1
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Hou J, Mei K, Wang D, Ke S, Chen X, Shang J, Li G, Gao Y, Xiong H, Zhang H, Chen L, Zhang W, Deng Y, Hong X, Liu DA, Hu T, Guo W, Zhan YY. TGM1/3-mediated transamidation of Exo70 promotes tumor metastasis upon LKB1 inactivation. Cell Rep 2024; 43:114604. [PMID: 39146185 DOI: 10.1016/j.celrep.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.
Collapse
Affiliation(s)
- Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guixia Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yabin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Kim HS, Kim JK, Lee JH, Lee YJ, Lee GK, Han JY. Prognostic Model for High-Grade Neuroendocrine Carcinoma of the Lung Incorporating Genomic Profiling and Poly (ADP-ribose) Polymerase-1 Expression. JCO Precis Oncol 2024; 8:e2300495. [PMID: 38635931 PMCID: PMC11161257 DOI: 10.1200/po.23.00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
PURPOSE High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive cancer with a complex biology. We aimed to explore the prognostic value of genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in HGNEC and to establish a novel prognostic model. MATERIALS AND METHODS We retrospectively enrolled 191 patients with histologically confirmed HGNEC of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry (IHC; N = 191) and comprehensive cancer panel sequencing (n = 102). Clinical and genetic data were used to develop an integrated Cox hazards model. RESULTS Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%) patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an integrated Cox hazard model, our data set included information from 357 gene mutations and 19 clinical profiles. When the targeted mutation profiles were combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1, IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prognostic factors for survival. The integrated Cox hazard model, which combines mutation profiles with a baseline model, outperformed the baseline model (incremental area under the curve 0.84 v 0.78; P = 8.79e-12). The integrated model stratified patients into high- and low-risk groups with significantly different disease-free and overall survival (integrated model: hazard ratio, 7.14 [95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01). CONCLUSION We introduced a new prognostic model for HGNEC that combines genetic and clinical data. The integrated Cox hazard model outperformed the baseline model in predicting the survival of patients with HGNEC.
Collapse
Affiliation(s)
- Hye Sook Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University, Goyang, Republic of Korea
| | - Jong Kwang Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Pathology, Korea University Medical Center, Anam Hospital, Seoul, Republic of Korea
| | - Young Joo Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Geon-Kuk Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Youn Han
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
5
|
Zhang J, Wang X, Peng Y, Wei J, Luo Y, Luan F, Li H, Zhou Y, Wang C, Yu K. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research. Int Immunopharmacol 2024; 130:111666. [PMID: 38412671 DOI: 10.1016/j.intimp.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Sepsis-induced acute liver injury is common in patients in intensive care units. However, the exact mechanism of this condition remains unclear. The purpose of this study was to investigate the roles and mechanisms of proteins and metabolites in the liver tissue of mice after sepsis and elucidate the molecular biological mechanisms of sepsis-related liver injury. METHODS First, a lipopolysaccharide (LPS)-induced sepsis mouse model was established. Then, according to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection in mouse serum and liver histopathological examination (HE) staining, the septic mice were divided into two groups: acute liver injury after sepsis and nonacute liver injury after sepsis. Metabolomics and proteomic analyses were performed on the liver tissues of the two groups of mice to identify significantly different metabolites and proteins. The metabolomics and proteomics results were further analysed to identify the biological indicators and pathogenesis related to the occurrence and development of sepsis-related acute liver injury at the protein and metabolite levels. RESULTS A total of 14 differentially expressed proteins and 46 differentially expressed metabolites were identified. Recombinant Erythrocyte Membrane Protein Band 4.2 (Epb42) and adenosine diphosphate (ADP) may be the key proteins and metabolites responsible for sepsis-related acute liver injury, according to the correlation analysis of proteomics and metabolomics. The expression of the differential protein Epb42 was further verified by western blot (WB) detection. CONCLUSIONS Our study suggests that the differential protein Epb42 may be key proteins causing sepsis-associated acute liver injury, providing new and valuable information on the possible mechanism of sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China; Department of Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 1 Jiaozhou Road, Shibei District, Qingdao 266011, Shandong, China
| | - Xibo Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yahui Peng
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jieling Wei
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yinghao Luo
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Feiyu Luan
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hongxu Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Yang Zhou
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Changsong Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Shibahara D, Akanuma N, Kobayashi IS, Heo E, Ando M, Fujii M, Jiang F, Prin PN, Pan G, Wong K, Costa DB, Bararia D, Tenen DG, Watanabe H, Kobayashi SS. TIP60 is required for tumorigenesis in non-small cell lung cancer. Cancer Sci 2023; 114:2400-2413. [PMID: 36916958 PMCID: PMC10236639 DOI: 10.1111/cas.15785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion. Furthermore, analysis of a mouse lung cancer model with lung-specific conditional Tip60 knockout revealed suppressed tumor formation relative to controls, but no apparent effects on normal lung homeostasis. RNA-seq and ChIP-seq analyses of inducible TIP60 knockdown H1975 cells relative to controls revealed transglutaminase enzyme (TGM5) as downstream of TIP60. Investigation of a connectivity map database identified several candidate compounds that decrease TIP60 mRNA, one that suppressed tumor growth in cell culture and in vivo. In addition, TH1834, a TIP60 acetyltransferase inhibitor, showed comparable antitumor effects in cell culture and in vivo. Taken together, suppression of TIP60 activity shows tumor-specific efficacy against lung cancer, with no overt effect on normal tissues. Our work suggests that targeting TIP60 could be a promising approach to treating lung cancer.
Collapse
Affiliation(s)
- Daisuke Shibahara
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Naoki Akanuma
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ikei S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Eunyoung Heo
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Internal MedicineSMG‐SNU Boramae Medical CenterSeoulSouth Korea
| | - Mariko Ando
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Masanori Fujii
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - P. Nicholas Prin
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gilbert Pan
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Kwok‐Kin Wong
- Perlmutter Cancer CenterNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Daniel B. Costa
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Deepak Bararia
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel G. Tenen
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Department of Genetics and Genomic SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susumu S. Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
7
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Paolella G, Sposito S, Romanelli AM, Caputo I. Type 2 Transglutaminase in Coeliac Disease: A Key Player in Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2022; 23:ijms23147513. [PMID: 35886862 PMCID: PMC9318967 DOI: 10.3390/ijms23147513] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa. Given the importance of TG2 enzymatic activities in CD, several studies have sought to discover specific and potent inhibitors that could be employed in new therapeutical approaches for CD, as alternatives to a lifelong gluten-free diet. In this review, we summarise all the aspects regarding TG2 involvement in CD, including its enzymatic reactions in pathogenesis, the role of anti-TG2 antibodies in disease management, and the exploration of recent strategies to reduce deamidation or to use transamidation to detoxify gluten.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- Correspondence: (G.P.); (I.C.)
| | - Silvia Sposito
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
| | | | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, SA, Italy; (S.S.); (A.M.R.)
