1
|
Plitnik T, Sharkey ME, Mahboubi B, Kim B, Stevenson M. Incomplete Suppression of HIV-1 by SAMHD1 Permits Efficient Macrophage Infection. Pathog Immun 2018; 3:197-223. [PMID: 30656243 PMCID: PMC6333473 DOI: 10.20411/pai.v3i2.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Sterile alpha motif and histidine/aspartic acid domain-containing protein (SAMHD1) is a dNTP triphosphorylase that reduces cellular dNTP levels in non-dividing cells, such as macrophages. Since dNTPs are required for reverse transcription, HIV-2 and most SIVs encode a Vpx protein that promotes proteasomal degradation of SAMHD1. It is unclear how HIV-1, which does not appear to harbor a SAMHD1 escape mechanism, is able to infect macrophages in the face of SAMHD1 restriction. Methods: To assess whether HIV-1 had a mechanism to negate SAMHD1 activity, we compared SAMHD1 and dNTP levels in macrophages infected by HIV-1 and SIV. We examined whether macrophages infected by HIV-1 still harbored antiviral levels of SAMHD1 by assessing their susceptibility to superinfection by vpx-deleted SIV. Finally, to assess whether HIV-1 reverse transcriptase (RT) has adapted to a low dNTP environment, we evaluated SAMHD1 sensitivity of chimeric HIV-1 and SIV variants in which the RT regions were functionally exchanged. Results: Here, we demonstrate that HIV-1 efficiently infects macrophages without modulating SAMHD1 activity or cellular dNTP levels, and that macrophages permissive to HIV-1 infection remained refractory to superinfection by vpx-deleted SIV. Furthermore, through the use of chimeric HIV/SIV, we demonstrate that the differential sensitivity of HIV-1 and SIV to SAMHD1 restriction is not dictated by RT. Conclusions: Our study reveals fundamental differences between HIV-1 and SIV in the strategy used to evade restriction by SAMHD1 and suggests a degree of resistance of HIV-1 to the antiviral environment created by SAMHD1. Understanding how these cellular restrictions antagonize viral replication will be important for the design of novel antiviral strategies.
Collapse
Affiliation(s)
- Timothy Plitnik
- Department of Microbiology & Immunology; Miller School of Medicine, University of Miami; Miami, Florida
| | - Mark E Sharkey
- Department of Medicine; Miller School of Medicine, University of Miami; Miami, Florida
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University; Atlanta, Georgia.,Center for Drug Discovery, Children's Healthcare of Atlanta; Atlanta, Georgia
| | - Baek Kim
- Department of Pediatrics, Emory University; Atlanta, Georgia.,Center for Drug Discovery, Children's Healthcare of Atlanta; Atlanta, Georgia.,Department of Pharmacy, Kyung-Hee University; Seoul; South Korea
| | - Mario Stevenson
- Department of Microbiology & Immunology; Miller School of Medicine, University of Miami; Miami, Florida.,Department of Medicine; Miller School of Medicine, University of Miami; Miami, Florida
| |
Collapse
|
2
|
Lloyd SB, Lichtfuss M, Amarasena TH, Alcantara S, De Rose R, Tachedjian G, Alinejad-Rokny H, Venturi V, Davenport MP, Winnall WR, Kent SJ. High fidelity simian immunodeficiency virus reverse transcriptase mutants have impaired replication in vitro and in vivo. Virology 2016; 492:1-10. [PMID: 26896929 DOI: 10.1016/j.virol.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/15/2022]
Abstract
The low fidelity of HIV replication facilitates immune and drug escape. Some reverse transcriptase (RT) inhibitor drug-resistance mutations increase RT fidelity in biochemical assays but their effect during viral replication is unclear. We investigated the effect of RT mutations K65R, Q151N and V148I on SIV replication and fidelity in vitro, along with SIV replication in pigtailed macaques. SIVmac239-K65R and SIVmac239-V148I viruses had reduced replication capacity compared to wild-type SIVmac239. Direct virus competition assays demonstrated a rank order of wild-type>K65R>V148I mutants in terms of viral fitness. In single round in vitro-replication assays, SIVmac239-K65R demonstrated significantly higher fidelity than wild-type, and rapidly reverted to wild-type following infection of macaques. In contrast, SIVmac239-Q151N was replication incompetent in vitro and in pigtailed macaques. Thus, we showed that RT mutants, and specifically the common K65R drug-resistance mutation, had impaired replication capacity and higher fidelity. These results have implications for the pathogenesis of drug-resistant HIV.
