1
|
Emanet M, Lefevre MC, Ceccarelli MC, Battaglini M, Carmignani A, Schiavone F, Marino A, De Pasquale D, Prato M, De Boni F, Petretto A, Bartolucci M, Catalano F, Moscato S, Ciofani G. Polydopamine Nanoparticle-Based Combined Chemotherapy and Photothermal Therapy for the Treatment of Liver Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40695-40713. [PMID: 39058979 PMCID: PMC11310915 DOI: 10.1021/acsami.4c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Polydopamine nanoparticles (PDA NPs) are proposed as an anti-cancer tool against hepatocellular carcinoma through the combination of near-infrared (NIR)-mediated hyperthermia and loading with a chemotherapeutic drug, sorafenib (SRF). Cell membranes isolated from a liver cancer cell line (HepG2) have been exploited for the coating of the nanoparticles (thus obtaining CM-SRF-PDA NPs), to promote homotypic targeting toward cancer cells. The selective targeting ability and the combined photothermal and chemotherapeutic activity of the CM-SRF-PDA NPs following NIR irradiation have been evaluated on cell cultures in static and dynamic conditions, besides three-dimensional culture models. Eventually, the therapeutic effectiveness of the proposed approach has also been tested ex ovo on HepG2 spheroid-grafted quail embryos. This comprehensive investigation, supported by proteomic analysis, showed the effectiveness of the proposed nanoplatform and strongly suggests further pre-clinical testing in the treatment of liver cancer.
Collapse
Affiliation(s)
- Melis Emanet
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Marie Celine Lefevre
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Maria Cristina Ceccarelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Viale
Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Alessio Carmignani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesco Schiavone
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Francesco De Boni
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Andrea Petretto
- Core
Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Martina Bartolucci
- Core
Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Stefania Moscato
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
2
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Transcriptomic Analysis Reveals That Granulocyte Colony-Stimulating Factor Trigger a Novel Signaling Pathway (TAF9-P53-TRIAP1-CASP3) to Protect Retinal Ganglion Cells after Ischemic Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23158359. [PMID: 35955492 PMCID: PMC9368818 DOI: 10.3390/ijms23158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. The granulocyte colony-stimulating factor (GCSF) protects the RGC after ON infarct. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. To investigate the complex mechanisms involved, the transcriptome profiles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy (rAION) were analyzed by microarray and bioinformatics analyses. GCSF treatment influenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively. ONH infarct led to changes in 702 and 179 genes on days 3 and 7 post rAION, respectively. After cluster analysis, the levels of TATA box-binding protein (TBP)-associated factor were significantly reduced after ONH infarct, but these significantly increased after GCSF treatment. The network analysis revealed that TBP associated factor 9 (TAF9) can bind to P53 to induce TP53-regulated inhibitor of apoptosis 1 (TRIAP1) expression. To evaluate the function of TAF9 in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in an rAION model. The RGC densities in the GCSF plus TAF9 siRNA-treated rAION group were 1.95-fold (central retina) and 1.75-fold (midperipheral retina) lower than that in the GCSF-treated rAION group (p < 0.05). The number of apoptotic RGC in the GCSF plus TAF9 siRNA-treated group was threefold higher than that in the GCSF-treated group (p < 0.05). Treatment with TAF9 siRNA significantly reduced GCSF-induced TP53 and TRIAP1 expression by 2.4-fold and 4.7-fold, respectively, in the rAION model. Overexpression of TAF9 significantly reduced apoptotic RGC and CASP3 levels, and induced TP53 and TRIAP1 expression in the rAION model. Therefore, we have demonstrated that GCSF modulated a new pathway, TAF9-P53-TRIAP1-CASP3, to control RGC death and survival after ON infarct.