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University of Salerno, 84084 Fisciano, SA, Italy
- Correspondence: (G.P.); (I.C.)
| |
Collapse
|
9
|
Han X, Yuan T, Zhang J, Shi Y, Li D, Dong Y, Fan S. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J Cell Mol Med 2022; 26:3269-3280. [PMID: 35510614 PMCID: PMC9170815 DOI: 10.1111/jcmm.17333] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial lung disease with limited treatment options. The incidence and prevalence of PF is increasing with age, cell senescence has been proposed as a pathogenic driver, the clearance of senescent cells could improve lung function in PF. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide, has been reported to selectively kill senescent cells in aged mice. However, it remains unknown if FOXO4-DRI could clear senescent cells in PF and reverse this disease. In this study, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model. We found that similar as the approved medication Pirfenidone, FOXO4-DRI decreased senescent cells, downregulated the expression of senescence-associated secretory phenotype (SASP) and attenuated BLM-induced morphological changes and collagen deposition. Furthermore, FOXO4-DRI could increase the percentage of type 2 alveolar epithelial cells (AEC2) and fibroblasts, and decrease the myofibroblasts in bleomycin (BLM)-induced PF mouse model. Compared with mouse and human lung fibroblast cell lines, FOXO4-DRI is inclined to kill TGF-β-induced myofibroblast in vitro. The inhibited effect of FOXO4-DRI on myofibroblast lead to a downregulation of extracellular matrix (ECM) receptor interaction pathway in BLM-induced PF. Above all, FOXO4-DRI ameliorates BLM-induced PF in mouse and may be served as a viable therapeutic option for PF.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tong Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yonggang Shi
- Department of Radiation Oncologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicinePeking Union Medical College and Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|
10
|
Al-U'datt DGF, Tranchant CC, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Allen BG, Jaradat S, Alqbelat J, Abu-Zaiton AS. Implications of enigmatic transglutaminase 2 (TG2) in cardiac diseases and therapeutic developments. Biochem Pharmacol 2022; 201:115104. [PMID: 35617996 DOI: 10.1016/j.bcp.2022.115104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
Cardiac diseases are the leading cause of mortality and morbidity worldwide. Mounting evidence suggests that transglutaminases (TGs), tissue TG (TG2) in particular, are involved in numerous molecular responses underlying the pathogenesis of cardiac diseases. The TG family has several intra- and extracellular functions in the human body, including collagen cross-linking, angiogenesis, cell growth, differentiation, migration, adhesion as well as survival. TGs are thiol- and calcium-dependent acyl transferases that catalyze the formation of a covalent bond between the γ-carboxamide group of a glutamine residue and an amine group, thus increasing the stability, rigidity, and stiffness of the myocardial extracellular matrix (ECM). Excessive accumulation of cross-linked collagen leads to increase myocardial stiffness and fibrosis. Beyond TG2 extracellular protein cross-linking action, mounting evidence suggests that this pleiotropic TG isozyme may also promote fibrotic diseases through cell survival and profibrotic pathway activation at the signaling, transcriptional and translational levels. Due to its multiple functions and localizations, TG2 fulfils critical yet incompletely understood roles in myocardial fibrosis and associated heart diseases, such as cardiac hypertrophy, heart failure, and age-related myocardial stiffness under several conditions. This review summarizes current knowledge and existing gaps regarding the ECM-dependent and ECM-independent roles of TG2 and highlights the therapeutic prospects of targeting TG2 to treat cardiac diseases.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed S Abu-Zaiton
- Department of Biological Sciences, Al al-bayt University, Al-Mafraq, Jordan
| |
Collapse
|
11
|
Katt WP, Aplin C, Cerione RA. Exploring the Role of Transglutaminase in Patients with Glioblastoma: Current Perspectives. Onco Targets Ther 2022; 15:277-290. [PMID: 35340676 PMCID: PMC8943831 DOI: 10.2147/ott.s329262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (tTG) is a rather unique GTP-binding/protein crosslinking enzyme that has been shown to play important roles in a number of cellular processes that impact both normal physiology and disease states. This is especially the case in the context of aggressive brain tumors, such as glioblastoma. The diverse roles played by tTG in cancer survival and progression have led to significant interest in recent years in using tTG as a therapeutic target. In this review, we provide a brief overview of the transglutaminase family, and then discuss the primary biochemical activities exhibited by tTG with an emphasis on the role it plays in glioblastoma progression. Finally, we consider current approaches to target tTG which might eventually have clinical impact.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA,Correspondence: Richard A Cerione, Tel +1 607-253-3650, Email
| |
Collapse
|
12
|
Chen S, Ma J, Chi J, Zhang B, Zheng X, Chen J, Liu J. Roles and potential clinical implications of tissue transglutaminase in cardiovascular diseases. Pharmacol Res 2022; 177:106085. [PMID: 35033646 DOI: 10.1016/j.phrs.2022.106085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD)-related mortality and morbidity are among the most critical disease burdens worldwide. CVDs encompass many diseases and involve complex pathogenesis and pathological changes. While research on these diseases has advanced significantly, treatments and their efficacy remain rather limited. New therapeutic strategies and targets must, therefore, be explored. Tissue transglutaminase (TG2) is pivotal to the pathological development of CVDs, including participating in the cross-linking of extracellular proteins, activation of fibroblasts, hypertrophy and apoptosis of cardiomyocytes, proliferation and migration of smooth muscle cells (SMCs), and inflammatory reactions. Regulating TG2 activity and expression could ensure remarkable improvements in disorders like heart failure (HF), pulmonary hypertension (PH), hypertension, and coronary atherosclerosis. In this review, we summarize recent advances in TG2: we discuss its role and mechanisms in the progression of various CVDs and its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiangyang Chi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingxia Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojuan Zheng
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, Jiangsu 210003, China
| | - Jie Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Zhu J, Shao Y, Chen K, Zhang W, Li C. A transglutaminase 2-like gene from sea cucumber Apostichopus japonicus mediates coelomocytes autophagy. FISH & SHELLFISH IMMUNOLOGY 2021; 119:602-612. [PMID: 34742899 DOI: 10.1016/j.fsi.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Transglutaminases (TGases) are widely known to play critical roles in innate immunity, in particular, TGase2, which involves in autophagy process to help degrade protein aggregates under stressful conditions in mammals. Nevertheless, the function of the TGase2 counterpart whether involves in invertebrate autophagy is largely unknown. In this study, a novel TGase2-like homologous gene from the sea cucumber Apostichopus japonicus (named as AjTGase2-like) was cloned using RACE technology and its biological functions were also investigated. The AjTGase2-like gene encoded a peptide of 750 amino acids with the representative domains of Transglut_N domain, TGc domain, and two Transglut_C domains, which exhibited highly conservative with vertebrate TGase2. Multiple sequence alignments and phylogenetic analysis both supported that AjTGase2-like belonged to a new member of TGase2 subfamily. AjTGase2-like was pervasively expressed in all examined tissues, with the largest transcription in muscle, followed by respiratory trees, and intestine. After immersion infection with Vibrio splendidus, the mRNA and protein levels of AjTGase2-like were both significantly induced and reached the highest levels at 24 h, indicating AjTGase2-like plays a key role in immune response. Further functional analysis showed that the ubiquitinated protein level was significantly increased by 1.65-fold (p < 0.01) after silencing of AjTGase2-like, and the protein levels of AjLC3-II/I and AjBeclin1 were both obviously decreased by 0.49-fold (p < 0.01) and 0.64-fold (p < 0.01) at the same time, while the authophagy receptor of Ajp62 was signally up-regulated by 1.40-fold (p < 0.01) under same condition. Moreover, the immunofluorescence signals of AjLC3 and Ajp62 were consistent with their protein levels, suggesting knockdown of AjTGase2-like causes a blockage in autophagy. More importantly, the AjLC3 positive signal was not increased after adding with chloroquine in the case of AjTGase2-like interference, indicating AjTGase2-like might play pivotal role in the early step of autophagosome formation. Besides, our results showed that the fluorescence signal of AjTGase2-like was largely co-localized with Ajp62 around the cytoplasm in vivo, and rAjp62 could directly combine with rAjTGase2-like in vitro, indicating AjTGase2-like interacts with Ajp62 during autophagy. Overall, our findings supported that AjTGase2-like served as a positive regulator in sea cucumber authophay.
