1
|
Li JR, Parthasarathy AK, Kannappan AS, Arsang-Jang S, Dong J, Cheng C. Characterization of driver mutations identifies gene signatures predictive of prognosis and treatment sensitivity in multiple myeloma. Oncologist 2024:oyae244. [PMID: 39250742 DOI: 10.1093/oncolo/oyae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
In multiple myeloma (MM), while frequent mutations in driver genes are crucial for disease progression, they traditionally offer limited insights into patient prognosis. This study aims to enhance prognostic understanding in MM by analyzing pathway dysregulations in key cancer driver genes, thereby identifying actionable gene signatures. We conducted a detailed quantification of mutations and pathway dysregulations in 10 frequently mutated cancer driver genes in MM to characterize their comprehensive mutational impacts on the whole transcriptome. This was followed by a systematic survival analysis to identify significant gene signatures with enhanced prognostic value. Our systematic analysis highlighted 2 significant signatures, TP53 and LRP1B, which notably outperformed mere mutation status in prognostic predictions. These gene signatures remained prognostically valuable even when accounting for clinical factors, including cytogenetic abnormalities, the International Staging System (ISS), and its revised version (R-ISS). The LRP1B signature effectively distinguished high-risk patients within low/intermediate-risk categories and correlated with significant changes in the tumor immune microenvironment. Additionally, the LRP1B signature showed a strong association with proteasome inhibitor pathways, notably predicting patient responses to bortezomib and the progression from monoclonal gammopathy of unknown significance to MM. Through a rigorous analysis, this study underscores the potential of specific gene signatures in revolutionizing the prognostic landscape of MM, providing novel clinical insights that could influence future translational oncology research.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | - Shahram Arsang-Jang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
- Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, United States
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
2
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Graney PL, Li V, Lamberti MJ, Liberman M, Kim Y, Tavakol DN, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1123-1139. [PMID: 39195859 PMCID: PMC11399098 DOI: 10.1038/s44161-024-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms of myocardial injury in SLE remain poorly understood. In this study, we engineered human cardiac tissues and cultured them with IgG from patients with SLE, with and without myocardial involvement. IgG from patients with elevated myocardial inflammation exhibited increased binding to apoptotic cells within cardiac tissues subjected to stress, whereas IgG from patients with systolic dysfunction exhibited enhanced binding to the surface of live cardiomyocytes. Functional assays and RNA sequencing revealed that, in the absence of immune cells, IgG from patients with systolic dysfunction altered cellular composition, respiration and calcium handling. Phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. Coupling IgG profiling with cell surfaceome analysis identified four potential pathogenic autoantibodies that may directly affect the myocardium. Overall, these insights may improve patient risk stratification and inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Daniel N Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
- College of Dental Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Liu W, Cheng H, Huang Z, Li Y, Zhang Y, Yang Y, Jin T, Sun Y, Deng Z, Zhang Q, Lou F, Cao S, Wang H, Niu X. The correlation between clinical outcomes and genomic analysis with high risk factors for the progression of osteosarcoma. Mol Oncol 2024; 18:939-955. [PMID: 37727135 PMCID: PMC10994228 DOI: 10.1002/1878-0261.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a rare but aggressive malignancy. Despite previous reports, molecular characterization of this disease is not well understood, and little is known regarding OS in Chinese patients. Herein, we analyzed the genomic signatures of 73 Chinese OS cases. TP53, NCOR1, LRP1B, ATRX, RB1, and TFE3 were the most frequently mutated gene in our OS cohort. In addition, the genomic analysis of Western OS patients was performed. Notably, there were remarkable disparities in mutational landscape, base substitution pattern, and tumor mutational burden between the Chinese and Western OS cohorts. Specific molecular mechanisms, including DNA damage repair (DDR) gene mutations, copy number variation (CNV) presence, aneuploidy, and intratumoral heterogeneity, were associated with disease progression. Additionally, 30.1% of OS patients carried clinically actionable alterations, which were mainly enriched in PI3K, MAPK, DDR, and RTK signaling pathways. A specific molecular subtype incorporating DDR alterations and CNVs was significantly correlated with distant metastasis-free survival and event-free survival, and this correlation was observed in all subgroups with different characteristics. These findings comprehensively elucidated the genomic profile and revealed novel prognostic factors in OS, which would contribute to understanding this disease and promoting precision medicine of this population.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | | | - Zhen Huang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Yaping Li
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | | | - Yongkun Yang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Tao Jin
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Zhiping Deng
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Qing Zhang
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd.BeijingChina
| | - Xiaohui Niu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan HospitalPeking UniversityBeijingChina
- Fourth Medical College of Peking UniversityBeijingChina
- National Center for OrthopeadicsBeijingChina
| |
Collapse
|
4
|
Fleischer S, Nash TR, Tamargo MA, Lock RI, Venturini G, Morsink M, Li V, Lamberti MJ, Graney PL, Liberman M, Kim Y, Zhuang RZ, Whitehead J, Friedman RA, Soni RK, Seidman JG, Seidman CE, Geraldino-Pardilla L, Winchester R, Vunjak-Novakovic G. An engineered human cardiac tissue model reveals contributions of systemic lupus erythematosus autoantibodies to myocardial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583787. [PMID: 38559188 PMCID: PMC10979865 DOI: 10.1101/2024.03.07.583787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roberta I Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Margaretha Morsink
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vanessa Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan J Lamberti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaron Whitehead
