1
|
Nonnast E, Mira E, Mañes S. Biomechanical properties of laminins and their impact on cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189181. [PMID: 39299492 DOI: 10.1016/j.bbcan.2024.189181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Laminins (LMs) constitute a family of heterotrimeric glycoproteins essential for the formation of basement membranes (BM). They act as molecular bridges between cells and the extracellular matrix (ECM), thereby transmitting signals influencing cell behavior and tissue organization. In the realm of cancer pathobiology, LMs regulate key processes such as migration, differentiation, or fibrosis. This review critically examines the multifaceted impact of LMs on tumor progression, with a particular focus on the isoform-specific structure-function relationships, and how this structural diversity contributes to the biomechanical properties of BMs. LM interactions with integrin and non-integrin cell surface receptors, as well as with other ECM proteins, modify the response of cancer cells to the ECM stiffness, ultimately influencing the capacity of malignant cells to breach the BM, a limiting step in metastatic dissemination. Comprehension of the mechanisms underlying LM-driven tumor biomechanics holds potential for better understand cancer pathobiology and design new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
3
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Actin Up: An Overview of the Rac GEF Dock1/Dock180 and Its Role in Cytoskeleton Rearrangement. Cells 2022; 11:cells11223565. [PMID: 36428994 PMCID: PMC9688060 DOI: 10.3390/cells11223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dock1, originally Dock180, was the first identified member of the Dock family of GTPase Exchange Factors. Early biochemical and genetic studies of Dock180 elucidated the functions and regulation of Dock180 and informed our understanding of all Dock family members. Dock180 activates Rac to stimulate actin polymerization in response to signals initiated by a variety of receptors. Dock180 dependent Rac activation is essential for processes such as apoptotic cell engulfment, myoblast fusion, and cell migration during development and homeostasis. Inappropriate Dock180 activity has been implicated in cancer invasion and metastasis and in the uptake of bacterial pathogens. Here, we give an overview of the history and current understanding of the activity, regulation, and impacts of Dock180.
Collapse
|
5
|
Fu J, Guo Q, Feng Y, Cheng P, Wu A. Dual role of fucosidase in cancers and its clinical potential. J Cancer 2022; 13:3121-3132. [PMID: 36046653 PMCID: PMC9414016 DOI: 10.7150/jca.75840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Glycosidases and glycosyltransferases greatly impact malignant phenotype of tumors though genetics and epigenetics mechanisms. As the member of glycoside hydrolase (GH) families 29A, α-L-fucosidases (AFUs) are involved in the hydrolysis of terminal L-fucose residues linked via α-1,2, α-1,3, α-1,4 or α-1,6 to the reducing end of N-acetyl glucosamine (GlcNAc) of oligosaccharide chains. The defucosylation process mediated by AFUs contributes to the development of various diseases, such as chronic inflammatory diseases, immune disorders, and autoimmune diseases by reducing the interaction between fucosylated adhesion molecules supporting leukocyte extravasation. AFUs also impair crucial cell-extracellular matrix (ECM) interactions and presumably subsequent cell signaling pathways, which lead to changes in tumor function and behavior. There are two isoforms of AFUs in human, namely α-L-fucosidase 1 (FUCA1) and α-L-fucosidase 2 (FUCA2), respectively. FUCA1 is a p53 target gene and can hydrolyze different fucosylation sites on epidermal growth factor receptor (EGFR), thereby determining the activation of EGFR. FUCA2 mediates the adhesion between Helicobacter pylori and gastric mucosa and is upregulated in 24 tumor types. Besides, based on the participation of AFU in signaling pathways and tumor progression, we discuss the prospect of AFU as a therapeutic target.
Collapse
Affiliation(s)
- Jinxing Fu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Feng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ibrutinib reverses IL-6-induced osimertinib resistance through inhibition of Laminin α5/FAK signaling. Commun Biol 2022; 5:155. [PMID: 35197546 PMCID: PMC8866396 DOI: 10.1038/s42003-022-03111-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osimertinib, a 3rd generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line standard-of-care for EGFR-mutant non-small cell lung cancer (NSCLC) patients, while acquired drug resistance will inevitably occur. Interleukin-6 (IL-6) is a keystone cytokine in inflammation and cancer, while its role in osimertinib efficacy was unknown. Here we show that clinically, plasma IL-6 level predicts osimertinib efficacy in EGFR mutant NSCLC patients. Highly increased IL-6 levels are found in patients with acquired resistance to osimertinib. Addition of IL-6 or exogenous overexpression of IL-6 directly induces osimertinib resistance. Proteomics reveals LAMA5 (Laminin α5) and PTK2, protein tyrosine kinase 2, also called focal adhesion kinase (FAK), are activated in osimertinib-resistant cells, and siRNA knockdown of LAMA5 or PTK2 reverses IL-6-mediated osimertinib resistance. Next, using a large-scale compound screening, we identify ibrutinib as a potent inhibitor of IL-6 and Laminin α5/FAK signaling, which shows synergy with osimertinib in osimertinib-resistant cells with high IL-6 levels, but not in those with low IL-6 levels. In vivo, this combination inhibits tumor growth of xenografts bearing osimertinib-resistant tumors. Taken together, we conclude that Laminin α5/FAK signaling is responsible for IL-6-induced osimertinib resistance, which could be reversed by combination of ibrutinib and osimertinib. The resistance mechanism of osimertinib, a third-generation EGFR-TKI, is mediated by IL-6 and Laminin α5/FAK signaling. Ibrutinib combined with osimertinib is presented as a strategy for overcoming osimertinib acquired resistance in EGFR mutant NSCLC.
Collapse
|
7
|
Doi K, Kimura H, Wada T, Tanaka T, Hiromura K, Saleem MA, Inagi R, Nangaku M, Fujii T. A novel method for successful induction of interdigitating process formation in conditionally immortalized podocytes from mice, rats, and humans. Biochem Biophys Res Commun 2021; 570:47-52. [PMID: 34271436 DOI: 10.1016/j.bbrc.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Formation of processes in podocytes is regarded as the hallmark of maturity and normal physical condition for the cell. There are many accumulated findings about molecular mechanisms that cause retraction of podocyte processes; however, there is little knowledge of the positive mechanisms that promote process formation in vitro, and most previous reports about this topic have been limited to low-density cultures. Here, we found that process formation can be induced in 100% confluent cultures of conditionally immortalized podocytes in mouse, rat, and human species by combining serum depletion and Y-27632 ROCK inhibitor supplementation on the scaffold of laminin-521(L521). We noted the cytoskeletal reorganization of the radial extension pattern of vimentin filaments and downregulation of actin stress fiber formation under that condition. We also found that additional standard amount of serum, depletion of ROCK inhibitor, or slight mismatch of the scaffold as laminin-511(L511) hinder process formation. These findings suggest that the combination of reduced serum, podocyte-specific scaffold, and intracellular signaling to reduce the overexpression of ROCK are required factors for process formation.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Japan
| | - Moin A Saleem
- University of Bristol, And Bristol Royal Hospital for Children, UK
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology the University of Tokyo Graduate School of Medicine, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan.
| |
Collapse
|
8
|
Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. COATINGS 2021. [DOI: 10.3390/coatings11040461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of adhesion and the subsequent behavior of fibroblast cells on the surface of biomaterials is important for successful tissue regeneration and wound healing by implanted biomaterials. We have synthesized poly(ω-methoxyalkyl acrylate)s (PMCxAs; x indicates the number of methylene carbons between the ester and ethyl oxygen), with a carbon chain length of x = 2–6, to investigate the regulation of fibroblast cell behavior including adhesion, proliferation, migration, differentiation and collagen production. We found that PMC2A suppressed the cell spreading, protein adsorption, formation of focal adhesion, and differentiation of normal human dermal fibroblasts, while PMC4A surfaces enhanced them compared to other PMCxAs. Our findings suggest that fibroblast activities attached to the PMCxA substrates can be modified by changing the number of methylene carbons in the side chains of the polymers. These results indicate that PMCxAs could be useful coating materials for use in skin regeneration and wound dressing applications.