Collapse
Affiliation(s)
- Jiaqian Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| | - Kaiyu Chen
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
14
|
Sharawat IK, Panda PK, Bhunia NS, Dawman L. Clinical Spectrum of TGM6-Related Movement Disorders: A New Report with a Pooled Analysis of 48 Patients. J Neurosci Rural Pract 2021; 12:656-665. [PMID: 34737499 PMCID: PMC8559089 DOI: 10.1055/s-0041-1734006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background
Spinocerebellar ataxias (SCAs) are a diverse group of progressive neurodegenerative disorders. Until now, more than 20 genes have been implicated to be associated with this phenotype and
TGM6
is one of these genes, associated with spinocerebellar ataxia-35 (SCA-35). The majority of disease-causing variants in the
TGM6
gene predominantly have been reported from China and Taiwan and the association with Parkinson's disease (PD) have also been reported recently.
Methods
We report the first Indian case with SCA-35 in a 16-year-old-boy with atypical age of onset at 9 years, prominent extrapyramidal features, intellectual disability, and a novel missense mutation in the
TGM6
gene. We also reviewed and collated all previously published cases with pathogenic TGM6 variants.
Results
Including the index case, 54 cases were identified from 10 relevant articles in literature and 48 cases had adequate clinical details to be included in the pooled analysis. Around two-thirds of reported cases had SCA-35 phenotype, with cerebellar atrophy. Onset in the majority of cases was the fourth decade of life onwards. A proportion of SCA-35 cases also had spasmodic torticollis, impaired proprioception, extrapyramidal features, and myoclonic jerks. The patients with PD had often early-onset milder symptoms, slower progression, and favorable response to levodopa/carbidopa. One patient each presented with episodic ataxia and dystonic tremor of the upper limb. Most of the cases had missense mutations, without any definite hotspot or genotype–phenotype correlation.
Conclusions
TGM6 mutation should be suspected in patients with SCA like presentation, especially when it is accompanied by extrapyramidal features, spasmodic torticollis, impaired proprioception, or myoclonus.
Collapse
Affiliation(s)
- Indar Kumar Sharawat
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Prateek Kumar Panda
- Department of Pediatrics, Pediatric Neurology Division, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Niladri Sekhar Bhunia
- Department of Pediatrics, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lesa Dawman
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Identification of Chicken Transglutaminase 1 and In Situ Localization of Transglutaminase Activity in Avian Skin and Esophagus. Genes (Basel) 2021; 12:genes12101565. [PMID: 34680960 PMCID: PMC8535770 DOI: 10.3390/genes12101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 1 (TGM1) is a membrane-anchored enzyme that cross-links proteins during terminal differentiation of epidermal and esophageal keratinocytes in mammals. The current genome assembly of the chicken, which is a major model for avian skin biology, does not include an annotated region corresponding to TGM1. To close this gap of knowledge about the genetic control of avian cornification, we analyzed RNA-sequencing reads from organotypic chicken skin and identified TGM1 mRNA. By RT-PCR, we demonstrated that TGM1 is expressed in the skin and esophagus of chickens. The cysteine-rich sequence motif required for palmitoylation and membrane anchorage is conserved in the chicken TGM1 protein, and differentiated chicken keratinocytes display membrane-associated transglutaminase activity. Expression of TGM1 and prominent transglutaminase activity in the esophageal epithelium was also demonstrated in the zebra finch. Altogether, the results of this study indicate that TGM1 is conserved among birds and suggest that chicken keratinocytes may be a useful model for the study of TGM1 in non-mammalian cornification.
Collapse
|
16
|
Cheng M, Liu Z, Ji W, Zheng J, Zeng H, Guo F, He P. Tissue Transglutaminase Impairs HTR-8/SVneo Trophoblast Cell Invasion via the PI3K/AKT Signaling Pathway. Gynecol Obstet Invest 2021; 86:264-272. [PMID: 34139701 DOI: 10.1159/000515086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The pathogenesis of preeclampsia (PE) is associated with impaired trophoblast invasion, which results in placental insufficiency. Our earlier studies demonstrated that tissue transglutaminase (tTG) is highly expressed in human PE serum. However, whether tTG participates in trophoblast invasion remains unclear. The aim of the present study was to determine the role and mechanism of tTG in regulating matrix metalloproteinase (MMP)-2/MMP-9 expression to reduce trophoblast invasiveness in PE. METHODS HTR-8/SVneo cells were transfected with a lentivirus vector and small interfering RNA targeting tTG. The protein level was detected by Western blotting. Cell proliferation and apoptosis were assessed by MTS and flow cytometry assays, respectively. Cell invasion was investigated by Transwell assay. In addition, the influence of tTG on PI3K and AKT mRNA levels in HTR-8/SVneo cells was evaluated using reverse transcription-quantitative PCR. RESULTS tTG-overexpression inhibited HTR-8/SVneo cell proliferation and invasion and promoted apoptosis. In addition, upregulation of tTG induced an increase of PI3K and phosphorylated AKT and a decrease of MMP-2 and MMP-9 expression. tTG-knockdown significantly promoted the proliferation and invasion of HTR-8/SVneo cells and inhibited the apoptosis. Furthermore, the PI3K expression level was reduced, and the MMP-2/MMP-9 protein levels were increased. CONCLUSION Taken together, the present study demonstrated that tTG-overexpression inhibited HTR-8/SVneo cell invasion via reducing the expression of MMP-2 and MMP-9 by activating PI3K/AKT signaling pathway, which may lead to the occurrence or development of PE. The present data provide new insights into modulation of tTG expression as a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Mi Cheng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zequn Liu
- Department of Prenatal Diagnostic Center, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wanqing Ji
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jie Zheng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiqian Zeng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang Guo
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ping He
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
17
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|
18
|
Pasternack R, Hils M. Editorial for the special issue on transglutaminases in translation - Novel tools and methods impacting on diagnostics and therapeutics. Anal Biochem 2020; 607:113889. [PMID: 32745540 DOI: 10.1016/j.ab.2020.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Martin Hils
- Zedira GmbH, Roesslerstraße 83, 64293, Darmstadt, Germany.