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Robert Winchester
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
- College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Wang R, Zhang G, Zhu X, Xu Y, Cao N, Li Z, Han C, Qin M, Shen Y, Dong J, Ma F, Zhao A. Prognostic Implications of LRP1B and Its Relationship with the Tumor-Infiltrating Immune Cells in Gastric Cancer. Cancers (Basel) 2023; 15:5759. [PMID: 38136305 PMCID: PMC10741692 DOI: 10.3390/cancers15245759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Han
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| |
Collapse
|
6
|
Yuan Q, Lu X, Guo H, Sun J, Yang M, Liu Q, Tong M. Low-density lipoprotein receptor promotes crosstalk between cell stemness and tumor immune microenvironment in breast cancer: a large data-based multi-omics study. J Transl Med 2023; 21:871. [PMID: 38037058 PMCID: PMC10691045 DOI: 10.1186/s12967-023-04699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Tumor cells with stemness in breast cancer might facilitate the immune microenvironment's suppression process and led to anti-tumor immune effects. The primary objective of this study was to identify potential targets to disrupt the communication between cancer cell stemness and the immune microenvironment. METHODS In this study, we initially isolated tumor cells with varying degrees of stemness using a spheroid formation assay. Subsequently, we employed RNA-seq and proteomic analyses to identify genes associated with stemness through gene trend analysis. These stemness-related genes were then subjected to pan-cancer analysis to elucidate their functional roles in a broader spectrum of cancer types. RNA-seq data of 3132 patients with breast cancer with clinical data were obtained from public databases. Using the identified stemness genes, we constructed two distinct stemness subtypes, denoted as C1 and C2. We subsequently conducted a comprehensive analysis of the differences between these subtypes using pathway enrichment methodology and immune infiltration algorithms. Furthermore, we identified key immune-related stemness genes by employing lasso regression analysis and a Cox survival regression model. We conducted in vitro experiments to ascertain the regulatory impact of the key gene on cell stemness. Additionally, we utilized immune infiltration analysis and pan-cancer analysis to delineate the functions attributed to this key gene. Lastly, single-cell RNA sequencing (scRNA-seq) was employed to conduct a more comprehensive examination of the key gene's role within the microenvironment. RESULTS In our study, we initially identified a set of 65 stemness-related genes in breast cancer cells displaying varying stemness capabilities. Subsequently, through survival analysis, we pinpointed 41 of these stemness genes that held prognostic significance. We observed that the C2 subtype exhibited a higher stemness capacity compared to the C1 subtype and displayed a more aggressive malignancy profile. Further analysis using Lasso-Cox algorithm identified LDLR as a pivotal immune-related stemness gene. It became evident that LDLR played a crucial role in shaping the immune microenvironment. In vitro experiments demonstrated that LDLR regulated the cell stemness of breast cancer. Immune infiltration analysis and pan-cancer analysis determined that LDLR inhibited the proliferation of immune cells and might promote tumor cell progression. Lastly, in our scRNA-seq analysis, we discovered that LDLR exhibited associations with stemness marker genes within breast cancer tissues. Moreover, LDLR demonstrated higher expression levels in tumor cells compared to immune cells, further emphasizing its relevance in the context of breast cancer. CONCLUSION LDLR is an important immune stemness gene that regulates cell stemness and enhances the crosstalk between breast cancer cancer cell stemness and tumor immune microenvironment.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaona Lu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Hui Guo
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mengying Yang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Mengying Tong
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Department of Ultrasound, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Hur YM, Yoo JY, You YA, Park S, Kim SM, Lee G, Kim YJ. A genome-wide and candidate gene association study of preterm birth in Korean pregnant women. PLoS One 2023; 18:e0294948. [PMID: 38019868 PMCID: PMC10686439 DOI: 10.1371/journal.pone.0294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Preterm birth (PTB) refers to delivery before 37 weeks of gestation. Premature neonates exhibit higher neonatal morbidity and mortality rates than term neonates; therefore, it is crucial to predict and prevent PTB. Advancements enable the prediction and prevention of PTB using genetic approaches, especially by investigating its correlation with single nucleotide polymorphisms (SNPs). We aimed to identify impactive and relevant SNPs for the prediction of PTB via whole-genome sequencing analyses of the blood of 31 pregnant women with PTB (n = 13) and term birth (n = 18) who visited the Ewha Womans University Mokdong Hospital from November 1, 2018 to February 29, 2020. A genome-wide association study was performed using PLINK 1.9 software and 256 SNPs were selected and traced through protein-protein interactions. Moreover, a validation study by genotyping was performed on 60 other participants (preterm birth, n = 30; term birth, n = 30) for 25 SNPs related to ion channel binding and receptor complex pathways. Odds ratios were calculated using additive, dominant, and recessive genetic models. The risk of PTB in women with the AG allele of rs2485579 (gene name: RYR2) was significantly 4.82-fold increase, and the risk of PTB in women with the AG allele of rs7903957 (gene name: TBX5) was significantly 0.25-fold reduce. Our results suggest that rs2485579 (in RYR2) can be a genetic marker of PTB, which is considered through the association with abnormal cytoplasmic Ca2+ concentration and dysfunctional uterine contraction due to differences of RYR2 in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jae Young Yoo
- Division of Biobank, Korea National Institute of Health (KNIH), Korea Disease Control and Prevention Agency (KDCA), Cheongju, Korea
| | - Young Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| |
Collapse
|
8
|
Kolb S, Hoffmann I, Monjé N, Dragomir MP, Jank P, Bischoff P, Keunecke C, Pohl J, Kunze CA, Marchenko S, Schmitt WD, Kulbe H, Sers C, Sehouli J, Braicu EI, Denkert C, Darb-Esfahani S, Horst D, Sinn BV, Taube ET. LRP1B-a prognostic marker in tubo-ovarian high-grade serous carcinoma. Hum Pathol 2023; 141:158-168. [PMID: 37742945 DOI: 10.1016/j.humpath.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.