Collapse
Affiliation(s)
- Sarah B Lloyd
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Marit Lichtfuss
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Gilda Tachedjian
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | | | - Vanessa Venturi
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wendy R Winnall
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Hollenbaugh JA, Schader SM, Schinazi RF, Kim B. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells. Virology 2015; 485:313-21. [PMID: 26319213 PMCID: PMC4619155 DOI: 10.1016/j.virol.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 01/05/2023]
Abstract
Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Susan M Schader
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
4
|
Lenzi GM, Domaoal RA, Kim DH, Schinazi RF, Kim B. Mechanistic and Kinetic Differences between Reverse Transcriptases of Vpx Coding and Non-coding Lentiviruses. J Biol Chem 2015; 290:30078-86. [PMID: 26483545 PMCID: PMC4705996 DOI: 10.1074/jbc.m115.691576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 11/06/2022] Open
Abstract
Among lentiviruses, HIV Type 2 (HIV-2) and many simian immunodeficiency virus (SIV) strains replicate rapidly in non-dividing macrophages, whereas HIV Type 1 (HIV-1) replication in this cell type is kinetically delayed. The efficient replication capability of HIV-2/SIV in non-dividing cells is induced by a unique, virally encoded accessory protein, Vpx, which proteasomally degrades the host antiviral restriction factor, SAM domain- and HD domain-containing protein 1 (SAMHD1). SAMHD1 is a dNTPase and kinetically suppresses the reverse transcription step of HIV-1 in macrophages by hydrolyzing and depleting cellular dNTPs. In contrast, Vpx, which is encoded by HIV-2/SIV, kinetically accelerates reverse transcription by counteracting SAMHD1 and then elevating cellular dNTP concentration in non-dividing cells. Here, we conducted the pre-steady-state kinetic analysis of reverse transcriptases (RTs) from two Vpx non-coding and two Vpx coding lentiviruses. At all three sites of the template tested, the two RTs of the Vpx non-coding viruses (HIV-1) displayed higher kpol values than the RTs of the Vpx coding HIV-2/SIV, whereas there was no significant difference in the Kd values of these two groups of RTs. When we employed viral RNA templates that induce RT pausing by their secondary structures, the HIV-1 RTs showed more efficient DNA synthesis through pause sites than the HIV-2/SIV RTs, particularly at low dNTP concentrations found in macrophages. This kinetic study suggests that RTs of the Vpx non-coding HIV-1 may have evolved to execute a faster kpol step, which includes the conformational changes and incorporation chemistry, to counteract the limited dNTP concentration found in non-dividing cells and still promote efficient viral reverse transcription.
Collapse
Affiliation(s)
- Gina M Lenzi
- From the Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Robert A Domaoal
- From the Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dong-Hyun Kim
- the College of Pharmacy, Kyung-Hee University, Seoul 02447, South Korea
| | - Raymond F Schinazi
- From the Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, the Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Baek Kim
- From the Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, the College of Pharmacy, Kyung-Hee University, Seoul 02447, South Korea,
| |
Collapse
|
5
|
Kennedy EM, Daddacha W, Slater R, Gavegnano C, Fromentin E, Schinazi RF, Kim B. Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase. J Biol Chem 2011; 286:25047-55. [PMID: 21454906 PMCID: PMC3137078 DOI: 10.1074/jbc.m111.234047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/29/2011] [Indexed: 01/21/2023] Open
Abstract
Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20-40 nm), compared with activated CD4(+) T cells (2-5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2',3'-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.