| |
Collapse
|
19
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
20
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular BiologyNorthwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Siiri E. Iismaa
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research Institute Darlinghurst New South Wales Australia
- St Vincent's Clinical SchoolUniversity of New South Wales Kensington New South Wales Australia
| |
Collapse
|
22
|
Abstract
Transglutaminases (TGs) and especially TG2 play important roles in neurotransmitter and receptor signaling pathways. Three different mechanisms by which TG2 interacts with neurotransmitter and receptor signaling systems will be discussed in this review. The first way in which TG2 interacts with receptor signaling is via its function as a guanine nucleotide binding protein (G-protein) coupling to G-protein coupled receptors (GPCRs) to activate down-stream signaling pathways. TG2 can exist in a least two conformations, a closed GTP-bound conformation and an open calcium-bound conformation. In the closed GTP-bound conformation, TG2 is capable of functioning as a G-protein for GPCRs. In the open calcium-bound conformation, TG2 catalyzes a transamidation reaction cross-linking proteins or catalyzing the covalent binding of a mono- or polyamine to a protein. The second mechanism is regulation of the transamidation reaction catalyzed by TG2 via receptor stimulation which can increase local calcium concentrations and thereby increase transamidation reactions. The third way in which TG2 plays a role in neurotransmitter and receptor signaling systems is via its use of monoamine neurotransmitters as a substrate. Monoamine neurotransmitters including serotonin can be substrates for transamidation to a protein often a small G-protein (also known as a small GTPase) resulting in activation of the small G-protein. The transamidation of a monoamine neurotransmitter or serotonin has been designated as monoaminylation or more specifically serotonylation, respectively. Other proteins are also targets for monoaminylation such as fibronectin and cytoskeletal proteins. These receptor and neurotransmitter-regulated reactions by TG2 play roles in physiological and key pathophysiological processes.
Collapse
|
23
|
Martucciello S, Paolella G, Esposito C, Lepretti M, Caputo I. Anti-type 2 transglutaminase antibodies as modulators of type 2 transglutaminase functions: a possible pathological role in celiac disease. Cell Mol Life Sci 2018; 75:4107-4124. [PMID: 30136165 PMCID: PMC11105699 DOI: 10.1007/s00018-018-2902-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Auto-antibodies to the ubiquitous enzyme type-2 transglutaminase (TG2) are a specific hallmark of celiac disease (CD), a widely diffused, multi-factorial disease, affecting genetically predisposed subjects. In CD an inflammatory response, at the intestinal level, is triggered by diet consumption of gluten-containing cereals. Intestinal mucosa displays various degrees of atrophy and hyperplasia, with consequent global intestinal dysfunction and other relevant extra-intestinal symptoms. Through deamidation of specific glutamines of gluten-derived gliadin peptides, TG2 strongly enhances gliadin immunogenicity. In addition, TG2 cross-linking activity may generate complexes between TG2 itself and gliadin peptides, and these complexes seem to cause the auto-immune response by means of an apten-carrier-like mechanism of antigen presentation. Anti-TG2 antibodies can be early detected in the intestinal mucosa of celiac patients and are also abundantly present into the serum, thus potentially reaching other organs and tissues by blood circulation. Recently, the possible pathogenetic role of auto-antibodies to TG2 in CD has been investigated. Here, we report an overview about the genesis of these antibodies, their specificity, their modulating ability toward TG2 enzymatic or non-enzymatic activities and their biological effects exerted by interacting with extracellular TG2 or with cell-surface TG2. We also discuss the auto-immune response occurring in CD against other TG members (i.e. type 3 and type 6) and analyze the occurrence of anti-TG2 antibodies in other auto-immune CD-related diseases. Data now available let us to suppose that, even if antibodies to TG2 do not represent the triggering molecules in CD, they could be important players in disease progression and manifestations.
Collapse
Affiliation(s)
- Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Carla Esposito
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy
| | - Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano (SA), Italy.
- Interuniversity Centre "European Laboratory for the Investigation of Food-Induced Diseases" (ELFID), University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
24
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
25
|
Ha HJ, Kwon S, Jeong EM, Kim CM, Lee KB, Kim IG, Park HH. Structure of natural variant transglutaminase 2 reveals molecular basis of gaining stability and higher activity. PLoS One 2018; 13:e0204707. [PMID: 30321187 PMCID: PMC6188745 DOI: 10.1371/journal.pone.0204707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Multi-functional transglutaminase 2 (TG2), which possesses protein cross-linking and GTP hydrolysis activities, is involved in various cellular processes, including apoptosis, angiogenesis, wound healing, and neuronal regeneration, and is associated with many human diseases, including inflammatory disease, celiac disease, neurodegenerative disease, diabetes, tissue fibrosis, and cancers. Although most biochemical and cellular studies have been conducted with the TG2 (G224) form, the TG2 (G224V) form has recently emerged as a putative natural variant of TG2. In this study, we characterized the putative natural form of TG2, TG2 (G224V), and through a new crystal structure of TG2 (G224V), we revealed how TG2 (G224V) gained stability and higher Ca2+-dependent activity than an artificial variant of TG2 (G224).
Collapse
Affiliation(s)
- Hyun Ji Ha
- School of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Sunghark Kwon
- School of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Min Kim
- School of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail: (HHP); (IGK)
| | - Hyun Ho Park
- School of Pharmacy, Chung-Ang University, Seoul, South Korea
- * E-mail: (HHP); (IGK)
| |
Collapse
|
26
|
Yu XB, Uhde M, Green PH, Alaedini A. Autoantibodies in the Extraintestinal Manifestations of Celiac Disease. Nutrients 2018; 10:E1123. [PMID: 30127251 PMCID: PMC6115844 DOI: 10.3390/nu10081123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Increased antibody reactivity towards self-antigens is often indicative of a disruption of homeostatic immune pathways in the body. In celiac disease, an autoimmune enteropathy triggered by the ingestion of gluten from wheat and related cereals in genetically predisposed individuals, autoantibody reactivity to transglutaminase 2 is reflective of the pathogenic role of the enzyme in driving the associated inflammatory immune response. Autoantibody reactivity to transglutaminase 2 closely corresponds with the gluten intake and clinical presentation in affected patients, serving as a highly useful biomarker in the diagnosis of celiac disease. In addition to gastrointestinal symptoms, celiac disease is associated with a number of extraintestinal manifestations, including those affecting skin, bones, and the nervous system. Investigations of these manifestations in celiac disease have identified a number of associated immune abnormalities, including B cell reactivity towards various autoantigens, such as transglutaminase 3, transglutaminase 6, synapsin I, gangliosides, and collagen. Clinical relevance, pathogenic potential, mechanism of development, and diagnostic and prognostic value of the various identified autoantibody reactivities continue to be subjects of investigation and will be reviewed here.
Collapse
Affiliation(s)
- Xuechen B Yu
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| | - Melanie Uhde
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
| | - Peter H Green
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, 1130 Saint Nicholas Ave., New York, NY 10032, USA.
- Celiac Disease Center, Columbia University, New York, NY 10032, USA.
