control of SMC differentiation/maturation, and regulation of its responses to changing environmental cues, is extremely complex and involves the cooperative interaction of many factors and signaling pathways that are just beginning to be understood. There is also relatively recent evidence that circulating stem cell populations can give rise to smooth muscle-like cells in association with vascular injury and atherosclerotic lesion development, although the exact role and properties of these cells remain to be clearly elucidated. The goal of this review is to summarize the current state of our knowledge in this area and to attempt to identify some of the key unresolved challenges and questions that require further study.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Arteriosclerosis/genetics
- Cell Differentiation
- Cellular Senescence
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Gary K Owens
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia School of Medicine, 415 Lane Rd., Medical Research Building 5, Rm. 1220, PO Box 801394, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
12
|
Ward RE, Evans J, Thummel CS. Genetic Modifier Screens in Drosophila Demonstrate a Role for Rho1 Signaling in Ecdysone-Triggered Imaginal Disc Morphogenesis. Genetics 2003; 165:1397-415. [PMID: 14668390 PMCID: PMC1462826 DOI: 10.1093/genetics/165.3.1397] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Drosophila adult leg development provides an ideal model system for characterizing the molecular mechanisms of hormone-triggered morphogenesis. A pulse of the steroid hormone ecdysone at the onset of metamorphosis triggers the rapid transformation of a flat leg imaginal disc into an immature adult leg, largely through coordinated changes in cell shape. In an effort to identify links between the ecdysone signal and the cytoskeletal changes required for leg morphogenesis, we performed two large-scale genetic screens for dominant enhancers of the malformed leg phenotype associated with a mutation in the ecdysoneinducible broad early gene (br1). From a screen of >750 independent deficiency and candidate mutation stocks, we identified 17 loci on the autosomes that interact strongly with br1. In a complementary screen of ∼112,000 F1 progeny of EMS-treated br1 animals, we recovered 26 mutations that enhance the br1 leg phenotype [E(br) mutations]. Rho1, stubbloid, blistered (DSRF), and cytoplasmic Tropomyosin were identified from these screens as br1-interacting genes. Our findings suggest that ecdysone exerts its effects on leg morphogenesis through a Rho1 signaling cascade, a proposal that is supported by genetic interaction studies between the E(br) mutations and mutations in the Rho1 signaling pathway. In addition, several E(br) mutations produce unexpected defects in midembryonic morphogenetic movements. Coupled with recent evidence implicating ecdysone signaling in these embryonic morphogenetic events, our results suggest that a common ecdysone-dependent, Rho1-mediated regulatory pathway controls morphogenesis during the two major transitions in the life cycle, embryogenesis and metamorphosis.
Collapse
Affiliation(s)
- Robert E Ward
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112-5331, USA
| | | | | |
Collapse
|
13
|
Kelm RJ, Wang SX, Polikandriotis JA, Strauch AR. Structure/function analysis of mouse Purbeta, a single-stranded DNA-binding repressor of vascular smooth muscle alpha-actin gene transcription. J Biol Chem 2003; 278:38749-57. [PMID: 12874279 DOI: 10.1074/jbc.m306163200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasticity of smooth muscle alpha-actin gene expression in fibroblasts and vascular smooth muscle cells is mediated by opposing effects of transcriptional activators and repressors. Among these factors, three single-stranded DNA-binding proteins, Puralpha, Purbeta, and MSY1, have been implicated as coregulators of a cryptic 5'-enhancer module. In this study, a molecular analysis of Purbeta, the least well characterized member of this group, was conducted. Southwestern and Northwestern blotting of purified Purbeta deletion mutants using smooth muscle alpha-actin-derived probes mapped the minimal single-stranded DNA/RNA-binding domain to a conserved region spanning amino acids 37-263. Quantitative binding assays indicated that the relative affinity and specificity of Purbeta for single-stranded DNA were influenced by purine/pyrimidine content; by non-conserved regions outside amino acids 37-263; and by cell-derived proteins, specifically MSY1. When overexpressed in A7r5 vascular smooth muscle cells, Purbeta (but not Puralpha) inhibited transcription of a smooth muscle-specific mouse alpha-actin promoter transgene. Structural domains required for Purbeta repressor activity included the minimal DNA-binding region and a C-terminal domain required for stabilizing high affinity protein and nucleic acid interactions. Purbeta inhibitory activity in transfected A7r5 cells was potentiated by MSY1, but antagonized by serum response factor, reinforcing the idea that interplay among activators and repressors may account for phenotypic changes in smooth muscle alpha-actin-expressing cell types.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cell Line
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/metabolism
- Gene Deletion
- Genes, Reporter
- Immunoblotting
- Mice
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Oligonucleotides/chemistry
- Phenotype
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Recombinant Proteins/metabolism
- Serum Response Factor/metabolism
- Structure-Activity Relationship
- Time Factors
- Transcription, Genetic
- Transfection
- Transgenes
Collapse
Affiliation(s)
- Robert J Kelm
- Department of Medicine, University of Vermont College of Medicine, Colchester, Vermont 05446, USA.