Collapse
Affiliation(s)
- Edward M. Kennedy
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Waaqo Daddacha
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Rebecca Slater
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| | - Christina Gavegnano
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Emilie Fromentin
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Raymond F. Schinazi
- the Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Decatur, Georgia 30033
| | - Baek Kim
- From the Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
6
|
Skasko M, Diamond TL, Kim B. Mechanistic variations among reverse transcriptases of simian immunodeficiency virus variants isolated from African green monkeys. Biochemistry 2009; 48:5389-95. [PMID: 19408961 DOI: 10.1021/bi900346m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report enzymatic variations among the reverse transcriptases (RTs) of five simian immunodeficiency virus (SIV) strains, Sab-1, 155-4, Gri-1, 9063-2, and Tan-1, which were isolated from four different species of naturally infected African green monkeys living in different regions across Africa. First, Sab-1 RT exhibits the most efficient dNTP incorporation efficiency at low dNTP concentrations, whereas the other four SIVagm RT proteins display different levels of reduced polymerase activity at low dNTP concentrations. Tan-1 RT exhibited the most restricted dNTP incorporation efficiency. Indeed, the pre-steady state analysis revealed that Sab-1 RT displays tight dNTP binding affinity (K(d) approximately 1-5 microM), comparable to values observed for NL4-3 and HXB2 HIV-1 RTs, whereas the dNTP binding affinity of Tan-1 RT is 6.2, approximately 34.8-fold lower than that of Sab-1 RT. Second, Tan-1 RT fidelity was significantly higher than that of Sab-1 RT. Indeed, Tan-1 RT enzymatically mimics oncoretroviral murine leukemia virus RT which is characterized by its low dNTP binding affinity and high fidelity. This study reports that simultaneous changes in dNTP binding affinity and fidelity of RTs appear to occur among natural SIV variants isolated from African green monkeys.
Collapse
Affiliation(s)
- Mark Skasko
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, New York 14642, USA
| | | | | |
Collapse
|
7
|
Kijak GH, Janini LM, Tovanabutra S, Sanders-Buell E, Arroyo MA, Robb ML, Michael NL, Birx DL, McCutchan FE. Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology 2008; 376:101-11. [PMID: 18436274 DOI: 10.1016/j.virol.2008.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/20/2008] [Accepted: 03/08/2008] [Indexed: 01/06/2023]
Abstract
APOBEC-mediated cytidine deamination of HIV-1 genomes during reverse transcription has been shown to be a potent mechanism of host restriction for HIV-1 infection ex vivo and in vitro. However, this defense system can be overcome by the viral protein Vif. Unlike other mechanisms of host restriction, the APOCEC-Vif interaction leaves an imprint on integrated proviruses in the form of G-->A hypermutation. In the current work we systematically studied levels, contexts, and patterns of HIV-1 hypermutation in vivo. The analysis of 24 full-genome HIV-1 sequences retrieved from primary PBMCs, representing infections with several HIV-1 clades, and the inclusion of 7 cognate pairs of hypermutated/non-hypermutated sequences derived from the same patient sample, provided a comprehensive view of the characteristics of APOBEC-mediated restriction in vivo. Levels of hypermutation varied nearly 5-fold among the studied proviruses. GpG motifs were most frequently affected (22/24 proviruses). Levels of hypermutation varied across the genome. The reported "twin peak" pattern of hypermutation was observed in 18/24 hypermutants, but the remainder exhibited singular non-conforming patterns. These data suggest considerable complexity in the interplay of host restriction and viral defense during HIV-1 infection.