Collapse
|
4
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Gottesfeld JM. Milestones in transcription and chromatin published in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1652-1660. [PMID: 30710013 DOI: 10.1074/jbc.tm118.004162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During Herbert Tabor's tenure as Editor-in-Chief from 1971 to 2010, JBC has published many seminal papers in the fields of chromatin structure, epigenetics, and regulation of transcription in eukaryotes. As of this writing, more than 21,000 studies on gene transcription at the molecular level have been published in JBC since 1971. This brief review will attempt to highlight some of these ground-breaking discoveries and show how early studies published in JBC have influenced current research. Papers published in the Journal have reported the initial discovery of multiple forms of RNA polymerase in eukaryotes, identification and purification of essential components of the transcription machinery, and identification and mechanistic characterization of various transcriptional activators and repressors and include studies on chromatin structure and post-translational modifications of the histone proteins. The large body of literature published in the Journal has inspired current research on how chromatin organization and epigenetics impact regulation of gene expression.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
6
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
7
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
8
|
Nogales E, Patel AB, Louder RK. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Curr Opin Struct Biol 2017. [PMID: 28624568 DOI: 10.1016/j.sbi.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
TFIID is a critical component of the eukaryotic transcription pre-initiation complex (PIC) required for the recruitment of RNA Pol II to the start site of protein-coding genes. Within the PIC, TFIID's role is to recognize and bind core promoter sequences and recruit the rest of the PIC components. Due to its size and its conformational complexity, TFIID poses a serious challenge for structural characterization. The small amounts of purified TFIID that can be obtained by present methods of purification from endogenous sources has limited structural studies to cryo-EM visualization, which requires very small amounts of sample. Previous cryo-EM studies have shed light on how the extreme conformational flexibility of TFIID is involved in core promoter DNA binding. Recent progress in cryo-EM methodology has facilitated a parallel progress in the study of human TFIID, leading to an improvement in resolution and the identification of the structural elements in the complex directly involved in DNA interaction. While many questions remain unanswered, the present structural knowledge of human TFIID suggests a mechanism for the sequential engagement with different core promoter sequences and how it could be influenced by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA, USA; Howard Hughes Medical Institute, UC Berkeley, CA, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Lab, CA, USA.
| | | | | |
Collapse
|
9
|
Abstract
Eukaryotic gene transcription requires the assembly at the promoter of a large preinitiation complex (PIC) that includes RNA polymerase II (Pol II) and the general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. The size and complexity of Pol II, TFIID, and TFIIH have precluded their reconstitution from heterologous systems, and purification relies on scarce endogenous sources. Together with their conformational flexibility and the transient nature of their interactions, these limitations had precluded structural characterization of the PIC. In the last few years, however, progress in cryo-electron microscopy (cryo-EM) has made possible the visualization, at increasingly better resolution, of large PIC assemblies in different functional states. These structures can now be interpreted in near-atomic detail and provide an exciting structural framework for past and future functional studies, giving us unique mechanistic insight into the complex process of transcription initiation.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, University of California, Berkeley, California 94720-3220
- Howard Hughes Medical Institute, Berkeley, California 94720-3220
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, California 94720-3220;
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, California 94720-3220
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|
10
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
11
|
Yu-Taeger L, Bonin M, Stricker-Shaver J, Riess O, Nguyen HHP. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels. Neuropharmacology 2017; 117:260-272. [DOI: 10.1016/j.neuropharm.2017.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 11/26/2022]
|
12
|
Mazina MY, Vorobyeva NE. The role of ATP-dependent chromatin remodeling complexes in regulation of genetic processes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531:604-9. [PMID: 27007846 PMCID: PMC4856295 DOI: 10.1038/nature17394] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Collapse
|
14
|
Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJC. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 2016; 143:1340-50. [PMID: 26952988 PMCID: PMC4852510 DOI: 10.1242/dev.127936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. Highlighted article: A network of embryonic genes, many of which are expressed in the mesoderm and the organiser, can initiate transcription through a non-canonical mechanism.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ulrike G Jacobi
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
15
|
Zhang B, Wang O, Qin J, Liu S, Sun S, Liu H, Kuang J, Jiang G, Zhang W. cis-Acting elements and trans-acting factors in the transcriptional regulation of raf kinase inhibitory protein expression. PLoS One 2013; 8:e83097. [PMID: 24386147 PMCID: PMC3873293 DOI: 10.1371/journal.pone.0083097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022] Open
Abstract
The Raf kinase inhibitory protein (RKIP) is down-regulated in multiple types of human cancers. Decreased RKIP transcription activity may be one of the major mechanisms responsible for the downregulation of RKIP expression in human diseases. To test this hypothesis, we need to gain basic knowledge of the transcriptional regulation of RKIP. To achieve this objective, we made a systematic effort to identify cis-acting elements and trans-acting factors that control RKIP promoter activity. We found that full RKIP promoter activity requires the region −56 to +261 relative to the transcription start site. Within the full promoter region, there are two motifs rich in G/C that responded to transcription factor Sp1, one cAMP-responsive element that responded to the transcription factor CREB, and one docking site for the histone acetylase p300. In human melanoma A375 cells and human cervical cancer HeLa cells, mutation or deletion of each of these cis-acting elements decreased promoter activity. In A375 cells, knockdown of the corresponding transcription factors Sp1, CREB, or p300 decreased RKIP promoter activity, whereas overexpression of CREB and p300 increased RKIP promoter activity. The results obtained with HeLa cells also supported the idea that Sp1 and CREB play positive roles in the regulation of RKIP transcription. These findings suggest that regulators of the expression or activity of Sp1, CREB, and p300 are involved in regulating RKIP transcription.