| | | | | | | |
Collapse
|
14
|
Selvaraj A, Prywes R. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. J Biol Chem 2003; 278:41977-87. [PMID: 14565952 DOI: 10.1074/jbc.m305679200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF) is required for the expression of a wide variety of muscle-specific genes that are expressed upon differentiation and is thus required for both striated and smooth muscle differentiation in addition to its role in regulating growth factor-inducible genes. A heart and smooth muscle-specific SRF co-activator, myocardin, has been shown to be required for cardiac development and smooth muscle differentiation. However, no such co-factors of SRF have been identified in the skeletal myogenic differentiation program. Myocardin and the related transcription factor megakaryoblastic leukemia-1 (MKL1/MAL/MRTF-A) can strongly potentiate the activity of SRF. Here we report the cloning of the third member of the myocardin/MKL family in humans, MKL2. MKL2 binds to and activates SRF similar to myocardin and MKL1. To determine the role of these factors in skeletal myogenic differentiation we used a dominant negative MKL2 to show that the MKL family of proteins is required for skeletal myogenic differentiation. Expression of the dominant negative protein in C2C12 skeletal myoblasts blocked the differentiation-induced expression of the SRF target genes skeletal alpha-actin and alpha-myosin heavy chain and blocked differentiation of the myoblasts to myotubes in vitro. C2C12 cells express both MKL1 and MKL2, but not myocardin, implicating MKL1 and/or MKL2 in the requirement for skeletal myogenic differentiation. MKL1 was predominantly cytoplasmic in C2C12 cells, with a small amount in the nucleus, however, no movement of MKL1 to the nucleus was observed upon differentiation.
Collapse
Affiliation(s)
- Ahalya Selvaraj
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
15
|
Abstract
Differentiated smooth muscle cells (SMCs) remain highly plastic, enabling them to alter their phenotype in response to environmental and pathologic stimuli. SMCs in vascular pathologies such as atherosclerosis exhibit phenotypes clearly different from those of the mature cells in normal blood vessels. These phenotypically modulated SMCs play an integral role in the development of vascular diseases. This review addresses recent progress in our understanding of the mechanisms that control SMC phenotype during vascular development and in vascular disease. A particular focus is on the transcriptional control programs of the differentiated state of SMCs.
Collapse
Affiliation(s)
- Ichiro Manabe
- Department of Cardiovascular Medicine and Department of Clinical Bioinformatics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | |
Collapse
|
16
|
Abstract
Alterations in the differentiated state of vascular smooth muscle cells (SMCs) are known to play a key role in vascular diseases, yet the mechanisms controlling SMC differentiation are still poorly understand. In this review, we discuss our present knowledge of control of SMC differentiation at the transcriptional level, pointing out some common themes, important paradigms, and unresolved issues in SMC-specific gene regulation. We focus primarily on the serum response factor-CArG box-dependent pathway, because it has been shown to play a critical role in regulation of multiple SMC marker genes. However, we also highlight several other important regulatory elements, such as a transforming growth factor beta control element, E-boxes, and MCAT motifs. We present evidence in support of the notion that SMC-specific gene regulation is not controlled by a few SMC-specific transcription factors but rather by complex combinatorial interactions between multiple general and tissue-specific proteins. Finally, we discuss the implications of chromatin remodeling on SMC differentiation.