Collapse
|
9
|
Romagnoli M, Cagnet S, Chiche A, Bresson L, Baulande S, de la Grange P, De Arcangelis A, Kreft M, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Raymond K, Glukhova MA, Faraldo MM. Deciphering the Mammary Stem Cell Niche: A Role for Laminin-Binding Integrins. Stem Cell Reports 2019; 12:831-844. [PMID: 30905738 PMCID: PMC6450809 DOI: 10.1016/j.stemcr.2019.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche. α3- and α6-integrins are required for mammary basal stem cell function p53 is activated in mammary basal cells depleted of α3- and α6-integrins RHO and myosin II mediate p53 activation in α3- and α6-integrin-depleted cells
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Stéphanie Cagnet
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Aurélie Chiche
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Karine Raymond
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France.
| |
Collapse
|
10
|
|
11
|
Dettling S, Stamova S, Warta R, Schnölzer M, Rapp C, Rathinasamy A, Reuss D, Pocha K, Roesch S, Jungk C, Warnken U, Eckstein V, Grabe N, Schramm C, Weigand MA, von Deimling A, Unterberg A, Beckhove P, Herold-Mende C. Identification of CRKII, CFL1, CNTN1, NME2, and TKT as Novel and Frequent T-Cell Targets in Human IDH-Mutant Glioma. Clin Cancer Res 2018; 24:2951-2962. [PMID: 29563135 DOI: 10.1158/1078-0432.ccr-17-1839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/23/2017] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Successful immunotherapies for IDHmut gliomas require better knowledge of T-cell target antigens. Here, we elucidated their antigen repertoire recognized by spontaneous T-cell responses using an unbiased proteomic approach.Experimental Design: Protein fractionations of tissue lysates from IDHmut gliomas (n = 4) were performed. Fractions were tested by IFNγ ELISpot assay for recognition through patients' T cells. Proteins of immunogenic fractions were identified by mass spectrometry and validated by in silico-predicted synthetic long peptides in patients of origin, additional IDHmut glioma patients (n = 16), and healthy donors (n = 13). mRNA and protein expression of immunogenic antigens was analyzed in tumor tissues and IDHmut glioma stem-like cells (GSC). HLA-A*02-restricted T-cell epitopes were functionally determined by short peptides and numbers of antigen-specific T cells by HLA-peptide tetramer analysis.Results: A total of 2,897 proteins were identified in immunogenic tumor fractions. Based on a thorough filter process, 79 proteins were selected as potential T-cell antigens. Twenty-six of these were recognized by the patients' T cells, and five of them (CRKII, CFL1, CNTN1, NME2, and TKT) in up to 56% unrelated IDHmut glioma patients. Most immunogenic tumor-associated antigens (TAA) were expressed in IDHmut gliomas and GSCs, while being almost absent in normal brain tissues. Finally, we identified HLA-A*02-restricted epitopes for CRKII, NME2, and TKT that were recognized by up to 2.82% of antigen-specific peripheral cytotoxic T cells in IDHmut glioma patients.Conclusions: By analyzing the repertoire of T-cell target antigens in IDHmut glioma patients, we identified five novel immunogenic TAAs and confirmed their expression on IDHmut tumors and GSCs. Clin Cancer Res; 24(12); 2951-62. ©2018 AACR.
Collapse
Affiliation(s)
- Steffen Dettling
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Slava Stamova
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Anchana Rathinasamy
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kolja Pocha
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Saskia Roesch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schramm
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
13
|
Hoshiba T, Maruyama H, Sato K, Endo C, Kawazoe N, Chen G, Tanaka M. Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2‐Methoxyethyl Acrylate) Analogous Polymers. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Innovative Flex Course for Frontier Organic Materials Systems Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Hiroka Maruyama
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Chiho Endo
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi‐ku Fukuoka Fukuoka 819‐0395 Japan
| |
Collapse
|
14
|
Nakamura T, Ueyama T, Ninoyu Y, Sakaguchi H, Choijookhuu N, Hishikawa Y, Kiyonari H, Kohta M, Sakahara M, de Curtis I, Kohmura E, Hisa Y, Aiba A, Saito N. Novel role of Rac-Mid1 signaling in medial cerebellar development. Development 2017; 144:1863-1875. [PMID: 28512198 DOI: 10.1242/dev.147900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 02/04/2023]
Abstract
Rac signaling impacts a relatively large number of downstream targets; however, few studies have established an association between Rac pathways and pathological conditions. In the present study, we generated mice with double knockout of Rac1 and Rac3 (Atoh1-Cre;Rac1flox/flox;Rac3-/- ) in cerebellar granule neurons (CGNs). We observed impaired tangential migration at E16.5, as well as numerous apoptotic CGNs at the deepest layer of the external granule layer (EGL) in the medial cerebellum of Atoh1-Cre;Rac1flox/flox;Rac3-/- mice at P8. Atoh1-Cre;Rac1flox/flox;Rac3-/- CGNs differentiated normally until expression of p27kip1 and NeuN in the deep EGL at P5. Primary CGNs and cerebellar microexplants from Atoh1-Cre;Rac1flox/flox;Rac3-/- mice exhibited impaired neuritogenesis, which was more apparent in Map2-positive dendrites. Such findings suggest that impaired tangential migration and final differentiation of CGNs have resulted in decreased cerebellum size and agenesis of the medial internal granule layer, respectively. Furthermore, Rac depleted/deleted cells exhibited decreased levels of Mid1 and impaired mTORC1 signaling. Mid1 depletion in CGNs produced mild impairments in neuritogenesis and reductions in mTORC1 signaling. Thus, a novel Rac-signaling pathway (Rac1-Mid1-mTORC1) may be involved in medial cerebellar development.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Narantsog Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Masaaki Kohta
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mizuho Sakahara
- Department of Molecular Genetics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute, Milano 20132, Italy
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsu Aiba
- Department of Molecular Genetics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Ohashi K, Fujiwara S, Mizuno K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 2017; 161:245-254. [PMID: 28082721 DOI: 10.1093/jb/mvw082] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