Collapse
Affiliation(s)
- Boyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ou Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingchao Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huitu Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| |
Collapse
|
16
|
Abstract
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.
Collapse
|
17
|
Panek M, Pietras T, Fabijan A, Miłanowski M, Wieteska L, Górski P, Kuna P, Szemraj J. Effect of glucocorticoid receptor gene polymorphisms on asthma phenotypes. Exp Ther Med 2012; 5:572-580. [PMID: 23407653 PMCID: PMC3570225 DOI: 10.3892/etm.2012.809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/17/2012] [Indexed: 11/06/2022] Open
Abstract
The clinical presentation of asthma results from complex gene-gene and gene-environment interactions. The natural variability of the DNA sequence within the NR3C1 gene affects the activity of glucocorticoid receptors (GCRs). The NR3C1 gene is localized on chromosome 5q31–q32. The gene coding for the GCR comprises nine exons. The structural domains of the GCR determine the biological functions of the functional domains. The observed resistance to glucocorticosteroids and the normal metabolic profile of Tth111I single nucleotide polymorphism (SNP) carriers is due to the ER22/23EK polymorphism that is present in them. BclI polymorphism significantly affects the process of alternative NR3C1 gene splicing and within that mechanism increases the sensitivity to glucocorticoids (GCs). A total of 451 subjects were enrolled in the present study, including 235 qualified to the group of bronchial asthma patients. A group of 216 healthy participants with no history of asthma or atopic conditions was qualified for the study. Genotyping was accomplished using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR-high resolution melting (HRM) methods. No statistically significant differences were observed in the frequency of Tth111I, BclI and ER22/23EK polymorphisms of the NR3C1 gene when comparing mild, moderate and severe asthma vs. the control group. Investigative analyses demonstrated statistically significant correlations for alleles and genotypes of Tth111I polymorphism of the NR3C1 gene between healthy subjects and patients with severe asthma characterized by a control profile corresponding to an Asthma Control Test (ACT)™ score ≥20. It was established that only the Tth111I polymorphism of the NR3C1 gene plays an important role in the pathogenesis of chronic bronchitis leading to the development of asthma with both allergic and non-allergic etiology.
Collapse
Affiliation(s)
- Michał Panek
- Departments of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz 90-153
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Loewenstein PM, Wu SY, Chiang CM, Green M. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro. Virology 2012; 428:70-5. [PMID: 22521914 DOI: 10.1016/j.virol.2012.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.
Collapse
Affiliation(s)
- Paul M Loewenstein
- St. Louis University School of Medicine, Institute for Molecular Virology, 1100 S. Grand Ave., Saint Louis, MO 63104, USA
| | | | | | | |
Collapse
|
19
|
Liu WL, Coleman RA, Ma E, Grob P, Yang JL, Zhang Y, Dailey G, Nogales E, Tjian R. Structures of three distinct activator-TFIID complexes. Genes Dev 2009; 23:1510-21. [PMID: 19571180 DOI: 10.1101/gad.1790709] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo-TFIID. These results suggest that activator contact may induce unique structural features of TFIID, thus providing nanoscale information on activator-dependent TFIID assembly and transcription initiation.
Collapse
Affiliation(s)
- Wei-Li Liu
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc Natl Acad Sci U S A 2009; 106:11049-54. [PMID: 19541607 DOI: 10.1073/pnas.0901801106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription activation by RNA polymerase II is a complicated process driven by combined, precisely coordinated action of a wide array of coactivator complexes, which carry out chromatin-directed activities and nucleate the assembly of the preinitiation complex on the promoter. Using various techniques, we have shown the existence of a stable coactivator supercomplex consisting of the chromatin-remodeling factor Brahma (SWI/SNF) and the transcription initiation factor TFIID, named BTFly (Brahma and TFIID in one assembly). The coupling of Brahma and TFIID is mediated by the SAYP factor, whose evolutionarily conserved activation domain SAY can directly bind to both BAP170 subunit of Brahma and TAF5 subunit of TFIID. The integrity of BTFly is crucial for its ability to activate transcription. BTFly is distributed genome-wide and appears to be a means of effective transcription activation.