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
28
|
Veras AB, Getz M, Froemke RC, Nardi AE, Alves GS, Walsh-Messinger J, Chao MV, Kranz TM, Malaspina D. Rare missense coding variants in oxytocin receptor (OXTR) in schizophrenia cases are associated with early trauma exposure, cognition and emotional processing. J Psychiatr Res 2018; 97:58-64. [PMID: 29190530 DOI: 10.1016/j.jpsychires.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND Oxytocin is a peptide hormone that influences the integration of social cognition with behavior and affect regulation. Oxytocin also prominently directs the transition of neuronal GABA neurotransmission from excitatory to inhibitory after birth. The oxytocin receptor (OXTR) is linked to schizophrenia, a heterogeneous syndrome. Relationships of OXTR polymorphisms with specific clinical features could aid in evaluating any role of oxytocin in the pathogenesis of schizophrenia. METHOD Schizophrenia cases with rare missense coding OXTR single nucleotide variants (SNVs) were identified from a well-characterized sample of cases and controls who were assessed for symptoms, cognition and early life trauma. RESULTS Five of 48 cases showed rare OXTR variants. Compared to the other cases they had less severe negative symptoms (deficits in emotional expression and motivation) and less severe general psychopathology scores (depression and anxiety). They demonstrated lower nonverbal (performance) than verbal intelligence due to deficient perceptual organization and slow processing speed. They also reported greater early trauma exposure (physical and sexual abuse and emotional trauma). CONCLUSION Cases carrying rare OXTR SNVs had less negative and affective symptoms than other cases, but similar psychotic symptoms, along with specific cognitive deficits. The clinical characterization of these cases occurred in association with environmental exposure to early trauma, especially sexual abuse, which may have influenced the expression of schizophrenia in subjects harboring specific SNVs in the OXTR.
Collapse
Affiliation(s)
- Andre B Veras
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mt. Sinai Medical Center, New York, NY, USA; Translational Research Group on Mental Health (GPTranSMe), Dom Bosco Catholic University, Campo Grande, MS, Brazil; Laboratory of Panic and Respiration (LabPR-UFRJ), Psychiatry Institute of Federal University of Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Mara Getz
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology and Neuroscience/Physiology, New York University, NY, USA
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration (LabPR-UFRJ), Psychiatry Institute of Federal University of Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Julie Walsh-Messinger
- Department of Psychology, University of Dayton, Dayton, OH, USA; Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, New York, NY, USA
| | - Thorsten M Kranz
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology and Neuroscience/Physiology, New York University, NY, USA; Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, New York, NY, USA
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mt. Sinai Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Yang ZH, Shi MM, Liu YT, Wang YL, Luo HY, Wang ZL, Shi CH, Xu YM. TGM6 gene mutations in undiagnosed cerebellar ataxia patients. Parkinsonism Relat Disord 2017; 46:84-86. [PMID: 28927799 DOI: 10.1016/j.parkreldis.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Meng-Meng Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhi-Lei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
30
|
Ivaškevičius V, Biswas A, Garly ML, Oldenburg J. Comparison ofF13A1gene mutations in 73 patients treated with recombinant FXIII-A2. Haemophilia 2017; 23:e194-e203. [DOI: 10.1111/hae.13233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Affiliation(s)
- V. Ivaškevičius
- Institute of Experimental Haematology and Transfusion Medicine; University Hospital Bonn; Bonn Germany
| | - A. Biswas
- Institute of Experimental Haematology and Transfusion Medicine; University Hospital Bonn; Bonn Germany
| | | | - J. Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine; University Hospital Bonn; Bonn Germany
| |
Collapse
|
31
|
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G, Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis 2017; 101:40-58. [DOI: 10.1016/j.nbd.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
|
32
|
Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T. Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med 2017; 49:23-31. [PMID: 27499257 DOI: 10.1080/07853890.2016.1222450] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dermatitis herpetiformis (DH) is an itchy blistering skin disease with predilection sites on elbows, knees, and buttocks. Diagnosis is confirmed by showing granular immunoglobulin A deposits in perilesional skin. DH is one manifestation of coeliac disease; the skin symptoms heal with gluten free diet (GFD) and relapse on gluten challenge. Of the first-degree relatives, 5% may be affected by either condition. Tissue transglutaminase (TG2) is the autoantigen in coeliac disease and epidermal transglutaminase (TG3) in DH. Both diseases conditions exhibit TG2-specific autoantibodies in serum and small bowel mucosa; patients with DH have IgA-TG3 in the skin. There are some divergencies between these two phenotypes. One-fourth of DH patients do not have small bowel mucosal villous atrophy, but virtually all have coeliac-type inflammatory changes. The skin symptoms respond slowly to GFD. The incidence of coeliac disease is increasing, whereas the opposite is true for DH. A female predominance is evident in coeliac disease, while DH may be more common in males. Coeliac disease carries the risk of small intestinal T-cell lymphoma; in DH B-cell lymphomas at any site may prevail. Adult coeliac disease carries a slightly increased elevated mortality risk, whereas in DH, the relative mortality rate is significantly decreased. Key messages Dermatitis herpetiformis is a cutaneous manifestation of coeliac disease; both conditions are genetically determined and gluten-dependent. Gastrointestinal symptoms and the degree of villous atrophy are less obvious in dermatitis herpetiformis than in coeliac disease. Both show tissue transglutaminase (TG2) specific autoantibodies in serum and small bowel mucosa. In addition, TG3-targeted IgA antibodies are found in the skin of DH patients Both conditions carry an increased elevated risk of lymphoma, in coeliac disease small intestinal T-cell lymphoma, in dermatitis herpetiformis mainly B-cell lymphoma at various sites. Coeliac disease is currently eight times more common that DH; the incidence of DH is decreasing in contrast to that of coeliac disease, where it is increasing.
Collapse
Affiliation(s)
- Pekka Collin
- a Department of Gastroenterology and Alimentary Tract Surgery , Tampere University Hospital , Tampere , Finland
| | - Teea T Salmi
- b Department of Dermatology , Tampere University Hospital , Tampere , Finland.,c School of Medicine , University of Tampere , Tampere , Finland
| | - Kaisa Hervonen
- b Department of Dermatology , Tampere University Hospital , Tampere , Finland.,c School of Medicine , University of Tampere , Tampere , Finland
| | - Katri Kaukinen
- c School of Medicine , University of Tampere , Tampere , Finland.,d Department of Internal Medicine , Tampere University Hospital , Tampere , Finland
| | - Timo Reunala
- b Department of Dermatology , Tampere University Hospital , Tampere , Finland.,c School of Medicine , University of Tampere , Tampere , Finland
| |
Collapse
|
33
|
Burhan I, Furini G, Lortat-Jacob H, Atobatele AG, Scarpellini A, Schroeder N, Atkinson J, Maamra M, Nutter FH, Watson P, Vinciguerra M, Johnson TS, Verderio EAM. Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep 2016; 6:31343. [PMID: 27694984 PMCID: PMC5046136 DOI: 10.1038/srep31343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 01/19/2023] Open
Abstract
Transglutaminase-2 (TG2) is a new anti-fibrotic target for chronic kidney disease, for its role in altering the extracellular homeostatic balance leading to excessive build-up of matrix in kidney. However, there is no confirmation that TG2 is the only transglutaminase involved, neither there are strategies to control its action specifically over that of the conserved family-members. In this study, we have profiled transglutaminase isozymes in the rat subtotal nephrectomy (SNx) model of progressive renal scarring. All transglutaminases increased post-SNx peaking at loss of renal function but TG2 was the predominant enzyme. Upon SNx, extracellular TG2 deposited in the tubulointerstitium and peri-glomerulus via binding to heparan sulphate (HS) chains of proteoglycans and co-associated with syndecan-4. Extracellular TG2 was sufficient to activate transforming growth factor-β1 in tubular epithelial cells, and this process occurred in a HS-dependent way, in keeping with TG2-affinity for HS. Analysis of heparin binding of the main transglutaminases revealed that although the interaction between TG1 and HS is strong, the conformational heparin binding site of TG2 is not conserved, suggesting that TG2 has a unique interaction with HS within the family. Our data provides a rationale for a novel anti-fibrotic strategy specifically targeting the conformation-dependent TG2-epitope interacting with HS.