All cells sense and respond to various mechanical forces in and mechanical properties of their environment. To respond appropriately, cells must be able to sense the location, direction, strength and duration of these forces. Recent progress in mechanobiology has provided a better understanding of the mechanisms of mechanoresponses underlying many cellular and developmental processes. Various roles of mechanoresponses in development and tissue homeostasis have been elucidated, and many molecules involved in mechanotransduction have been identified. However, the whole picture of the functions and molecular mechanisms of mechanotransduction remains to be understood. Recently, novel mechanisms for sensing and transducing mechanical stresses via the cytoskeleton, cell-substrate and cell-cell adhesions and related proteins have been identified. In this review, we outline the roles of the cytoskeleton, cell-substrate and cell-cell adhesions, and related proteins in mechanosensing and mechanotransduction. We also describe the roles and regulation of Rho-family GTPases in mechanoresponses.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan Osaka
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Taniguchi Y, Li S, Takizawa M, Oonishi E, Toga J, Yagi E, Sekiguchi K. Probing the acidic residue within the integrin binding site of laminin-511 that interacts with the metal ion-dependent adhesion site of α6β1 integrin. Biochem Biophys Res Commun 2017; 487:525-531. [PMID: 28412362 DOI: 10.1016/j.bbrc.2017.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
Abstract
Laminins are major cell-adhesive proteins of basement membranes that interact with integrins in a divalent cation-dependent manner. Laminin-511 consists of α5, β1, and γ1 chains, of which three laminin globular domains of the α5 chain (α5/LG1-3) and a Glu residue in the C-terminal tail of chain γ1 (γ1-Glu1607) are required for binding to integrins. However, it remains unsettled whether the Glu residue in the γ1 tail is involved in integrin binding by coordinating the metal ion in the metal ion-dependent adhesion site of β1 integrin (β1-MIDAS), or by stabilizing the conformation of α5/LG1-3. To address this issue, we examined whether α5/LG1-3 contain an acidic residue required for integrin binding that is as critical as the Glu residue in the γ1 tail; to achieve this, we undertook exhaustive alanine substitutions of the 54 acidic residues present in α5/LG1-3 of the E8 fragment of laminin-511 (LM511E8). Most of the alanine mutants possessed α6β1 integrin binding activities comparable with wild-type LM511E8. Alanine substitution for α5-Asp3198 and Asp3219 caused mild reduction in integrin binding activity, and that for α5-Asp3218 caused severe reduction, possibly resulting from conformational perturbation of α5/LG1-3. When α5-Asp3218 was substituted with asparagine, the resulting mutant possessed significant binding activity to α6β1 integrin, indicating that α5-Asp3218 is not directly involved in integrin binding through coordination with the metal ion in β1-MIDAS. Given that substitution of γ1-Glu1607 with glutamine nullified the binding activity to α6β1 integrin, these results, taken together, support the possibility that the critical acidic residue coordinating the metal ion in β1-MIDAS is Glu1607 in the γ1 tail, but no such residue is present in α5/LG1-3.
Collapse
Affiliation(s)
- Yukimasa Taniguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shaoliang Li
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mamoru Takizawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eriko Oonishi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junko Toga
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Emiko Yagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyotoshi Sekiguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
18
|
Hoshiba T, Nemoto E, Sato K, Maruyama H, Endo C, Tanaka M. Promotion of Adipogenesis of 3T3-L1 Cells on Protein Adsorption-Suppressing Poly(2-methoxyethyl acrylate) Analogs. Biomacromolecules 2016; 17:3808-3815. [PMID: 27809482 DOI: 10.1021/acs.biomac.6b01340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stem cell differentiation is an important issue in regenerative medicine and tissue engineering. It has been reported that cell shape is one of the factors that determine the lineage commitment of mesenchymal stem cells (MSCs). Therefore, the substrates have been developed to control their shapes. Recently, we found that poly(2-methoxyethyl acrylate) (PMEA) analogs can control tumor cell shape through the alteration of protein adsorption. Here, the adipogenesis of an adipocyte-progenitor cell, 3T3-L1 cells, was attempted; adipogenesis was to be regulated by surfaces coated with PMEA analogs through the control of their shape. The adipogenesis of 3T3-L1 cells was promoted on the surfaces coated with PMEA and its analogs, PMe3A and PMe2A. Evident focal adhesions were hardly observed on these surfaces, suggesting that integrin signal activation was suppressed. Additionally, actin assembly and cell spreading were suppressed on these surfaces. Therefore, the surfaces coated with PMEA analogs are expected to be suitable surfaces to regulate adipogenesis through the suppression of cell spreading. Additionally, we found that protein adsorption correlated with actin assembly and adipogenesis.
Collapse
Affiliation(s)
- Takashi Hoshiba
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Feng C, Wee WK, Chen H, Ong LT, Qu J, Tan HF, Tan SM. Expression of kindlin-3 in melanoma cells impedes cell migration and metastasis. Cell Adh Migr 2016; 11:419-433. [PMID: 27715393 DOI: 10.1080/19336918.2016.1243645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kindlins are a small family of 4.1-ezrin-radixin-moesin (FERM)-containing cytoplasmic proteins. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Kindlin-3 promotes integrin activation, clustering and outside-in signaling. Aberrant expression of kindlin-3 was reported in melanoma and breast cancer. Intriguingly, kindlin-3 has been reported to either positively or negatively regulate cancer cell metastasis. In this study, we sought to clarify the expression of kindlin-3 in melanoma cells and its role in melanoma metastasis. Two widely used metastatic mouse and human melanoma cell lines B16-F10 and M10, respectively, were examined and found to lack kindlin-3 mRNA and protein expression. When kindlin-3 was ectopically expressed in these cells, cell migration was markedly reduced. These are attributed to aberrant Rac1 and RhoA activation and overt membrane ruffling. Our data demonstrate for the first time that despite its well established role as a positive regulator of integrin-mediated cell adhesion, aberrant expression of kindlin-3 could lead to imbalanced RhoGTPases signaling that impedes rather than promotes cell migration.