Collapse
|
21
|
Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J Mol Biol 2007; 372:619-32. [PMID: 17681538 DOI: 10.1016/j.jmb.2007.06.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/11/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core promoters and bends the TATA DNA. We have used quantitative solution fluorescence resonance energy transfer (FRET) and gel-based FRET (gelFRET) to determine the effect of TFIIA on the conformation of the DNA in TBP/TATA complexes and on the kinetic stability of these complexes. Our results indicate that human TFIIA decreases the angle to which human TBP bends consensus TATA DNA from 104 degrees to 80 degrees when calculated using a two-kink model. The kinetic stability of TBP/TATA complexes was greatly reduced by increasing the KCl concentration from 50 mM to 140 mM, which is more physiologically relevant. TFIIA significantly enhanced the kinetic stability of TBP/TATA complexes, thereby attenuating the effect of higher salt concentrations. We also found that TBP bent non-consensus TATA DNA to a lesser degree than consensus TATA DNA and complexes between TBP and a non-consensus TATA box were kinetically unstable even at 50 mM KCl. Interestingly, TFIIA increased the calculated bend angle and kinetic stability of complexes on a non-consensus TATA box, making them similar to those on a consensus TATA box. Our data show that TFIIA induces a conformational change within the TBP/TATA complex that enhances its stability under both in vitro and physiological salt conditions. Furthermore, we present a refined model for the effect that TFIIA has on DNA conformation that takes into account potential changes in bend angle as well as twist angle.
Collapse
Affiliation(s)
- Aaron R Hieb
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 2007; 282:13141-5. [PMID: 17329240 DOI: 10.1074/jbc.r700001200] [Citation(s) in RCA: 518] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brd4 is a double bromodomain-containing protein that binds preferentially to acetylated chromatin. It belongs to the BET (bromodomains and extraterminal) family that includes mammalian Brd2, Brd3, Brd4, Brdt, Drosophila Fsh, yeast Bdf1, Bdf2, and corresponding homologues in other species. Brd4 is essential for cellular growth and has been implicated in cell cycle control, DNA replication, and gene rearrangement found in t(15;19)-associated carcinomas. Recently, Brd4 has been found in several transcription complexes, including the general cofactor Mediator and the P-TEFb elongation factor, and is capable of stimulating HIV-1 transcription in a Tat-independent manner. In addition, Brd4 is used as a cellular adaptor by some animal and human papillomaviruses (HPV) for anchoring viral genomes to mitotic chromosomes. This tethering, mediated by Brd4 interaction with virus-encoded E2 protein, facilitates viral genome segregation during mitosis. Interestingly, Brd4 is also identified in a transcriptional silencing complex assembled by HPV E2 and turns out to be the long sought cellular corepressor that inhibits the expression of HPV-encoded E6 and E7 oncoproteins that antagonize p53 and pRB tumor suppressor activity, respectively. The dual role of Brd4 in gene activation and repression illustrates how a dynamic chromatin-binding adaptor is able to recruit distinct transcriptional regulators to modulate promoter activity through cell cycle progression.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 19/genetics
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genome, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Mitosis
- Neoplasms/genetics
- Neoplasms/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Papillomaviridae/genetics
- Papillomaviridae/metabolism
- Positive Transcriptional Elongation Factor B/genetics
- Positive Transcriptional Elongation Factor B/metabolism
- Protein Binding/genetics
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
23
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
24
|
Wu SY, Lee AY, Hou SY, Kemper JK, Erdjument-Bromage H, Tempst P, Chiang CM. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 2006; 20:2383-96. [PMID: 16921027 PMCID: PMC1560413 DOI: 10.1101/gad.1448206] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/28/2006] [Indexed: 12/30/2022]
Abstract
The E2 protein encoded by human papillomaviruses (HPVs) inhibits expression of the viral E6 oncoprotein, which, in turn, regulates p53 target gene transcription. To identify cellular proteins involved in E2-mediated transcriptional repression, we isolated an E2 complex from human cells conditionally expressing HPV-11 E2. Surprisingly, the double bromodomain-containing protein Brd4, which is implicated in cell cycle control and viral genome segregation, was found associated with E2 and conferred on E2 the ability to inhibit AP-1-dependent HPV chromatin transcription in an E2-binding site-specific manner as illustrated by in vitro reconstituted chromatin transcription experiments. Knockdown of Brd4 in human cells alleviates E2-mediated repression of HPV transcription. The E2-interacting domain at the extreme C terminus and the chromatin targeting activity of a bromodomain-containing region are both essential for the corepressor activity of Brd4. Interestingly, E2-Brd4 blocks the recruitment of TFIID and RNA polymerase II to the HPV E6 promoter region without inhibiting acetylation of nucleosomal histones H3 and H4, indicating an acetylation-dependent role of Brd4 in the recruitment of E2 for transcriptional silencing of HPV gene activity. Our finding that Brd4 is a component of the virus-assembled transcriptional silencing complex uncovers a novel function of Brd4 as a cellular cofactor modulating viral gene expression.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kurg R, Sild K, Ilves A, Sepp M, Ustav M. Association of bovine papillomavirus E2 protein with nuclear structures in vivo. J Virol 2005; 79:10528-39. [PMID: 16051845 PMCID: PMC1182638 DOI: 10.1128/jvi.79.16.10528-10539.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses are small DNA viruses which have the capacity to establish a persistent infection in mammalian epithelial cells. The papillomavirus E2 protein is a central coordinator of viral gene expression, genome replication, and maintenance. We have investigated the distribution of bovine papillomavirus E2 protein in nuclei of proliferating cells and found that E2 is associated with cellular chromatin. This distribution does not change during the entire cell cycle. The N-terminal transactivation domain, but not the C-terminal DNA-binding domain, of the E2 protein is responsible for this association. The majority of the full-length E2 protein can only be detected in chromatin-enriched fractions but not as a free protein in the nucleus. Limited micrococcal nuclease digestion revealed that the E2 protein partitioned to different chromatin regions. A fraction of the E2 protein was located at nuclear sites that are resistant against nuclease attack, whereas the remaining E2 resided on compact chromatin accessible to micrococcal nuclease. These data suggest that there are two pools of E2 in the cell nucleus: one that localizes on transcriptionally inactive compact chromatin and the other, which compartmentalizes to transcriptionally active nuclear structures of the cell. Our data also suggest that E2 associates with chromatin through cellular protein(s), which in turn is released from chromatin at 0.4 M salt.