Collapse
Affiliation(s)
- Meena S Kumar
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Rd, MR5 Room 1220, PO Box 801394, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
17
|
Kim KH, Min YK, Baik JH, Lau LF, Chaqour B, Chung KC. Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J Biol Chem 2003; 278:13847-54. [PMID: 12576482 DOI: 10.1074/jbc.m210128200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The immediate early gene, cyr61, is transcriptionally activated within minutes by serum and serum growth factors. The encoded Cyr61 protein is secreted into the extracellular matrix and promotes cell adhesion and migration. In this study, we sought to examine the expression profile of cyr61 gene during neuronal cell death induced by various toxic stimuli and the mechanisms involved. Our data show that toxic stimuli, such as etoposide, significantly increased cyr61 mRNA levels in immortalized hippocampal progenitor (H19-7) cells. Cyr61 transcriptional activation was corroborated at the protein level as well. To identify the upstream signaling cascades involved in cyr61 gene induction, the blocking effect of either JNK or p38 kinase-signaling pathway on cyr61 induction in response to etoposide was tested. Transfection of the cells with a kinase-deficient mutant MEKK, an upstream activator of JNK, significantly decreased the cyr61 expression induced by etoposide. In contrast, cyr61 mRNA levels did not change after pretreatment with SB203580, the p38 kinase inhibitor. When the induction of cyr61 was tested by using several of its deleted promoters driving the expression of reporter gene, the promoter activation occurred primarily within the region containing an SRE-like CArG box. In addition, the SRF, which binds to the CArG site, was directly phosphorylated by active JNK. Furthermore, the blockade of cyr61 gene expression using an antisense encoding cyr61 sequence significantly inhibited the cell death induced by etoposide. Overall, these results suggest that the induction of the immediate early gene, cyr61, is important for neuronal cell death in the central nervous system hippocampal progenitor cells, and JNK activation, but not of p38, as well as the subsequent SRF phosphorylation are involved in cyr61 gene induction.
Collapse
Affiliation(s)
- Kyung Ha Kim
- Department of Biology, Yonsei University College of Sciences, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Meech R, Makarenkova H, Edelman DB, Jones FS. The homeodomain protein Barx2 promotes myogenic differentiation and is regulated by myogenic regulatory factors. J Biol Chem 2003; 278:8269-78. [PMID: 12486129 DOI: 10.1074/jbc.m207617200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox protein Barx2 is expressed in both smooth and skeletal muscle and is up-regulated during differentiation of skeletal myotubes. Here we use antisense-oligonucleotide inhibition of Barx2 expression in limb bud cell culture to show that Barx2 is required for myotube formation. Moreover, overexpression of Barx2 accelerates the fusion of MyoD-positive limb bud cells and C2C12 myoblasts. However, overexpression of Barx2 does not induce ectopic MyoD expression in either limb bud cultures or in multipotent C3H10T1/2 mesenchymal cells, and does not induce fusion of C3H10T1/2 cells. These results suggest that Barx2 acts downstream of MyoD. To test this hypothesis, we isolated the Barx2 gene promoter and identified DNA regulatory elements that might control Barx2 expression during myogenesis. The proximal promoter of the Barx2 gene contained binding sites for several factors involved in myoblast differentiation including MyoD, myogenin, serum response factor, and myocyte enhancer factor 2. Co-transfection experiments showed that binding sites for both MyoD and serum response factor are necessary for activation of the promoter by MyoD and myogenin. Taken together, these studies indicate that Barx2 is a key regulator of myogenic differentiation that acts downstream of muscle regulatory factors.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
19
|
Busek SU, Fantappie M, Malaquias LC, Wilson RA, Corrêa-Oliveira R, Oliveira GC. Cis-acting elements, CArG-, E-, CCAAT- and TATA-boxes may be involved in sexually regulated gene transcription in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2003; 97 Suppl 1:85-90. [PMID: 12426599 DOI: 10.1590/s0074-02762002000900017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schistosomes undergo various morphological and metabolic changes during their development, reflected in a finely tuned regulation of protein and/or gene expression. The mechanisms involved in the control of gene expression during the development of the parasite are not understood. Two actin genes had been previously cloned and observed to be differentially expressed during the maturation of the parasite. The SmAct gene contains four putative cis-regulatory elements (TATA-, CCAAT-, E- and CArG-boxes). Our objective was to investigate in greater detail the expression pattern of two actin genes and verify if the binding of nuclear proteins to the promoter elements of SmAct correlated with the expression profile observed. We detected little variation in the expression of actin genes during the first seven days of schistosomula culture in vitro. However, we observed significantly higher levels of expression in males compared to female adults. CArG and CCAAT elements bound to a greater extent and formed distinct complexes with male in comparison to female nuclear extracts. In contrast, female extracts bound weakly to the E-box probe while no binding was observed with male extracts. Taken together these results describe cis-acting elements that appear to be involved in sexually regulated gene expression in Schistosoma mansoni.