Collapse
Affiliation(s)
- Chen Feng
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Wei-Kiat Wee
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Huizhi Chen
- b School of Materials Science & Engineering, Nanyang Technological University , Nanyang Avenue, Singapore
| | - Li-Teng Ong
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Jing Qu
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Hui-Foon Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| | - Suet-Mien Tan
- a School of Biological Sciences, Nanyang Technological University , Singapore
| |
Collapse
|
20
|
Kikkawa Y, Harashima N, Ikari K, Fujii S, Katagiri F, Hozumi K, Nomizu M. Down-regulation of cell adhesion via rho-associated protein kinase (ROCK) pathway promotes tumor cell migration on laminin-511. Exp Cell Res 2016; 344:76-85. [DOI: 10.1016/j.yexcr.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
|
21
|
Oku T, Ando Y, Ogura M, Tsuji T. Development of Splice Variant-Specific Monoclonal Antibodies Against Human α3 Integrin. Monoclon Antib Immunodiagn Immunother 2016; 35:12-7. [PMID: 26788840 DOI: 10.1089/mab.2015.0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrins are a major family of adhesion molecules, consisting of heterodimers (α and β subunits). Several reports have suggested the presence of splice variants in the cytoplasmic domain of certain integrin subunits. In the present study, we detected mRNA of integrin α3 splice variants (α3A and α3B) by RT-PCR using total RNA from the human brain as a template. The α3B variant lacks the sequence coded by exon 25 and appears to be generated by alternative splicing. We established mouse hybridomas producing monoclonal antibodies (both of which are of IgG1 class) specific for each variant. Each antibody exhibited specific reactivity towards the corresponding integrin α3 variant in Western blotting and immunoprecipitation experiments, suggesting it to be a useful tool for detection of the respective integrin variant.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Yusuke Ando
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Masaharu Ogura
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| |
Collapse
|
22
|
Hoshiba T, Nikaido M, Yagi S, Konno I, Yoshihiro A, Tanaka M. Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515618976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells have received attention for their role in cancer diagnosis and the decision on which chemotherapeutic course to take. For these purposes, the isolation of circulating tumor cells has been important. Previously, we reported that non-blood cells can adhere on blood-compatible polymer substrates, such as poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate). In this study, we examined whether blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) allow the adhesion and growth of A549 lung cancer cells for isolating circulating tumor cells by adhesion-mediated manner to diagnose metastatic cancer and to decide on the chemotherapeutic course. A549 cells can adhere on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates via an integrin-dependent mechanism after 1 h of incubation, suggesting that blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates possess the ability to capture circulating tumor cells selectively from peripheral blood. After 1 day of culture, A549 cells started to spread on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. A549 can also grow on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. Additionally, the chemoresistance of A549 cells against 5-fluorouracil on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates was similar to that on the conventional cell culture substrate, tissue culture polystyrene. These results indicate that circulating tumor cells can be cultured on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates after they are isolated from peripheral blood, and poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates can be used as circulating tumor cell culture substrates for screening anti-cancer drugs. Therefore, poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates might be able to be applied to the development of a new device for a circulating tumor cell–based diagnosis of metastatic cancer and a personalized medicine approach regarding the decision of which chemotherapeutic course should be taken.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Mayo Nikaido
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Satomi Yagi
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Iku Konno
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
24
|
Baldwin LA, Hoff JT, Lefringhouse J, Zhang M, Jia C, Liu Z, Erfani S, Jin H, Xu M, She QB, van Nagell JR, Wang C, Chen L, Plattner R, Kaetzel DM, Luo J, Lu M, West D, Liu C, Ueland FR, Drapkin R, Zhou BP, Yang XH. CD151-α3β1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling. Oncotarget 2015; 5:12203-17. [PMID: 25356755 PMCID: PMC4322965 DOI: 10.18632/oncotarget.2622] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-α3β1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or α3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-α3β1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of β-catenin and Axin-2 as well as resistance to the inhibition in β-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-α3β1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling.
Collapse
Affiliation(s)
- Lauren A Baldwin
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - John T Hoff
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Jason Lefringhouse
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Michael Zhang
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Changhe Jia
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Zeyi Liu
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Sonia Erfani
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Hongyan Jin
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Mei Xu
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - John R van Nagell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Chi Wang
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Li Chen
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Rina Plattner
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jia Luo
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Michael Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Dava West
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Chunming Liu
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Fred R Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Pathology & Laboratory Medicine, University of Kentucky, College of Medicine, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Ronny Drapkin
- Department of Cancer Biology and Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Binhua P Zhou
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Science, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, University of Kentucky, Lexington, KY
| |
Collapse
|
25
|
Hoshiba T, Otaki T, Nemoto E, Maruyama H, Tanaka M. Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18096-18103. [PMID: 26258689 DOI: 10.1021/acsami.5b05210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of bioartificial liver (BAL) is expected because of the shortage of donor liver for transplantation. The substrates for BAL require the following criteria: (a) blood compatibility, (b) hepatocyte adhesiveness, and (c) the ability to maintain hepatocyte-specific functions. Here, we examined blood-compatible poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) (PTHFA) as the substrates for BAL. HepG2, a human hepatocyte model, could adhere on PMEA and PTHFA substrates. The spreading of HepG2 cells was suppressed on PMEA substrates because integrin contribution to cell adhesion on PMEA substrate was low and integrin signaling was not sufficiently activated. Hepatocyte-specific gene expression in HepG2 cells increased on PMEA substrate, whereas the expression decreased on PTHFA substrates due to the nuclear localization of Yes-associated protein (YAP). These results indicate that blood-compatible PMEA is suitable for BAL substrate. Also, PMEA is expected to be used to regulate cell functions for blood-contacting tissue engineering.
Collapse
Affiliation(s)
- Takashi Hoshiba
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- ‡International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Otaki
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Eri Nemoto
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroka Maruyama
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- §Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
26
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Abstract
Fibronectin adhesion stimulation of focal adhesion kinase (FAK)–Src–PI3K is an upstream regulatory branch of the Hippo pathway and stimulates the activity and nuclear localization of YAP in a Lats-dependent manner. The Hippo pathway is involved in the regulation of contact inhibition of proliferation and responses to various physical and chemical stimuli. Recently, several upstream negative regulators of Hippo signaling, including epidermal growth factor receptor ligands and lysophosphatidic acid, have been identified. We show that fibronectin adhesion stimulation of focal adhesion kinase (FAK)-Src signaling is another upstream negative regulator of the Hippo pathway. Inhibition of FAK or Src in MCF-10A cells plated at low cell density prevented the activation of Yes-associated protein (YAP) in a large tumor suppressor homologue (Lats)–dependent manner. Attachment of serum-starved MCF-10A cells to fibronectin, but not poly-d-lysine or laminin, induced YAP nuclear accumulation via the FAK–Src–phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) signaling pathway. Attenuation of FAK, Src, PI3K, or PDK1 activity blocked YAP nuclear accumulation stimulated by adhesion to fibronectin. This negative regulation of the Hippo pathway by fibronectin adhesion signaling can, at least in part, explain the effects of cell spreading on YAP nuclear localization and represents a Lats-dependent component of the response to cell adhesion.
Collapse
Affiliation(s)
- Nam-Gyun Kim
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Barry M Gumbiner
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| |
Collapse
|
28
|
Biomechanical force induces the growth factor production in human periodontal ligament-derived cells. Odontology 2015; 104:27-34. [PMID: 25957627 DOI: 10.1007/s10266-015-0206-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.
Collapse
|
29
|
Kikkawa Y, Miwa T, Tanimizu N, Kadoya Y, Ogawa T, Katagiri F, Hozumi K, Nomizu M, Mizuguchi T, Hirata K, Mitaka T. Soluble Lutheran/basal cell adhesion molecule is detectable in plasma of hepatocellular carcinoma patients and modulates cellular interaction with laminin-511 in vitro. Exp Cell Res 2014; 328:197-206. [DOI: 10.1016/j.yexcr.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 11/26/2022]
|
30
|
Tetraspanin CD9 regulates cell contraction and actin arrangement via RhoA in human vascular smooth muscle cells. PLoS One 2014; 9:e106999. [PMID: 25184334 PMCID: PMC4153684 DOI: 10.1371/journal.pone.0106999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC) morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active) RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.