Collapse
Affiliation(s)
- Reet Kurg
- Institute of Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | | | | | |
Collapse
|
26
|
Calderon-Villalobos LIA, Kuhnle C, Dohmann EMN, Li H, Bevan M, Schwechheimer C. The evolutionarily conserved TOUGH protein is required for proper development of Arabidopsis thaliana. THE PLANT CELL 2005; 17:2473-85. [PMID: 16024589 PMCID: PMC1197428 DOI: 10.1105/tpc.105.031302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we characterize the evolutionarily conserved TOUGH (TGH) protein as a novel regulator required for Arabidopsis thaliana development. We initially identified TGH as a yeast two-hybrid system interactor of the transcription initiation factor TATA-box binding protein 2. TGH has apparent orthologs in all eukaryotic model organisms with the exception of the budding yeast Saccharomyces cerevisiae. TGH contains domains with strong similarity to G-patch and SWAP domains, protein domains that are characteristic of RNA binding and processing proteins. Furthermore, TGH colocalizes with the splicing regulator SRp34 to subnuclear particles. We therefore propose that TGH plays a role in RNA binding or processing. Arabidopsis tgh mutants display developmental defects, including reduced plant height, polycotyly, and reduced vascularization. We found TGH expression to be increased in the amp1-1 mutant, which is similar to tgh mutants with respect to polycotyly and defects in vascular development. Interestingly, we observed a strong genetic interaction between TGH and AMP1 in that tgh-1 amp1-1 double mutants are extremely dwarfed and severely affected in plant development in general and vascular development in particular when compared with the single mutants.
Collapse
|
27
|
Thomas MC, Chiang CM. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 2005; 17:251-64. [PMID: 15664194 DOI: 10.1016/j.molcel.2004.12.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Revised: 07/08/2004] [Accepted: 12/15/2004] [Indexed: 02/04/2023]
Abstract
The mechanism employed by DNA tumor viruses to inhibit p53-dependent transcription from chromatin is poorly understood. Here, we use in vitro-reconstituted chromatin and UV-irradiated cells to define the mechanism of human papillomavirus E6 oncoprotein in repressing p53-dependent transcription. We demonstrate that E6 does not prevent p53 or p300 recruitment to the chromatin but inhibits p300-mediated acetylation on p53 and nucleosomal core histones. This suppression of protein acetylation requires the E6-interacting regions of p300. Moreover, E6 mutants unable to interact with p53 or p300, but not deficient in inducing p53 degradation, fail to inhibit p53-mediated activation, indicating that a p53-E6-p300-containing protein complex is critical for repressing p53-targeted gene activation. That E6 acts as a molecular switch converting p53-p300 from an activating complex to a repressing entity on the chromatin, which occurs independently of E6AP-mediated protein degradation pathway, may represent a general mechanism for gene regulation.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
28
|
Ongeri EM, Verderame MF, Hammond JM. Follicle-stimulating hormone induction of ovarian insulin-like growth factor-binding protein-3 transcription requires a TATA box-binding protein and the protein kinase A and phosphatidylinositol-3 kinase pathways. Mol Endocrinol 2005; 19:1837-48. [PMID: 15718291 DOI: 10.1210/me.2004-0487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The current study was done to elucidate the mechanism of the FSH stimulation of IGF-binding protein 3 (IGFBP-3) expression and map the FSH response element on the pig IGFBP-3 promoter. Forskolin induced IGFBP-3 reporter activity in transiently transfected granulosa cells. The protein kinase A (PKA) inhibitor [N-[2-(p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, 2HCl] (and cotransfection with a PKA inhibitor expression vector), the phosphatidylinositol-3 kinase inhibitor [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], and the ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene], all blocked FSH stimulation. Use of serial deletion constructs and site-directed mutagenesis show that a TATA box-binding protein site is required for FSH stimulation and that a specific protein 1 (Sp1) site is required for basal transcription. Gel shift assays of nuclear protein with a -61/-25 probe detected four protein-DNA complexes, with bands I and II having significantly higher intensities in FSH-treated cells than in controls. Mutation of the Sp1 site prevented formation of bands I and II whereas mutation of the TATA box-binding protein site prevented formation of band IV. Use of specific antibodies showed that Sp1 participates in formation of band I, Sp3 band II, and p300 in both I and II. Band III was nonspecifically competed out. We conclude that FSH stimulation of IGFBP-3 transcription is mediated by cAMP via the PKA pathway and requires the P1-3 kinase and likely the MAPK pathways.