Collapse
Affiliation(s)
- S U Busek
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brasil
| | | | | | | | | | | |
Collapse
|
20
|
Ohkawa Y, Hayashi K, Sobue K. Calcineurin-mediated pathway involved in the differentiated phenotype of smooth muscle cells. Biochem Biophys Res Commun 2003; 301:78-83. [PMID: 12535643 DOI: 10.1016/s0006-291x(02)02965-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The calcineurin-mediated pathway is involved in skeletal and cardiac hypertrophy and vascular development in vivo, but the relationship between this pathway and the phenotype of smooth muscle cells (SMCs) remains unknown. Using visceral SMCs in culture as a model system of differentiated SMCs, we investigated the role of the calcineurin-mediated pathway in maintaining the differentiated phenotype of SMCs, which depends on the insulin-like growth factor (IGF-I)-triggered activation of the phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB(Akt)) pathway. Treatment with calcineurin inhibitors, cyclosporin A or FK506, or the forced expression of the natural calcineurin inhibitor, CAIN, induced SMC dedifferentiation. Notably, suppression of the promoter activities of the SMC molecular markers caldesmon and alpha1 integrin by blocking the PI3-K/PKB(Akt) pathway was rescued by the forced expression of constitutively active calcineurin Aalpha, suggesting that the calcineurin-mediated pathway is critical for maintaining the differentiated phenotype of SMCs and works downstream of the PI3-K/PKB(Akt) pathway.
Collapse
Affiliation(s)
- Yasuyuki Ohkawa
- Department of Neuroscience, Osaka University Graduate School of Medicine (D13), 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
21
|
Nishida W, Nakamura M, Mori S, Takahashi M, Ohkawa Y, Tadokoro S, Yoshida K, Hiwada K, Hayashi K, Sobue K. A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. J Biol Chem 2002; 277:7308-17. [PMID: 11744740 DOI: 10.1074/jbc.m111824200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serum response factor and the (CC(A/T)(6)GG) (CArG) box interact to promote the transcription of c-fos and muscle genes; this tissue-specific activity may require co-regulators for serum response factor. The alpha(1) integrin promoter contains two cis-elements besides the CArG box: a TAAT sequence, a consensus binding site for homeoproteins, and a GATA-binding box. As a candidate TAAT-binding factor, we cloned an NK family homeobox gene, Nkx-3.2, which is expressed mainly in smooth muscle tissues and skeletal structures. Nkx-3.2, serum response factor, and GATA-6 were co-expressed only in the medial smooth muscle layer of arteries. These three transcription factors formed a complex with their corresponding cis-elements and cooperatively transactivated smooth muscle genes, including alpha(1) integrin, SM22alpha, and caldesmon. Cardiac muscle-specific members of the NK and GATA families exist, and the triad of Nkx-2.5, serum response factor, and GATA-4 also transactivated the cardiac atrial natriuretic factor gene, which contains a CArG-like box, a GATA-binding box, and an NK-binding element. Our findings demonstrate that smooth and cardiac muscle have a shared transcriptional machinery and that the GATA and NK families confer muscle specificity on the serum response factor/CArG interaction.
Collapse
Affiliation(s)
- Wataru Nishida
- Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|