Collapse
Affiliation(s)
- Izhar Burhan
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Giulia Furini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, F-38027, France
| | - Adeola G. Atobatele
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Alessandra Scarpellini
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Nina Schroeder
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - John Atkinson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Mabrouka Maamra
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Faith H. Nutter
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Philip Watson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | - Manlio Vinciguerra
- Nottingham Trent University, School of Science and Technology, Nottingham, NG11 8NS, United Kingdom
| | - Timothy S. Johnson
- University of Sheffield, Academic Nephrology Unit, Medical School, Sheffield, S10 2RZ, United Kingdom
| | | |
Collapse
|
34
|
Serum transglutaminase 3 antibodies correlate with age at celiac disease diagnosis. Dig Liver Dis 2016; 48:632-7. [PMID: 27026081 DOI: 10.1016/j.dld.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transglutaminase (TG)2 is the autoantigen in celiac disease, but also TG3 antibodies have been detected in the serum of celiac disease patients. AIMS To investigate the correlations between serum TG3 antibodies and clinical and histological manifestations of celiac disease and to assess gluten-dependency of TG3 antibodies. METHODS Correlations between serum TG3 antibody levels measured from 119 adults and children with untreated coeliac disease and the demographic data, clinical symptoms, celiac antibodies, histological data and results of laboratory tests and bone mineral densities were tested. TG3 antibodies were reinvestigated in 97 celiac disease patients after 12 months on a gluten-free diet (GFD). RESULTS TG3 antibody titers were shown to correlate with the age at celiac disease diagnosis. Further, negative correlation with TG3 antibodies and intestinal γδ+ cells at diagnosis and on GFD was detected. Correlations were not detected with the clinical manifestation of celiac disease, TG2 or endomysial autoantibodies, laboratory values, severity of mucosal villous atrophy, associated diseases or complications. TG3 antibody titers decreased on GFD in 56% of the TG3 antibody positive patients. CONCLUSION Serum TG3 antibody positivity in celiac disease increases as the diagnostic age rises. TG3 antibodies did not show similar gluten-dependency as TG2 antibodies.
Collapse
|
35
|
Kranz TM, Berns A, Shields J, Rothman K, Walsh-Messinger J, Goetz RR, Chao MV, Malaspina D. Phenotypically distinct subtypes of psychosis accompany novel or rare variants in four different signaling genes. EBioMedicine 2016; 6:206-214. [PMID: 27211562 PMCID: PMC4856793 DOI: 10.1016/j.ebiom.2016.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rare gene variants are important sources of schizophrenia vulnerability that likely interact with polygenic susceptibility loci. This study examined if novel or rare missense coding variants in any of four different signaling genes in sporadic schizophrenia cases were associated with clinical phenotypes in an exceptionally well-characterized sample. METHOD Structured interviews, cognition, symptoms and life course features were assessed in 48 ethnically-diverse cases with psychosis who underwent targeted exome sequencing of PTPRG (Protein Tyrosine Phosphatase, Receptor Type G), SLC39A13 (Solute Carrier Family 39 (Zinc Transporter) Member 13), TGM5 (transglutaminase 5) and ARMS/KIDINS220 (Ankyrin repeat-rich membrane spanning protein or Kinase D-Interacting Substrate of 220kDa). Cases harboring rare missense coding polymorphisms or novel mutations in one or more of these genes were compared to other cases not carrying any rare missense coding polymorphisms or novel mutations in these genes and healthy controls. FINDINGS Fifteen of 48 cases (31.25%) carried rare or novel missense coding variants in one or more of these genes. The subgroups significantly differed in important features, including specific working memory deficits for PTPRG (n=5); severe negative symptoms, global cognitive deficits and poor educational attainment, suggesting a developmental disorder, for SLC39A13 (n=4); slow processing speed, childhood attention deficit disorder and milder symptoms for TGM5 (n=4); and global cognitive deficits with good educational attainment suggesting neurodegeneration for ARMS/KIDINS220 (n=5). Case vignettes are included in the appendix. INTERPRETATION Genes prone to missense coding polymorphisms and/or mutations in sporadic cases may highlight influential genes for psychosis and illuminate heterogeneous pathways to schizophrenia. Ethnicity appears less important at the level of genetic variability. The sequence variations that potentially alter the function of specific genes or their signaling partners may contribute to particular subtypes of psychosis. This approach may be applicable to other complex disorders.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, NY, NY 10016, USA.
| | - Adam Berns
- Institute for Social and Psychiatric Initiatives (InSPIRES), Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | - Jerry Shields
- Institute for Social and Psychiatric Initiatives (InSPIRES), Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | - Karen Rothman
- Institute for Social and Psychiatric Initiatives (InSPIRES), Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | - Raymond R Goetz
- New York State Psychiatric Institute, Division of Clinical Phenomenology, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, NY, NY 10016, USA.
| | - Dolores Malaspina
- Institute for Social and Psychiatric Initiatives (InSPIRES), Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
36
|
Zhu YT, Li D, Zhang X, Li XJ, Li WW, Wang Q. Role of transglutaminase in immune defense against bacterial pathogens via regulation of antimicrobial peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:39-50. [PMID: 26464201 DOI: 10.1016/j.dci.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
Transglutaminase (TGase) is critical for blood coagulation, a conserved immunological defense mechanism among invertebrates. Here, a 3248-bp (full-length) TGase cDNA in Eriocheir sinensis (EsTGase) was cloned, with a 2274-bp open reading frame (ORF) encoding a 757 amino acid protein containing two transglut domains, one TGase/protease-like homolog domain and a KGD (Lys-Gly-Asp) motif. Phylogenetic analysis demonstrated that EsTGase appeared earlier in evolution compared with TGases of other crustaceans and mammals. EsTGase mRNA was mainly detected in hemocytes and up-regulated post-challenge with bacteria (Vibrio parahaemolyticus and Staphylococcus aureus), suggesting an immune function for this gene. Moreover, the EsTGase activity in hemocytes challenged with V. parahaemolyticus and S. aureus was decreased significantly. RNA interference of EsTGase down-regulated expression of immune-related genes CrusEs2, EsLecG and Es-DWD1 with or without bacteria stimulation in vitro. Furthermore, absence of EsTGase led to higher bacterial counts in the hemocyte culture medium. Thus, EsTGase is an important component of the crab immune response and is involved in the regulation of certain immune-related genes, particularly those encoding anti-microbial peptides.