Collapse
Affiliation(s)
- Elimelda Moige Ongeri
- Pennsylvania State University, College of Medicine, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
29
|
Carrillo E, Garrido E, Gariglio P. Specific in vitro interaction between papillomavirus E2 proteins and TBP-associated factors. Intervirology 2005; 47:342-9. [PMID: 15564746 DOI: 10.1159/000080878] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 01/08/2004] [Indexed: 11/19/2022] Open
Abstract
The bovine and human papillomavirus (BPV/HPV) E2 proteins bind specifically to palindromic sequences ACCGN4CGGT that are concentrated within the viral long control region, where they regulate viral oncogene transcription. E2 can activate viral promoters over relatively large distances within the viral genome and was shown to cooperate with a number of cellular transcription factors. Transcriptional activator proteins, such as E2, are thought to act, at least in part, by influencing the assembly and/or stability of preinitiation complexes and it has been suggested that the transcription factor IID, composed by the TATA-binding protein (TBP) and numerous TBP-associated factors (TAFs), is a possible target of this important viral protein. In this paper, we demonstrate that E2 proteins associate in vitro with several TAFs, in particular with TAFII250 and TAFII80. In addition, we observed that the association of TAFII250 with BPV1 E2 is stronger than with HPV18 E2 and that the carboxy terminal domain of both viral proteins is involved in this interaction. On the other hand, TAFII80 binds with similar strength to both E2 proteins through their amino terminal region. These observations may help to explain the different behavior of bovine and human E2 proteins, since BPV E2 is a stronger transcriptional activator than HPV18 E2.
Collapse
Affiliation(s)
- Elba Carrillo
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, DF, México
| | | | | |
Collapse
|
30
|
Hori RT, Xu S, Hu X, Pyo S. TFIIB-facilitated recruitment of preinitiation complexes by a TAF-independent mechanism. Nucleic Acids Res 2004; 32:3856-63. [PMID: 15272087 PMCID: PMC506799 DOI: 10.1093/nar/gkh711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene activators contain activation domains that are thought to recruit limiting components of the transcription machinery to a core promoter. VP16, a viral gene activator, has served as a model for studying the mechanistic aspects of transcriptional activation from yeast to human. The VP16 activation domain can be divided into two modules--an N-terminal subdomain (VPN) and a C-terminal subdomain (VPC). This study demonstrates that VPC stimulates core promoters that are either independent or dependent on TAFs (TATA-box Binding Protein-Associated Factors). In contrast, VPN only activates the TAF-independent core promoter and this activity increases in a synergistic fashion when VPN is dimerized (VPN2). Compared to one copy of VPN (VPN1), VPN2 also displays a highly cooperative increase in binding hTFIIB. The increased TFIIB binding correlates with VPN2's increased ability to recruit a complex containing TFIID, TFIIA and TFIIB. However, VPN1 and VPN2 do not increase the assembly of a complex containing only TFIID and TFIIA. The VPN subdomain also facilitates assembly of a complex containing TBP:TFIIA:TFIIB, which lacks TAFs, and provides a mechanism that could function at TAF-independent promoters. Taken together, these results suggest the interaction between VPN and TFIIB potentially initiate a network of contacts allowing the activator to indirectly tether TFIID or TBP to DNA.