Collapse
|
31
|
Jochim N, Gerhard R, Just I, Pich A. Time-resolved cellular effects induced by TcdA from Clostridium difficile. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1089-1100. [PMID: 24711272 DOI: 10.1002/rcm.6882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut). METHODS Proteins from crude cell lysates or cellular subfractions were identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Two time points (5 h, 24 h) of toxin treatment were analyzed and about 4000 proteins were identified in each case. RESULTS After 5 h treatment with rTcdA-wt, 150 proteins had a significantly altered abundance; rTcdA-mut caused regulation of 50 proteins at this time point. After 24 h treatment with rTcdA-wt changes in abundance of 61 proteins were observed, but no changes in protein abundance were detected after 24 h if cells were treated with rTcdA-mut. TcdA affected several proteins involved in signaling events, cytoskeleton and cell-cell contact organization, translation, and metabolic processes. The ICPL-dependent quantification was verified by label-free targeted MS techniques based on multiple reaction monitoring (MRM) and triple quadrupole mass spectrometry. CONCLUSIONS LC/MS-based proteome analyses and the ICPL approach revealed comprehensive and reproducible proteome date and provided new insights into the cellular effects of clostridial glucosylating toxins (CGT).
Collapse
Affiliation(s)
- Nelli Jochim
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
32
|
Nakamura Y, Hasebe A, Takahashi K, Iijima M, Yoshimoto N, Maturana AD, Ting K, Kuroda S, Niimi T. Oligomerization-induced conformational change in the C-terminal region of Nel-like molecule 1 (NELL1) protein is necessary for the efficient mediation of murine MC3T3-E1 cell adhesion and spreading. J Biol Chem 2014; 289:9781-94. [PMID: 24563467 DOI: 10.1074/jbc.m113.507020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1.
Collapse
Affiliation(s)
- Yoko Nakamura
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan and
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, Nomizu M, Miner JH. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem 2013; 288:30990-1001. [PMID: 24036115 DOI: 10.1074/jbc.m113.486456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Collapse
Affiliation(s)
- Yamato Kikkawa
- From the Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Basement membrane extract preserves islet viability and activity in vitro by up-regulating α3 integrin and its signal. Pancreas 2013; 42:971-6. [PMID: 23587851 DOI: 10.1097/mpa.0b013e318287cfe0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Survival of transplanted islets is limited partly because of the disruption of the islet basement membrane (BM) occurring during isolation. We hypothesized that the embedment of BM extract (BME) could induce a viable cell mass and prolong islet functionality before transplantation. METHODS A special reconstituted BME that solidifies into a gel at 37°C was used to embed isolated islets in this study. The strategy was used to re-establish the interaction between the islets and peri-islet BM. RESULTS Islets embedded in BME showed lower caspase-3 levels and higher Akt activity than those in suspension. Moreover, we found for the first time that the expression of α3 integrin and focal adhesion kinase (FAK) and FAK activity was up-regulated in islets after BME embedment. The reverse effect was observed on islet apoptosis when islets rescued from a 24-hour suspension culture were embedded in BME for the next 24 hours. In addition, expression of pancreatic duodenal homeobox factor-1 and phospho-extracellular signal-regulated kinase 1/2 was partially preserved, suggesting the positive effect of BME on islet development. CONCLUSIONS These results indicate that BME embedment of islets can up-regulate the expression of α3 integrin and its signal transduction, which may improve islet viability.
Collapse
|
35
|
Gustafson-Wagner E, Stipp CS. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS One 2013; 8:e61834. [PMID: 23613949 PMCID: PMC3629153 DOI: 10.1371/journal.pone.0061834] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/15/2013] [Indexed: 01/16/2023] Open
Abstract
Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81. Loss of CD151 disrupts α3β1 association with other tetraspanins and impairs α3β1-dependent motility. However, the extent to which tetraspanins other than CD151 are required for specific α3β1 functions is unclear. To begin to clarify which aspects of α3β1 function require which tetraspanins, we created breast carcinoma cells depleted of both CD9 and CD81 by RNA interference. Silencing both of these closely related tetraspanins was required to uncover their contributions to α3β1 function. We then directly compared our CD9/CD81-silenced cells to CD151-silenced cells. Both CD9/CD81-silenced cells and CD151-silenced cells showed delayed α3β1-dependent cell spreading on laminin-332. Surprisingly, however, once fully spread, CD9/CD81-silenced cells, but not CD151-silenced cells, displayed impaired α3β1-dependent directed motility and altered front-rear cell morphology. Also unexpectedly, the CD9/CD81 complex, but not CD151, was required to promote α3β1 association with PKCα in breast carcinoma cells, and a PKC inhibitor mimicked aspects of the CD9/CD81-silenced cell motility defect. Our data reveal overlapping, but surprisingly distinct contributions of specific tetraspanins to α3β1 integrin function. Importantly, some of CD9/CD81's α3β1 regulatory functions may not require CD9/CD81 to be physically linked to α3β1 by CD151.
Collapse
Affiliation(s)
| | - Christopher S. Stipp
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
36
|
Deng B, Li Y, Zhang Y, Bai L, Yang P. Helicobacter pylori infection and lung cancer: a review of an emerging hypothesis. Carcinogenesis 2013; 34:1189-95. [PMID: 23568955 DOI: 10.1093/carcin/bgt114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (Hp) is one of the most common bacteria infecting humans. Recently, certain extragastric manifestations, linked to Hp infection, have been widely investigated, suggesting that Hp infection might be a 'systemic' disease. Accumulating, yet limited, evidence points to a potential association between Hp infection and lung cancer risk. Epidemiologic studies have shown that odds ratios (estimated relative risks) of lung cancer with Hp infection range from 1.24 to 17.78 compared with the controls, suggesting an increased lung cancer risk in the population exposed to Hp infection although far from supporting a causal relationship between Hp and lung cancer. Many studies have demonstrated the existence of Hp in the mucosa of the upper respiratory tract with no direct evidence of Hp-localization in lung tissue in the published literatures, rendering the possible functional mechanism underlying the association an open question. We followed the classic hypothesis-generating path, where we have thoroughly reviewed the publications on lung cancer and Hp infection from serological association to possible mechanisms as: (i) p130cas activated by Src kinase following Hp-host communication and p130cas-related carcinogenesis as in various malignancies; and (ii) gastroesophageal reflux and inhalation of urease or gastrin, which are Hp-related carcinogenic factors and present in lung tissues. We propose rigorous investigations regarding the Hp-lung cancer association and, if confirmed, the mechanisms of Hp infection leading to lung cancer development and progression. Clarification on Hp-lung cancer association is important for the understanding of lung cancer beyond tobacco-smoking-related carcinogenesis.