Collapse
Affiliation(s)
- Gustavo H Kijak
- Henry M. Jackson Foundation for the Advancement of Military Medicine/US Military HIV Research Program, 1600 East Gude Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biesinger T, Yu Kimata MT, Kimata JT. Changes in simian immunodeficiency virus reverse transcriptase alleles that appear during infection of macaques enhance infectivity and replication in CD4+ T cells. Virology 2007; 370:184-93. [PMID: 17904609 PMCID: PMC2196132 DOI: 10.1016/j.virol.2007.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/02/2007] [Accepted: 08/12/2007] [Indexed: 11/15/2022]
Abstract
We previously showed that a slowly replicating, minimally pathogenic clone of simian immunodeficiency virus (SIV), SIVmneCl8, evolves increased ability to replicate in T cells with the onset of AIDS in pig-tailed macaques. Moreover, molecular clones derived from late stages of infection (SIVmne170 and SIVmne027) replicate to high levels in vivo compared to SIVmneCl8. Here, we investigated the role of rt mutations in SIVmne variant replication. We demonstrate selection for rt alleles that enhance viral infectivity and replication capacity in CD4(+) T cells. Moreover, the ability of SIVmne to be induced from resting CD4(+) T cells by anti-CD3/CD28 stimulation is more strongly influenced by the variant rt alleles than nef alleles. Taken together, our data underscore the importance of RT determinants for pathogenicity of SIV and for the capacity to replicate in CD4(+) T cell populations.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- *Corresponding Author Department of Molecular Virology and Microbiology, BCM385, Room 811D, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA, Tel: 713-798-4536, FAX: 713-798-4435,
| |
Collapse
|
9
|
Renoux C, Wain-Hobson S, Hurtrel B, Cheynier R. Antigenic stimulation specifically reactivates the replication of archived simian immunodeficiency virus genomes in chronically infected macaques. J Virol 2005; 79:11231-8. [PMID: 16103175 PMCID: PMC1193569 DOI: 10.1128/jvi.79.17.11231-11238.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus/simian immunodeficiency virus (SIV) diversification is a direct consequence of viral replication and occurs principally in secondary lymphoid organs where CD4(+) T cells are activated and proliferate. However, the evolution of viral quasispecies may also be driven by various nonexclusive mechanisms, including adaptation to specific immune responses and modification of viral fitness. Analysis of viral quasispecies in SIV-infected macaques subjected to repeated antigenic stimulations allowed us to demonstrate transient expansions of SIV populations that were highly dependent upon activation of antigen-specific T cells. T-cell clones expanded in response to a particular antigen were infected by a specific viral population and persisted for prolonged periods. Upon a second stimulation by encounter with the same antigen, these specific genomes were at the origin of a new burst of replication, leading to rapid but transient replacement of the viral quasispecies in blood. Finally, longitudinal analysis of SIV sequence variation during and between antigenic stimulations revealed that viral evolution is mostly constrained to periods of strong immunological activity.
Collapse
Affiliation(s)
- Céline Renoux
- Unité de Rétrovirologie Moléculaire, Unité de Recherche et d'Expertise Physiopathologue des Infections Lentivirales, Paris, France
| | | | | | | |
Collapse
|
10
|
Operario DJ, Reynolds HM, Kim B. Comparison of DNA polymerase activities between recombinant feline immunodeficiency and leukemia virus reverse transcriptases. Virology 2005; 335:106-21. [PMID: 15823610 DOI: 10.1016/j.virol.2005.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 12/22/2004] [Accepted: 02/11/2005] [Indexed: 11/29/2022]
Abstract
In this study, we present enzymatic differences found between recombinant RTs derived from feline leukemia virus and feline immunodeficiency virus. Firstly, FIV RT showed low steady state K(m) values for dNTPs compared to FeLV RT. Consistent with this, FIV RT synthesized DNA more efficiently than FeLV RT at low dNTP concentrations. We observed similar concentration-dependent activity differences between other lentiviral (HIV-1 and SIV) and non-lentiviral (MuLV and AMV) RTs. Second, FeLV RT showed less efficient misincorporation with biased dNTP pools and mismatch primer extension capabilities, compared to FIV RT. In M13mp2 lacZalpha forward mutation assays, FeLV RT displayed approximately 11-fold higher fidelity than FIV RT. Finally, FeLV RT was less sensitive to 3TCTP and ddATP than FIV RT. This study represents the comprehensive enzymatic characterization of RTs from a lentivirus and a non-lentivirus retrovirus from the same host species. The data presented here support enzymatic divergences seen among retroviral RTs.