Collapse
Affiliation(s)
- Roderick T Hori
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
31
|
Millership JJ, Waghela P, Cai X, Cockerham A, Zhu G. Differential expression and interaction of transcription co-activator MBF1 with TATA-binding protein (TBP) in the apicomplexan Cryptosporidium parvum. MICROBIOLOGY-SGM 2004; 150:1207-1213. [PMID: 15133082 DOI: 10.1099/mic.0.26891-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
All gene-specific transcriptional activators initiate gene transcriptions by binding to promoter sequences and recruiting general transcription factors including TATA-binding protein (TBP) to upstream of targeted genes. Some of them require multiprotein bridging factors (MBFs); for example, the type 1 MBF (MBF1) which interconnects the gene activator with TBP. In this study, the properties of a previously cloned type 1 multiprotein bridging factor (CpMBF1) and a newly identified TBP (CpTBP1) from the apicomplexan Cryptosporidium parvum were investigated. Genes encoding both proteins were differentially expressed as determined by semi-quantitative RT-PCRs during the parasite life cycle, but in different patterns. The highest level of expression of CpMBF1 was in the well-developed intracellular parasites, whereas that of CpTBP1 was found in intact oocysts and late intracellular stages, possibly correlated with the formation of oocysts. Both CpMBF1 and CpTBP1 were expressed as maltose-binding protein fusion proteins. The function of CpTBP1 was confirmed by its ability to bind a biotinylated DNA oligonucleotide containing TATA consensus sequence. The interaction between CpMBF1 and CpTBP1 was also observed by an electrophoretic mobility shift assay. Since little is known about the regulation and control of gene activity in C. parvum, this study may point to a new direction for the study of gene activation associated with the development of the complex life cycle of this parasite.
Collapse
Affiliation(s)
- Jason J Millership
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Palvi Waghela
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Amy Cockerham
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Guan Zhu
- Faculty of Genetics Program, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| |
Collapse
|
32
|
Abroi A, Ilves I, Kivi S, Ustav M. Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein. J Virol 2004; 78:2100-13. [PMID: 14747575 PMCID: PMC369436 DOI: 10.1128/jvi.78.4.2100-2113.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 11/03/2003] [Indexed: 12/14/2022] Open
Abstract
Recent studies have suggested that the tethering of viral genomes to host cell chromosomes could provide one of the ways to achieve their nuclear retention and partitioning during extrachromosomal maintenance in dividing cells. The data we present here provide firm evidence that the partitioning of the bovine papillomavirus type 1 (BPV1) genome is dependent on the chromatin attachment process mediated by viral E2 protein and its multiple binding sites. On the other hand, the attachment of E2 and the E2-mediated tethering of reporter plasmids to host chromosomes are not necessarily sufficient for efficient partitioning, suggesting that additional E2-dependent activities might be involved in the latter process. The activity of E2 protein in chromatin attachment and partitioning is more sensitive to the point mutations in the N-terminal domain than its transactivation and replication initiation functions. Therefore, at least part of the interactions of the E2 N-terminal domain with its targets during the chromatin attachment and partitioning processes are likely to involve specific receptors not involved in transactivation and replication activities of the protein. The mutational analysis also indicates that the binding of E2 to chromatin is not achieved through interaction of linear N-terminal subsequences of the E2 protein with putative receptors. Instead, the composite surface elements of the N-terminal domain build up the receptor-binding surface of E2. In this regard, the interaction of BPV1 E2 with its chromosomal targets clearly differs from the interactions of LANA1 protein from Kaposi's sarcoma-associated human herpesvirus and EBNA1 from Epstein-Barr virus with their specific receptors.
Collapse
Affiliation(s)
- Aare Abroi
- Estonian Biocentre, University of Tartu, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
33
|
Wu SY, Zhou T, Chiang CM. Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 2003; 23:6229-42. [PMID: 12917344 PMCID: PMC180944 DOI: 10.1128/mcb.23.17.6229-6242.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 05/29/2003] [Indexed: 12/30/2022] Open
Abstract
Mediator is a general cofactor implicated in the functions of many transcriptional activators. Although Mediator with different protein compositions has been isolated, it remains unclear how Mediator facilitates activator-dependent transcription, independent of its general stimulation of basal transcription. To define the mechanisms of Mediator function, we isolated two forms of human Mediator complexes (Mediator-P.5 and Mediator-P.85) and demonstrated that Mediator-P.5 clearly functions by enhancing activator-mediated recruitment of RNA polymerase II (pol II), whereas Mediator-P.85 works mainly by stimulating overall basal transcription. The coactivator function of Mediator-P.5 was not impaired when TATA-binding protein (TBP) was used in place of TFIID, but it was abolished when another general cofactor, PC4, was omitted from the reaction or when Mediator-P.5 was added after pol II entry into the preinitiation complex. Moreover, Mediator- P.5 is able to enhance TBP binding to the TATA box in an activator-dependent manner. Our data provides biochemical evidence that Mediator functions by facilitating activator-mediated recruitment of pol II and also promoter recognition by TBP, both of which can occur in the absence of TBP-associated factors in TFIID.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
34
|
Kobayashi A, Miyake T, Kawaichi M, Kokubo T. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 2003; 31:1261-74. [PMID: 12582246 PMCID: PMC150217 DOI: 10.1093/nar/gkg180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-DeltaTAND) and identified two DeltaTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-DeltaTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-DeltaTAND mutant by different mechanisms.