Collapse
Affiliation(s)
- Bo Deng
- Department of Health Sciences Research, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
37
|
Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clin Exp Metastasis 2012; 30:541-52. [PMID: 23224938 DOI: 10.1007/s10585-012-9558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Integrin α3β1 promotes tumor cell adhesion, migration, and invasion on laminin isoforms, and several clinical studies have indicated a correlation between increased tumoral α3β1 integrin expression and tumor progression, metastasis, and poor patient outcomes. However, several other clinical and experimental studies have suggested that α3β1 can possess anti-metastatic activity in certain settings. To help define the range of α3β1 functions in tumor cells in vivo, we used RNAi to silence the α3 integrin subunit in an aggressive, in vivo-passaged subline of PC-3 prostate carcinoma cells. Loss of α3 integrin impaired adhesion and proliferation on the α3β1 integrin ligand, laminin-332 in vitro. Despite these deficits in vitro, the α3-silenced cells were significantly more aggressive in a lung colonization model in vivo, with a substantially increased rate of tumor growth that significantly reduced survival. In contrast, silencing the related α6 integrin subunit delayed metastatic growth in vivo. The increased colonization of α3-silenced tumor cells in vivo was recapitulated in 3D collagen co-cultures with lung fibroblasts or pre-osteoblast-like cells, where α3-silenced cells showed dramatically enhanced growth. The increased response of α3-silenced tumor cells to stromal cells in co-culture could be reproduced by fibroblast conditioned medium, which contains one or more heparin-binding factors that selectively favor the growth of α3-silenced cells. Our new data suggest a scenario in which α3β1 regulates tumor-host interactions within the metastatic tumor microenvironment to limit growth, providing some of the first direct evidence that specific loss of α3 function in tumor cells can have pro-metastatic consequences in vivo.
Collapse
|
38
|
α3β1 integrins regulate CD151 complex assembly and membrane dynamics in carcinoma cells within 3D environments. Oncogene 2012; 32:3965-79. [PMID: 22986527 DOI: 10.1038/onc.2012.415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 11/09/2022]
Abstract
Integrins are extracellular matrix (ECM) receptors that are key players in the regulation of tumour cell invasion. The laminin-binding integrin α3β1 has previously been shown to regulate adhesion and migration of carcinoma cells in part through co-operative signalling with the tetraspanin family of transmembrane proteins. However, the spatial and temporal regulation of crosstalk between these families of transmembrane proteins in intact cells remains poorly understood. Here we have used fluorescence resonance energy transfer (FRET) to demonstrate for the first time that α3β1 and the tetraspanin CD151 directly associate at the front and retracting rear of polarised migrating breast carcinoma cells in both two-dimentional (2D) and three-dimentional (3D)matrices. Furthermore, localised α3β1-CD151 binding correlates with lower CD151 homodimerisation in cells migrating on laminin or within matrigel. Loss of α3β1 integrin leads to increased CD151 homodimer formation, increased activation of Rho GTPase, loss of cell polarity and decreased invasion in 3D ECM. As a result, α3-silenced cells show decreased actin-based membrane protrusion and retraction in both 2D and 3D environments. These data demonstrate that associations between α3β1 and CD151 occur dynamically within discrete subcellular compartments and act to establish local GTPase signalling to promote tumour cell invasion. These novel findings shed light on the complex crosstalk and switching between receptor complexes in response to different extracellular cues during cell invasion in 3D environments.
Collapse
|
39
|
Malherbe LP, Wang D. Tyrosine kinases EnAbling adaptor molecules for chemokine-induced Rap1 activation in T cells. Sci Signal 2012; 5:pe33. [PMID: 22855504 DOI: 10.1126/scisignal.2003383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines regulate T cell trafficking into secondary lymphoid organs and migration across endothelial cells in response to inflammatory signals. The small guanosine triphosphatase Rap1 is a critical regulator of chemokine signaling in T cells, but how chemokines activate Rap1 has been unclear. A study showed that Abl family tyrosine kinases were essential for chemokine-induced Rap1 activation, T cell polarization, and migration. Abl family kinases promoted Rap1 activation by phosphorylating the adaptor protein human enhancer of filamentation 1 (HEF1), thus establishing a critical Abl-HEF1-Rap1 signaling axis for chemokine-induced T cell migration.
Collapse
Affiliation(s)
- Laurent P Malherbe
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
40
|
Hong IK, Jeoung DI, Ha KS, Kim YM, Lee H. Tetraspanin CD151 stimulates adhesion-dependent activation of Ras, Rac, and Cdc42 by facilitating molecular association between β1 integrins and small GTPases. J Biol Chem 2012; 287:32027-39. [PMID: 22843693 DOI: 10.1074/jbc.m111.314443] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD151 associates with laminin-binding α(3)β(1)/α(6)β(1) integrins in epithelial cells and regulates adhesion-dependent signaling events. We found here that CD151 plays a role in recruiting Ras, Rac1, and Cdc42, but not Rho, to the cell membrane region, leading to the formation of α(3)β(1)/α(6)β(1) integrin-CD151-GTPases complexes. Furthermore, cell adhesion to laminin enhanced CD151 association with β(1) integrin and, thereby, increased complex formation between the β(1) family of integrins and small GTPases, Ras, Rac1, and Cdc42. Adhesion receptor complex-associated small GTPases were activated by CD151-β(1) integrin complex-stimulating adhesion events, such as α(3)β(1)/α(6)β(1) integrin-activating cell-to-laminin adhesion and homophilic CD151 interaction-generating cell-to-cell adhesion. Additionally, FAK and Src appeared to participate in this adhesion-dependent activation of small GTPases. However, engagement of laminin-binding integrins in CD151-deficient cells or CD151-specific siRNA-transfected cells did not activate these GTPases to the level of cells expressing CD151. Small GTPases activated by engagement of CD151-β(1) integrin complexes contributed to CD151-induced cell motility and MMP-9 expression in human melanoma cells. Importantly, among the four tetraspanin proteins that associate with β(1) integrin, only CD151 exhibited the ability to facilitate complex formation between the β(1) family of integrins and small GTPases and stimulate β(1) integrin-dependent activation of small GTPases. These results suggest that CD151 links α(3)β(1)/α(6)β(1) integrins to Ras, Rac1, and Cdc42 by promoting the formation of multimolecular complexes in the membrane, which leads to the up-regulation of adhesion-dependent small GTPase activation.