Collapse
Affiliation(s)
- Darwin J Operario
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA
| | | | | |
Collapse
|
11
|
Skasko M, Weiss KK, Reynolds HM, Jamburuthugoda V, Lee K, Kim B. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J Biol Chem 2005; 280:12190-200. [PMID: 15644314 PMCID: PMC1752212 DOI: 10.1074/jbc.m412859200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We compared the mechanistic and kinetic properties of murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1) reverse transcriptases (RTs) during RNA-dependent DNA polymerization and mutation synthesis using pre-steady-state kinetic analysis. First, MuLV RT showed 6.5-121.6-fold lower binding affinity (K(d)) to deoxynucleotide triphosphate (dNTP) substrates than HIV-1 RT, although the two RTs have similar incorporation rates (k(pol)). Second, compared with HIV-1 RT, MuLV RT showed dramatic reduction during multiple dNTP incorporations at low dNTP concentrations. Presumably, due to its low dNTP binding affinity, the dNTP binding step becomes rate-limiting in the multiple rounds of the dNTP incorporation by MuLV RT, especially at low dNTP concentrations. Third, similar fold differences between MuLV and HIV-1 RTs in the K(d) and k(pol) values to correct and incorrect dNTPs were observed. This indicates that these two RT proteins have similar misinsertion fidelities. Fourth, these two RT proteins have different mechanistic capabilities regarding mismatch extension. MuLV RT has a 3.1-fold lower mismatch extension fidelity, compared with HIV-1 RT. Finally, MuLV RT has a 3.8-fold lower binding affinity to mismatched template/primer (T/P) substrate compared with HIV-1 RT. Our data suggest that the active site of MuLV RT has an intrinsically low dNTP binding affinity, compared with HIV-1 RT. In addition, instead of the misinsertion step, the mismatch extension step, which varies between MuLV and HIV-1 RTs, contributes to their fidelity differences. The implications of these kinetic differences between MuLV and HIV-1 RTs on viral cell type specificity and mutagenesis are discussed.
Collapse
Affiliation(s)
- Mark Skasko
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
12
|
Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 2004; 279:51545-53. [PMID: 15452123 PMCID: PMC1351161 DOI: 10.1074/jbc.m408573200] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses utilize cellular dNTPs to perform proviral DNA synthesis in infected host cells. Unlike oncoretroviruses, which replicate in dividing cells, lentiviruses, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus, are capable of efficiently replicating in non-dividing cells (terminally differentiated macrophages) as well as dividing cells (i.e. activated CD4+ T cells). In general, non-dividing cells are likely to have low cellular dNTP content compared with dividing cells. Here, by employing a novel assay for cellular dNTP content, we determined the dNTP concentrations in two HIV-1 target cells, macrophages and activated CD4+ T cells. We found that human macrophages contained 130-250-fold lower dNTP concentrations than activated human CD4+ T cells. Biochemical analysis revealed that, unlike oncoretroviral reverse transcriptases (RTs), lentiviral RTs efficiently synthesize DNA even in the presence of the low dNTP concentrations equivalent to those found in macrophages. In keeping with this observation, HIV-1 vectors containing mutant HIV-1 RTs, which kinetically mimic oncoretroviral RTs, failed to transduce human macrophages despite retaining normal infectivity for activated CD4+ T cells and other dividing cells. These results suggest that the ability of HIV-1 to infect macrophages, which is essential to establishing the early pathogenesis of HIV-1 infection, depends, at least in part, on enzymatic adaptation of HIV-1 RT to efficiently catalyze DNA synthesis in limited cellular dNTP substrate environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Kwi Y. Lee
- Department of Microbiology and Immunology
| | | | - Robert A. Bambara
- Department of Biochemistry and Biophysics, and
- Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue Box 672, Rochester, New York 14642
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, 30 N. 1900 East, SOM C210, Salt Lake City, UT 84132
| | - Stephen Dewhurst
- Department of Microbiology and Immunology
- Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue Box 672, Rochester, New York 14642
| | - Baek Kim
- Department of Microbiology and Immunology
- *Corresponding author Baek Kim, Ph.D., Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue Box 672, Rochester, NY 14642, Tel: (585) 275-6916, Fax: (585) 473-9573,
| |
Collapse
|
13
|
Diamond TL, Souroullas G, Weiss KK, Lee KY, Bambara RA, Dewhurst S, Kim B. Mechanistic understanding of an altered fidelity simian immunodeficiency virus reverse transcriptase mutation, V148I, identified in a pig-tailed macaque. J Biol Chem 2003; 278:29913-24. [PMID: 12740369 DOI: 10.1074/jbc.m211754200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that the reverse transcriptase (RT) of SIVMNE 170 (170), which is a representative viral clone of the late symptomatic phase of infection with the parental strain, SIVMNE CL8 (CL8), has a largely increased fidelity, compared with the CL8 RT. In the present study, we analyzed the mechanistic alterations of the high fidelity 170 RT variant. First, we found that among several 170 RT mutations, only one, V148I, is solely responsible for the fidelity increase over the CL8 RT. This V148I mutation lies near the Gln-151 residue that we recently found is important to the low fidelity of RT and the binding of incoming dNTPs. Second, we compared dNTP binding affinity (Kd) and catalysis (kpol) of the CL8 RT and the CL8-V148I RT using pre-steady state kinetic analysis. In this experiment, the high fidelity CL8-V148I RT has largely decreased binding to both correct and incorrect dNTP without altering kpol. The fidelity increase imparted by the V148I mutation is likely because of the major reduction seen in RT binding to dNTPs. This parallels our findings with the Q151N mutant. Third, site-directed mutagenesis targeting amino acid residue 148 has revealed that a valine amino acid at this position is essential to RT infidelity. Based on these findings, we discuss possible structural impacts of residue 148 (and mutations at this site) on the interaction of RT with incoming dNTPs and infer how alterations in these properties may relate to viral replication and fitness.
Collapse
Affiliation(s)
- Tracy L Diamond
- Department of Microbiology and Immunology, University of Rochester, New York, 14642, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mansky LM, Le Rouzic E, Benichou S, Gajary LC. Influence of reverse transcriptase variants, drugs, and Vpr on human immunodeficiency virus type 1 mutant frequencies. J Virol 2003; 77:2071-80. [PMID: 12525642 PMCID: PMC140916 DOI: 10.1128/jvi.77.3.2071-2080.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of drug resistance is a major complication of human immunodeficiency virus type 1 (HIV-1) chemotherapy. HIV-1 reverse transcriptase (RT) is a major target of antiretroviral therapy and ultimately the target of drug resistance mutations. Previous studies have indicated that drug-resistant HIV-1 RTs can alter HIV-1 mutant frequencies. In this study, we have tested a panel of HIV-1 RT variants for their ability to influence virus mutant frequencies. The RT variants tested included drug-resistant RT variants as well as other variants analyzed in enzyme fidelity studies with the lacZalpha gene as a mutation target and/or implicated as being important for enzyme fidelity by structural studies. Combinations of mutations that alone had a statistically significant influence on virus mutant frequencies resulted in different mutant frequency phenotypes. Furthermore, when virus replication occurred in the presence of drugs [e.g., 3'-azido-3'-deoxythymidine, (-)2/,3'-dideoxy-3'-thiacytidine, hydroxyurea, thymidine, or thioguanine] with selected RT variants, virus mutant frequencies increased. Similarly, Vpr variants deficient for binding to the uracil DNA glycosylase repair enzyme were observed to influence HIV-1 virus mutant frequencies when tested alone or in combination with RT variants. In summary, these observations indicate that HIV-1 mutant frequencies can significantly change by single amino acid substitutions in RT and that these effects can be altered by additional mutations in RT, by drugs, and/or by expression of Vpr variants. Such altered virus mutant frequencies could impact HIV-1 dynamics and evolution in small population sizes.