Collapse
Affiliation(s)
- Akiko Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
35
|
Hou SY, Wu SY, Chiang CM. Transcriptional activity among high and low risk human papillomavirus E2 proteins correlates with E2 DNA binding. J Biol Chem 2002; 277:45619-29. [PMID: 12239214 DOI: 10.1074/jbc.m206829200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The full-length E2 protein, encoded by human papillomaviruses (HPVs), is a sequence-specific transcription factor found in all HPVs, including cancer-causing high risk HPV types 16 and 18 and wart-inducing low risk HPV types 6 and 11. To investigate whether E2 proteins encoded by high risk HPVs may function differentially from E2 proteins encoded by low risk HPVs and animal papillomaviruses, we conducted comparative DNA-binding and transcription studies using electrophoretic mobility shift assays and cell-free transcription systems reconstituted with purified general transcription factors, cofactor, RNA polymerase II, and with E2 proteins encoded by HPV-16, HPV-18, HPV-11, and bovine papillomavirus type 1 (BPV-1). We found that although different types of E2 proteins all exhibited transactivation and repression activities, depending on the sequence context of the E2-binding sites, HPV-16 E2 shows stronger transcription activity and greater DNA-binding affinity than those displayed by the other E2 proteins. Surprisingly, HPV-18 E2 behaves more similarly to BPV-1 E2 than HPV-16 E2 in its functional properties. Our studies thus categorize HPV-18 E2 and BPV-1 E2 in the same protein family, a finding consistent with the available E2 structural data that separate the closely related HPV-16 and HPV-18 E2 proteins but classify together the more divergent BPV-1 and HPV-18 E2 proteins.
Collapse
Affiliation(s)
- Samuel Y Hou
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | |
Collapse
|
36
|
Sanders SL, Garbett KA, Weil PA. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 2002; 22:6000-13. [PMID: 12138208 PMCID: PMC133964 DOI: 10.1128/mcb.22.16.6000-6013.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Revised: 02/27/2002] [Accepted: 05/21/2002] [Indexed: 11/20/2022] Open
Abstract
We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.
Collapse
Affiliation(s)
- Steven L Sanders
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
37
|
Abstract
Coactivators are diverse and multifunctional proteins that act downstream of DNA-binding activators to stimulate transcription. Recent studies elucidate the temporal sequence in which coactivators are recruited to target promoters, and how their enzymatic properties and molecular interactions culminate in transcriptional initiation.
Collapse
Affiliation(s)
- Mark Featherstone
- McGill Cancer Centre, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
38
|
Ferguson HA, Kugel JF, Goodrich JA. Kinetic and mechanistic analysis of the RNA polymerase II transcrption reaction at the human interleukin-2 promoter. J Mol Biol 2001; 314:993-1006. [PMID: 11743717 DOI: 10.1006/jmbi.2000.5215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-2 (IL-2) is a cytokine critical for the proper stimulation of T-cells during the mammalian immune response. Shortly after T-cell stimulation, transcription of the IL-2 gene is upregulated. Here, we studied the kinetic mechanism of basal transcription at the IL-2 promoter using a human in vitro RNA polymerase II transcription system. We experimentally divided the transcription reaction into discrete steps, including preinitiation complex formation, initiation, escape commitment, and promoter escape. Using pre-steady state approaches, we measured the rate at which each of these steps occurs. We found that the rate of functional preinitiation complex formation limits the overall rate of transcription at the IL-2 promoter under the conditions described here. Furthermore, we found that the recruitment of TFIIF and RNA polymerase II to a TFIID/TFIIA/TFIIB/promoter complex dictates the rate of preinitiation complex formation. The rate of synthesis of 28 nt RNA from preinitiation complexes was rapid compared to the rate of preinitiation complex formation. Moreover, we found that the synthesis of a four nucleotide RNA was necessary and sufficient to rapidly complete the escape commitment step of transcription at the IL-2 promoter. Comparative experiments with the adenovirus major late promoter revealed that, while the overall mechanism of transcription is the same at the two promoters, promoter sequence and/or architecture dictate the rate of promoter escape. We present a kinetic model for a single round of basal transcription at the IL-2 promoter that provides insight into mechanisms by which the IL-2 gene is transcriptionally regulated.
Collapse
Affiliation(s)
- H A Ferguson
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO.80309-0215, USA
| | | | | |
Collapse
|