Collapse
Affiliation(s)
- In-Kee Hong
- Medical and Bio-Material Research Center, School of Medicine, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea
| | | | | | | | | |
Collapse
|
41
|
Katagiri F, Sudo M, Hamakubo T, Hozumi K, Nomizu M, Kikkawa Y. Identification of active sequences in the L4a domain of laminin α5 promoting neurite elongation. Biochemistry 2012; 51:4950-8. [PMID: 22621685 DOI: 10.1021/bi300214g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Laminin α5 is an extracellular matrix protein containing multiple domains implicated in various biological processes, such as embryogenesis and renal function. In this study, we used recombinant proteins and synthetic peptides to identify amino acid residues within the short arm region of α5 that were critical for neurite outgrowth activity. The short arm of α5 contains three globular domains (LN, L4a, and L4b) and three rodlike elements (LEa, LEb, and LEc). Recombinant proteins comprised of the α5 short arm fused with a Fc tag produced in 293 cells were assayed for PC12 (pheochromocytoma) cell adhesion and neurite outgrowth activities. Although it did not have cell attachment activity, neurite outgrowth was promoted by the recombinant protein. To narrow the region involved in neurite outgrowth activity, two truncated recombinant proteins were produced in 293 cells. A recombinant protein lacking L4a and LEb lost activity. Furthermore, we synthesized 78 partially overlapping peptides representing most of the amino acid sequences of L4a and LEb. Of the peptides, A5-76 [mouse laminin α5 928-939 (TSPDLFRLVFRY) in L4a] exhibited neurite outgrowth activity. Mutagenesis studies showed that Phe(933) and Arg(934) were involved in neurite outgrowth activity. Moreover, inhibition assays using anti-integrin monoclonal antibodies showed that neurite outgrowth on the α5 short arm was partially mediated by integrin α1β1. However, the antibodies to integrin α1 and β1 did not inhibit neurite elongation on the A5-76 peptide. These results suggest that in addition to cellular interactions with the active site in the L4a domain, the binding of integrin α1β1 seems to modulate neurite elongation on the short arm of α5.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Sato-Nishiuchi R, Nakano I, Ozawa A, Sato Y, Takeichi M, Kiyozumi D, Yamazaki K, Yasunaga T, Futaki S, Sekiguchi K. Polydom/SVEP1 is a ligand for integrin α9β1. J Biol Chem 2012; 287:25615-30. [PMID: 22654117 DOI: 10.1074/jbc.m112.355016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.
Collapse
|
43
|
Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M, Stoeppeler S, Haier J. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One 2012; 7:e30046. [PMID: 22253872 PMCID: PMC3258260 DOI: 10.1371/journal.pone.0030046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/08/2011] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. METHODS Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4. RESULTS In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p<0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p<0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. CONCLUSION Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.
Collapse
Affiliation(s)
- Claudia Wendel
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | | | - Julia Krasnyanska
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Sören Torge Mees
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Marina Kochetkova
- Chemokine Biology Division, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Sandra Stoeppeler
- Department of General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Jörg Haier
- Comprehensive Cancer Center Muenster, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
44
|
Agle KA, Vongsa RA, Dwinell MB. Chemokine stimulation promotes enterocyte migration through laminin-specific integrins. Am J Physiol Gastrointest Liver Physiol 2011; 301:G968-80. [PMID: 21921288 PMCID: PMC3233784 DOI: 10.1152/ajpgi.00208.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal homeostasis is regulated in part by the single cell layer of the mucosal epithelium. This physical barrier is a prominent part of the innate immune system and possesses an intrinsic ability to heal damage and limit infection. The restitutive epithelial migration phase of healing requires dynamic integrin adhesion to the extracellular matrix. Previously, we have shown that the homeostatic chemokine CXCL12 utilizes intracellular calcium to increase enterocyte migration on laminin. The aim of these studies was to investigate integrin specificity and, in turn, functional responses elicited by CXCL12 stimulation. Analysis of cellular adhesion and spreading revealed CXCL12 preferentially activated laminin-specific integrins compared with collagen IV-binding integrins. Laminin-specific cell adhesion and spreading elicited by CXCL12 was dependent on intracellular calcium. CXCL12 increased activated β1-integrins on the surface of epithelial cells compared with untreated cells. RT-PCR confirmed expression of the laminin-binding integrins-α3β1, -α6β1, and -α6β4. Interestingly, shRNA-mediated depletion of laminin-specific α3- or α6-integrin subunits revealed differential functions. α3-Integrin knockdown reduced basal as well as inducible restitution. Depletion of α6-integrin specifically abolished CXCL12-stimulated, but not TGF-β1 or basal, migration. Depletion with either shα3-integrin or shα6-integrin prevented CXCL12-evoked cell spreading. Our data indicate that CXCL12 stimulates the inside-out activation of laminin-specific integrins to promote cell migratory functions. Together, our findings support the notion that extracellular mediators within the gastrointestinal mucosa coordinate cell-matrix interactions during epithelial restitution.
Collapse
Affiliation(s)
- Kimberle A. Agle
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca A. Vongsa
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
45
|
O’TOOLE TIMOTHYE, BIALKOWSKA KATARZYNA, LI XIAOHONG, FOX JOANE. Tiam1 is recruited to β1-integrin complexes by 14-3-3ζ where it mediates integrin-induced Rac1 activation and motility. J Cell Physiol 2011; 226:2965-78. [PMID: 21302295 PMCID: PMC6385608 DOI: 10.1002/jcp.22644] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
14-3-3 is an adaptor protein that localizes to the leading edge of spreading cells, returning to the cytoplasm as spreading ceases. Previously, we showed that integrin-induced Rac1 activation and spreading were inhibited by sequestration of 14-3-3ζ and restored by its overexpression. Here, we determined whether 14-3-3 mediates integrin signaling by localizing a guanine nucleotide exchange factor (GEF) to Rac1-activating integrin complexes. We showed that GST-14-3-3ζ recruited the Rac1-GEF, Tiam1, from cell lysates through Tiam1 residues 1-182 (N(1-182) Tiam1). The physiological relevance of this interaction was examined in serum-starved Hela cells plated on fibronectin. Both Tiam1 and N(1-182) Tiam1 were recruited to 14-3-3-containing β1-integrin complexes, as shown by co-localization and co-immunoprecipitation. Integrin-induced Rac1 activation was inhibited when Tiam1 was depleted with siRNA or by overexpression of catalytically inactive N(1-182) Tiam1, which was incorporated into 14-3-3/β1-integrin complexes and inhibited spreading in a manner that was overcome by constitutively active Rac1. Integrin-induced Rac1 activation, spreading, and migration were also inhibited by overexpression of 14-3-3ζ S58D, which was unable to recruit Tiam1 from lysates, co-immunoprecipitate with Tiam1, or mediate its incorporation into β1-integrin complexes. Taken together, these findings suggest a previously unrecognized mechanism of integrin-induced Rac1 activation in which 14-3-3 dimers localize Tiam1 to integrin complexes, where it mediates integrin-dependent Rac1 activation, thus initiating motility-inducing pathways. Moreover, since Tiam1 is recruited to other sites of localized Rac1 activation through its PH-CC-EX domain, the present findings show that a mechanism involving its N-terminal 182 residues is utilized to recruit Tiam1 to motility-inducing integrin complexes.