Collapse
Affiliation(s)
- Louis M Mansky
- Department of Molecular Virology, Immunology, and Medical Genetics, Center for Retrovirus Research, Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
15
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
16
|
Patel PG, Yu Kimata MT, Biggins JE, Wilson JM, Kimata JT. Highly pathogenic simian immunodeficiency virus mne variants that emerge during the course of infection evolve enhanced infectivity and the ability to downregulate CD4 but not class I major histocompatibility complex antigens. J Virol 2002; 76:6425-34. [PMID: 12050354 PMCID: PMC136284 DOI: 10.1128/jvi.76.13.6425-6434.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replicative, cytopathic, and antigenic properties of simian immunodeficiency virus (SIV) variants influence its replication efficiency in vivo. To further define the viral properties and determinants that may be important for high-level replication in vivo and progression to AIDS, we compared a minimally pathogenic SIVmne molecular clone with two highly pathogenic variants cloned from late stages of infection. Both variants had evolved greater infectivity than the parental clone due to mutations in nef. Interestingly, a pol determinant in one of the highly pathogenic variants also contributed to its increased infectivity. Furthermore, because replication in vivo may also be influenced by the ability of a virus to evade the cellular immune response of the host, we examined whether the variants were more capable of downregulating surface expression of class I major histocompatibility complex (MHC). Decreased MHC class I expression was not observed in cells infected with any of the viruses. Furthermore, the Nef proteins of the highly pathogenic variants only slightly reduced surface MHC class I expression in transfected cells, although they efficiently downregulated CD4. Together, these data demonstrate that mutations which can enhance viral infectivity, as well as CD4 downregulation, may be important for efficient replication of SIV in the host. However, Nef-mediated reduction of MHC class I expression does not appear to be critical for the increased in vivo replicative ability of highly pathogenic late variants.
Collapse
Affiliation(s)
- Parul G Patel
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 NW Loop 410 @ Military Drive, San Antonio, TX 78227, USA
| | | | | | | | | |
Collapse
|
17
|
Weiss KK, Bambara RA, Kim B. Mechanistic role of residue Gln151 in error prone DNA synthesis by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). Pre-steady state kinetic study of the Q151N HIV-1 RT mutant with increased fidelity. J Biol Chem 2002; 277:22662-9. [PMID: 11927582 DOI: 10.1074/jbc.m200202200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that mutations in the Gln(151) residue of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) greatly enhance RT fidelity. In this study, we employed pre-steady state kinetic assays to elucidate the mechanistic role of residue Gln(151) in highly error prone DNA synthesis by HIV-1 RT. Using our Q151N high fidelity mutant, which is structurally altered in its ability to interact with the 3'-OH on the sugar moiety of the incoming deoxynucleotide triphosphate (dNTP), we examined how this change in RT-dNTP interaction affects HIV-1 RT fidelity. First, we found the binding affinity (K(D)) of wild type and Q151N RT proteins to different template/primers to be similar. These results indicate that the Gln(151) residue is not involved in the formation of the binary complex (RT.template/primer) during DNA polymerization. We also found that by changing residue 151 from a Gln-->Asn, the maximum rate of dNTP incorporation (k(pol)) for both correct and incorrect dNTPs was not affected. In contrast, the ability of the Q151N mutant to bind both correct and incorrect dNTPs (K(d)) was diminished. The Q151N mutant was 120-fold less efficient at binding correct dNTP than wild type RT, and its decrease in binding was such that we were unable to measure the actual binding affinity of Q151N for incorrect dNTPs. Presumably, the fidelity increase observed during the steady state is explained by this defect in Q151N binding to incorrect dNTP. In wild type RT, residue Gln(151) is important for tight binding of incorrect dNTPs and may contribute to the low fidelity nature of HIV-1 RT. Since the Q151N mutation also alters RT binding to correct dNTPs, the wild type Gln(151) residue may play an important role in efficient binding of RT to correct dNTPs. Our findings suggest that residue Gln(151) is an important element for the execution of both highly error prone and efficient DNA synthesis by HIV-1 RT.
Collapse
Affiliation(s)
- Kellie K Weiss
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|