Collapse
Affiliation(s)
- You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xing Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
37
|
van der Velden JJAJ, van Geel M, Nellen RGL, Jonkman MF, McGrath JA, Nanda A, Sprecher E, van Steensel MAM, McLean WHI, Cassidy AJ. Novel TGM5 mutations in acral peeling skin syndrome. Exp Dermatol 2015; 24:285-9. [DOI: 10.1111/exd.12650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jaap J. A. J. van der Velden
- Department of Dermatology; Maastricht University Medical Center+; Maastricht The Netherlands
- GROW Research School for Oncology and Developmental Biology; Maastricht University Medical Center+; Maastricht The Netherlands
| | - Michel van Geel
- Department of Dermatology; Maastricht University Medical Center+; Maastricht The Netherlands
- GROW Research School for Oncology and Developmental Biology; Maastricht University Medical Center+; Maastricht The Netherlands
| | - Ruud G. L. Nellen
- Department of Dermatology; Maastricht University Medical Center+; Maastricht The Netherlands
- GROW Research School for Oncology and Developmental Biology; Maastricht University Medical Center+; Maastricht The Netherlands
| | - Marcel F. Jonkman
- Department of Dermatology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - John A. McGrath
- St John's Institute of Dermatology; King's College London (Guy's Campus); London UK
| | - Arti Nanda
- As'ad Al-Hamad Dermatology Center; Al-Sabah Hospital; Kuwait City Kuwait
| | - Eli Sprecher
- Department of Dermatology; Tel Aviv Sourasky Medical Center; Tel Aviv Israel
| | - Maurice A. M. van Steensel
- Department of Dermatology; Maastricht University Medical Center+; Maastricht The Netherlands
- GROW Research School for Oncology and Developmental Biology; Maastricht University Medical Center+; Maastricht The Netherlands
- Institute of Medical Biology; Immunos; Singapore Singapore
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine; Colleges of Life Sciences and Medicine, Dentistry and Nursing; Medical Sciences Institute; Dundee UK
| | - Andrew J. Cassidy
- Centre for Dermatology and Genetic Medicine; Colleges of Life Sciences and Medicine, Dentistry and Nursing; Medical Sciences Institute; Dundee UK
| |
Collapse
|
38
|
Cañueto J, Bueno E, Rodríguez-Diaz E, Vicente-Díaz MA, Álvarez-Cuesta CC, Gonzalvo-Rodríguez P, González-Sarmiento R. Acral peeling skin syndrome resulting from mutations in TGM5. J Eur Acad Dermatol Venereol 2014; 30:477-80. [PMID: 25510201 DOI: 10.1111/jdv.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J Cañueto
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain.,Department of Dermatology, University Hospital of Salamanca, Salamanca, Spain
| | - E Bueno
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain
| | | | - M A Vicente-Díaz
- Department of Dermatology, Hospital Infantil San Joan de Déu, Barcelona, Spain
| | | | | | - R González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,IBSAL and IBMCC, University Hospital of Salamanca-University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
39
|
Sulic AM, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2014; 19:335-48. [PMID: 25410283 DOI: 10.1517/14728222.2014.985207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The only current treatment for celiac disease is a strict gluten-free diet. The ubiquitous presence of gluten in groceries, however, makes the diet burdensome and difficult to maintain, and alternative treatment options are thus needed. Here, the important role of transglutaminase 2 (TG2) in the pathogenesis of celiac disease makes it an attractive target for drug development. AREAS COVERED The present paper gives an overview of TG2 and addresses its significance in the pathogenesis of celiac disease. Moreover, the article summarizes preclinical studies performed with TG2 inhibitors and scrutinizes issues related to this therapeutic approach. EXPERT OPINION Activation of TG2 in the intestinal mucosa is central in celiac disease pathogenesis and researchers have therefore suggested TG2 inhibitors as a potential therapeutic approach. However, a prerequisite for such a drug is that it should be specific for TG2 and not affect the activity of other members of the transglutaminase family. Such compounds have already been introduced and tested in vitro, but a major obstacle to further development is the lack of a well-defined animal model for celiac disease. Nonetheless, with encouraging results in preclinical studies clinical trials with TG2 inhibitors are eagerly awaited.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Tampere , Finland +358 50 3186306; +358 3 3641369 ;
| | | | | | | | | |
Collapse
|
40
|
Szczecinska W, Nesteruk D, Wertheim-Tysarowska K, Greenblatt DT, Baty D, Browne F, Liu L, Ozoemena L, Terron-Kwiatkowski A, McGrath JA, Mellerio JE, Morton J, Woźniak K, Kowalewski C, Has C, Moss C. Under-recognition of acral peeling skin syndrome: 59 new cases with 15 novel mutations. Br J Dermatol 2014; 171:1206-10. [PMID: 24628291 DOI: 10.1111/bjd.12964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Acral peeling skin syndrome (APSS) is a rare skin fragility disorder usually caused by mutations in the transglutaminase 5 gene (TGM5). METHODS We investigated the mutation spectrum of APSS in the U.K., Germany and Poland. RESULTS We identified 59 children with APSS from 52 families. The phenotype was readily recognizable, with some variation in severity both within and between families. Most cases had been misdiagnosed as the localized form of epidermolysis bullosa simplex (EBS-loc). Eighteen different TGM5 mutations were identified, 15 of which were novel. Eight mutations were unique to a single family, nine each occurred in two families, while the common p.Gly113Cys mutation linked to a second missense variant p.Thr109Met occurred in 47 of the 52 families and was homozygous in 28. Most patients were of nonconsanguineous white European origin. CONCLUSIONS We propose that APSS is under-reported and widely misdiagnosed as EBS-loc, with significant counselling implications as APSS is autosomal recessive while EBS-loc is dominant. We recommend screening for TGM5 mutations when EBS-loc is suspected but not confirmed by mutations in KRT5 or KRT14. Our report trebles the number of known TGM5 mutations. It provides further evidence that p.Gly113Cys is a founder mutation in the European population. This is consistent with the striking ethnic distribution of APSS in U.K., where the majority of patients are of nonconsanguineous white European origin, in contrast to the pattern of other recessive skin disorders.
Collapse
Affiliation(s)
- W Szczecinska
- Department of Dermatology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PLoS One 2014; 9:e107005. [PMID: 25192068 PMCID: PMC4156391 DOI: 10.1371/journal.pone.0107005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/04/2014] [Indexed: 01/21/2023] Open
Abstract
Transglutaminase2 (TG2) is a multi-functional protein involved in various cellular processes, including apoptosis, differentiation, wound healing, and angiogenesis. The malfunction of TG2 causes many human disease including inflammatory disease, celiac disease, neurodegenerative diseases, tissue fibrosis, and cancers. Protein cross-linking activity, which is representative of TG2, is activated by calcium ions and suppressed by GTP. Here, we elucidated the structure of TG2 in complex with its endogenous inhibitor, GTP. Our structure showed why GTP is the optimal nucleotide for interacting with and inhibiting TG2. In addition, sequence comparison provided information describing the evolutionary scenario of GTP usage for controlling the activity of TG2.