Collapse
Affiliation(s)
- TIMOTHY E. O’TOOLE
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - KATARZYNA BIALKOWSKA
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - XIAOHONG LI
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - JOAN E.B. FOX
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
46
|
Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, Schlaepfer DD, Cheresh DA. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene 2011; 31:2783-93. [PMID: 21963850 PMCID: PMC3711644 DOI: 10.1038/onc.2011.450] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tyrosine kinase receptors play an essential role in various aspects of tumor progression. In particular, epidermal growth factor receptor (EGFR) and its ligands have been implicated in the growth and dissemination of a wide array of human carcinomas. Here, we describe an EGFR-mediated signaling pathway that regulates human pancreatic carcinoma cell invasion and metastasis, yet does not influence the growth of primary tumors. In fact, ligation/activation of EGFR induces Src-dependent phosphorylation of two critical tyrosine residues of p130CAS, leading to assembly of a CAS/Nck1 complex that promotes Rap1 signaling. Importantly, GTP loading of Rap1 is specifically required for pancreatic carcinoma cell migration on vitronectin, but not on collagen. Furthermore, Rap1 activation is required for EGFR-mediated metastasis in vivo without impacting primary tumor growth. These findings identify a molecular pathway that promotes the invasive/metastatic properties of human pancreatic carcinomas driven by EGFR.
Collapse
Affiliation(s)
- M Huang
- Department of Pathology, Moores University of California San Diego Cancer Center, La Jolla, CA 92093-1503, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rambaruth NDS, Dwek MV. Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem 2011; 113:591-600. [PMID: 21501858 DOI: 10.1016/j.acthis.2011.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023]
Abstract
The development of secondary cancers, metastases, requires that a multitude of events are completed in an ordered and sequential manner. This review focuses on the role of cell surface glycans and their binding partners in the metastatic process. A common feature of metastasis is that the steps require adhesive interactions; many of these are mediated by cell surface glycans and their interactions with endogenous carbohydrate binding proteins (lectins). Aberrant glycosylation is a key feature of malignant transformation and the glycans involved influence the adhesive interactions of cancer cells often providing favorable conditions for tumor dissemination. This review focuses on glycans on the cancer cell surface and their association with endogenous lectins. In particular, E-cadherin and siglec-mediated disaggregation of tumor cells from the primary tumor mass; integrins, laminin and CD44-mediated invasion and migration of tumor cells through the connective tissue; the involvement of heparan sulphate in tumor angiogenesis and C-/S-type lectin interactions with the vasculature. The potential role of glycans in cancer cell evasion of immune surveillance is considered.
Collapse
Affiliation(s)
- Neela D S Rambaruth
- Department of Molecular and Applied Biosciences, University of Westminster, London, United Kingdom
| | | |
Collapse
|
48
|
Zhao Y, Xu J, Wei J, Li J, Cai J, Miao G. Preservation of islet survival by upregulating α3 integrin signaling: the importance of 3-dimensional islet culture in basement membrane extract. Transplant Proc 2011; 42:4638-42. [PMID: 21168751 DOI: 10.1016/j.transproceed.2010.09.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
AIM Islet transplantation is a promising treatment to cure diabetes, but is associated with a high rate of early graft failure. The isolation process leads to the loss of the surrounding extracellular matrix, resulting in eventual islet disintegration and apoptosis. The purpose of this study was to determine the effects on the viability of isolated islets of embedding islets in reconstituted basement membrane extract (BME), which is similar to the normal peri-islet BM composition in vivo. METHODS Isolated mouse islets were embedded in BME gel for 24 or 48 hours. Expression of caspase-3, α3, and α5, focal adhesion kinase (FAK), phosphor-FAK, and pancreatic duodenal homeobox factor (PDX)-1 were detected with Western immunoblotting. RESULTS Impaired aggregation of single islet cells could only be observed in non-BME medium. Islets embedded in BME gel were partially protected from anoikis showed decreased caspase-3 compared with non-BME islets. We also observed an increase of α3 integrin, FAK protein level, and FAK activity. Furthermore, expression of PDX-1 was preserved at 48 hours, suggesting a positive contribution of BME to β-cell activity. CONCLUSION These results indicated that embedding islets in BME can upregulate α3 integrin, which may result in preservation of viability and function of isolated islets.
Collapse
Affiliation(s)
- Y Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | | | | | | | | | | |
Collapse
|
49
|
Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther 2011; 10:1717-28. [PMID: 21058932 DOI: 10.1517/14712598.2010.534079] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE OF THE FIELD Biomimetic scaffolds and substrates of extracellular matrices (ECMs) play an important role in the regulation of cell function and in the guidance of new tissue regeneration, as an ECM has the intrinsic cues necessary to communicate with and dictate to cells. AREAS COVERED IN THIS REVIEW This paper reviews the latest developments in ECM scaffolds and substrates obtained from decellularized tissues, organs or cultured cells and their application in tissue engineering. The ECM composition, structure, interaction with surrounding cells, preparation method and usage in the regeneration of various tissues and organs are summarised. WHAT THE READER WILL GAIN The advantages and challenges of decellularized matrices are highlighted. TAKE HOME MESSAGE Similarity in the composition, microstructure and biomechanical properties of the decellularized scaffolds and substrates to those of the native tissues and organs maximizes the promotion effect in the regeneration of both structural and functional tissues and organs. Simple tissues as well as complicated organs have been decellularized and decellularization methods have been optimized to completely remove the cellular components while keeping the ECM intact.
Collapse
Affiliation(s)
- Takashi Hoshiba
- National Institute for Materials Science, Biomaterials Center, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
50
|
Ando K, Miyazaki Y, Sawayama Y, Tominaga S, Matsuo E, Yamasaki R, Inoue Y, Iwanaga M, Imanishi D, Tsushima H, Fukushima T, Imaizumi Y, Taguchi J, Yoshida S, Hata T, Tomonaga M. High expression of 67-kDa laminin receptor relates to the proliferation of leukemia cells and increases expression of GM-CSF receptor. Exp Hematol 2010; 39:179-186.e4. [PMID: 21056082 DOI: 10.1016/j.exphem.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/09/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The 67-kDa laminin receptor (LR) is a nonintegrin receptor for laminin, a major component of the extracellular matrix. To elucidate the role of LR in leukemia cells, we studied the relationship between the phenotype of leukemia cells and LR expression. MATERIALS AND METHODS The relationship between clinical features of acute myeloid leukemia and expression of LR was examined. LR was overexpressed or suppressed by the introduction of complementary DNA or small interfering RNA for LR in a human leukemia cell line to test the effect of LR on the phenotype of leukemia. Expression of granulocyte-macrophage colony-stimulating factor receptors (GM-CSFR) was also tested in leukemia cells, including clinical samples. RESULTS Expression of LR was significantly related to elevation of white blood cell count, lactate dehydrogenase, and survival among acute myeloid leukemia patients. Forced expression of LR enhanced proliferation, cell-cycle progression, and antiapoptosis of leukemia cells associated with phosphorylation of a transcription factor, signal transducer and activator of transcription 5, in the absence of stimulation by laminin. On the other hand, suppression of LR expression had the opposite effects. The number of GM-CSFR increased in leukemia cells overexpressing LR, and there was a significant relationship between the expression of LR and GM-CSFR in acute myeloid leukemia samples. CONCLUSIONS These results suggest that LR expression influenced the characteristics of leukemia cells toward an aggressive phenotype and increased the number of GM-CSFR. These changes might be partly related to enhanced GM-CSF signaling.
Collapse
Affiliation(s)
- Koji Ando
- Hematology and Molecular Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|