Collapse
|
42
|
Keillor JW, Clouthier CM, Apperley KYP, Akbar A, Mulani A. Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 2014; 57:186-197. [PMID: 25035302 DOI: 10.1016/j.bioorg.2014.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 02/01/2023]
Abstract
Tissue transglutaminase (TG2) is a calcium-dependent enzyme that catalyses several acyl transfer reactions. The most biologically relevant of these involve protein-bound Gln residues as an acyl-donor substrate, and either water or a primary amine as an acyl-acceptor substrate. The former leads to deamidation of Gln to Glu, whereas the latter leads to transamidation, typically resulting in protein cross-linking when the amine substrate is a protein-bound Lys residue. In this review, we present an overview of over fifty years of mechanistic studies that have led to our current understanding of TG2-mediated hydrolysis and transamidation.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada.
| | - Christopher M Clouthier
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Kim Y P Apperley
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Abdullah Akbar
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| | - Amina Mulani
- Department of Chemistry, University of Ottawa, 10 Marie-Cure, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
43
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
44
|
Biomimetic materials for medical application through enzymatic modification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:181-205. [PMID: 21072699 DOI: 10.1007/10_2010_85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Living organisms synthesize functional materials, based on proteins and polysaccharides, using enzyme-catalyzed reactions. According to the biomimetic approach, biomaterial matrices for tissue engineering are designed to be able to mimic the properties and the functions of the extracellular matrix (ECM). In this chapter, the most significant research efforts dedicated to the study and the preparation of biomimetic materials through enzymatic modifications were reviewed. The functionalizations of different polymeric matrices obtained through the catalytic activity of two enzymes (Transglutaminase, TGase and Tyrosinase, TYRase) were discussed. Specifically, the biomimetic applications of TGase and TYRase to confer appropriate biomimetic properties to the biomaterials, such as the possibility to obtain in situ gelling hydrogels and the incorporation of bioactive molecules (growth factors) and cell-binding peptides into the scaffolds, were reviewed.
Collapse
|
45
|
A prawn transglutaminase: Molecular characterization and biochemical properties. Biochimie 2013; 95:2354-64. [DOI: 10.1016/j.biochi.2013.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/22/2013] [Indexed: 12/18/2022]
|
46
|
Yeh MS, Tsai WL, Cheng W. Identification and cloning of the second type transglutaminase from Litopenaeus vannamei, and its transcription following pathogen infection and in relation to the haemolymph coagulation. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1613-1623. [PMID: 24036331 DOI: 10.1016/j.fsi.2013.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Complementary (c)DNA encoding transglutaminaseII (TGII) messenger (m)RNA of white shrimp, Litopenaeus vannamei, was cloned from haemocytes by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) using oligonucleotide primers based on the TG sequence of the horseshoe crab, Tachypleus tridentatus (accession no.: BAA02134), tiger shrimp, Penaeus monodon (AAV49005; AAO33455), kuruma shrimp, Marsupenaeus japonicus (BAD36808) and Pacifastacus leniusculus (AAK69205) TG. The 2405-bp cDNA contained an open reading frame (ORF) of 2292 bp, a 31-bp 5'-untranslated region (UTR), and an 82-bp 3'-UTR containing a poly A tail. The molecular mass of the deduced amino acid (aa) sequence (764 aa) was 85.9 kDa with an estimated pI of 5.32. The L. vannamei TGII (abbreviated LvTGII) contains a typical TG-like homologue, two putative integrin binding motif (RGD and KGD), and five calcium-binding sites; three catalytic triad is present as in arthropod TG. Sequence comparison and phylogenetic analysis revealed that shrimp TG can be separated into two groups, STGI and STGII, and LvTGII is more closely related to STGII than to STGI. LvTGII mRNA was detected in all tested tissues of L. vannamei, and was highly expressed in haemocytes. The haemocytes of L. vannamei injected with Vibrio alginolyticus showed a significant increase of LvTGI and LvTGII mRNA expression at 6 h followed by a notable decrease at 24 h in LvTGI and a continually increase in LvTGII indicating a complementary effect, which implied that both LvTGs involved in the immune response of shrimp, and LvTGII was more important in the later defense response. The gene silencing of LvTGII in shrimp significantly decreased LvTGII expression and TG activity of haemocytes, and significantly increased clotting time of haemolymph, suggests that the cloned LvTGII is a clotting enzyme involved in haemolymph coagulation of L. vannamei. In conclusion, the cloned LvTGII is a clotting enzyme involved in coagulation of haemolymp and immune response of white shrimp, L. vannamei.
Collapse
Affiliation(s)
- Maw-Sheng Yeh
- Institute of Biomedical Nutrition, Hungkuang University, Sha-Lu, Taichung 43302, Taiwan, ROC
| | | | | |
Collapse
|
47
|
Continuous enzyme-coupled assay for microbial transglutaminase activity. Anal Biochem 2013; 441:169-73. [DOI: 10.1016/j.ab.2013.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 11/21/2022]
|
48
|
Kuramoto K, Yamasaki R, Shimizu Y, Tatsukawa H, Hitomi K. Phage-displayed peptide library screening for preferred human substrate peptide sequences for transglutaminase 7. Arch Biochem Biophys 2013; 537:138-43. [DOI: 10.1016/j.abb.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/25/2023]
|
49
|
Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 2013; 33:809-18. [PMID: 23571278 PMCID: PMC3677119 DOI: 10.1038/jcbfm.2013.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transglutaminases (TGs) are multifunctional, calcium-dependent enzymes that have been recently implicated in stroke pathophysiology. Classically, these enzymes are thought to participate in cell injury and death in chronic neurodegenerative conditions via their ability to catalyze covalent, nondegradable crosslinks between proteins or to incorporate polyamines into protein substrates. Accumulating lines of inquiry indicate that specific TG isoforms can shuttle into the nucleus when they sense pathologic changes in calcium or oxidative stress, bind to chromatin and thereby transduce these changes into transcriptional repression of genes involved in metabolic or oxidant adaptation. Here, we review the evidence that supports principally a role for one isoform of this family, TG2, in cell injury and death associated with hemorrhagic or ischemic stroke. We also outline an evolving model in which TG2 is a critical mediator between pathologic signaling and epigenetic modifications that lead to gene repression. Accordingly, the salutary effects of TG inhibitors in stroke may derive from their ability to restore homeostasis by removing inappropriate deactivation of adaptive genetic programs by oxidative stress or extrasynaptic glutamate receptor signaling.
Collapse
|
50
|
Fukui M, Kuramoto K, Yamasaki R, Shimizu Y, Itoh M, Kawamoto T, Hitomi K. Identification of a highly reactive substrate peptide for transglutaminase 6 and its use in detecting transglutaminase activity in the skin epidermis. FEBS J 2013; 280:1420-9. [PMID: 23331848 DOI: 10.1111/febs.12133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 11/30/2022]
Abstract
Mammalian transglutaminases (TGs) are a family of enzymes that catalyze the formation of covalent crosslinks between glutamine and lysine residues in proteins. These catalytic reactions play roles in several essential biological processes, including blood coagulation, skin formation, and stabilization of the extracellular matrix. Among the members of this family, factor XIII and TGs 1-5 have been characterized well, but very little is known about the novel members TG6 and TG7. Recently, however, autoantibodies against TG6 were found in a patient with gluten ataxia, a disease caused by enzymatically modified gluten-derived peptides in neuronal cells. To characterize the possible physiological functions of TG6, in this study we screened a phage-displayed random peptide library to find highly reactive glutamine donor substrate peptides. From several candidate peptides, one sequence, designated Y25, appeared to have the highest reactivity. The Y25 sequence also has apparent isozyme specificity when evaluated by incorporation of the labeled glutamine acceptor substrate as a fusion protein with glutathione-S-transferase. Also, the sequence retained high reactivity as well as the isozyme specificity in the peptide form. Analyses with the biotin-labeled and fluorescence-labeled peptides showed TG6 to be an active enzyme and react to specific substrates in the skin, which is consistent with the results of the expression pattern of its transcripts.
Collapse
Affiliation(s)
- Mina Fukui
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|