Collapse
Affiliation(s)
- Svenja Kolb
- Department of Gynecology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Neukölln, 12351, Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Carlotta Keunecke
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jonathan Pohl
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Sofya Marchenko
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Wolfgang D Schmitt
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Silvia Darb-Esfahani
- MVZ Pathologie Spandau, 13589 Berlin, Spandau, Germany; MVZ Pathologie Berlin-Buch, 13125 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Bruno V Sinn
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Eliane T Taube
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Cai R, Zhu H, Liu Y, Sha H, Peng W, Yin R, Zhou G, Fang Y. To be, or not to be: the dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol 2023; 149:10027-10040. [PMID: 37261523 PMCID: PMC10423141 DOI: 10.1007/s00432-023-04919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Lung cancer is one of primary cancer type with high incidence and mortality, non-small cell lung cancer (NSCLC) is the most common type of lung cncer. For advanced lung cancer, traditional chemotherapy and targeted therapy become difficult to solve the dilemma of further progress. In recent years, with the clinical application of immunotherapy, the therapeutic strategy of lung cancer has changed dramatically. At present, immunotherapy has shown conspicuous efficacy in NSCLC patients with high expression of programmed death-ligand 1 (PD-L1) and high tumor mutational burden (TMB). The discovery of driver mutations brings delightful hope for targeted cancer therapy. However, it remains controversial whether immunotherapy can be used in NSCLC patients with these specific driver mutations. METHOD This article summarized the latest research progresses of immunotherapy in advanced NSCLC. We paid close attention to the relevance of various driver mutations and immunotherapy in NSCLC patients, and summarized the predictive effects of several driver mutations and immunotherapy. RESULTS The mutations of KRAS, KRAS+TP53, EPHA (especially EPHA5), ZFHX3, ZFHX3+TP53, NOTCH, BRAF and LRP1B+FAT3 have potential to be used as biomarkers to predict the positive effectiveness of immunotherapy. ZFHX3, ZFHX3+TP53, STKII/LKB1+KEAP1+SMARCA4+PBRM1 mutations in LUAD patients get more positive effect in immunotherapy. While the mutations of EGFR, KEAP1, STKII/LKB1+KRAS, EML4-ALK, MET exon 14 skipping mutation, PBRM1, STKII/LKB1+KEAP1+SMARCA4+PBRM1, ERBB2, PIK3CA and RET often indicate poor benefit from immunotherapy. CONCLUSION Many gene mutations have been shown to be associated with immunotherapy efficacy. Gene mutations should be combined with PD-L1, TMB, etc. to predict the effect of immunotherapy.
Collapse
Affiliation(s)
- Ruoxue Cai
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Hongyu Zhu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China
| | - Huanhuan Sha
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Weiwei Peng
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, People's Republic of China.
| | - Ying Fang
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
10
|
Wang CX, Yan J, Lin S, Ding Y, Qin YR. Mutant-allele dispersion correlates with prognosis risk in patients with advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04801-3. [PMID: 37093348 DOI: 10.1007/s00432-023-04801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Intra-tumor heterogeneity (ITH) contributes to lung cancer progression and resistance to therapy. To evaluate ITH and determine whether it may be employed as a predictive biomarker of prognosis in patients with advanced non-small cell lung cancer (NSCLC), we used a novel algorithm called mutant-allele dispersion (MAD). METHODS In the study, 103 patients with advanced NSCLC were enrolled. Using a panel of 425 cancer-related genes, next-generation sequencing (NGS) was performed on tumor specimens that had been collected. From NGS data, we derived MAD values, and we next looked into their relationships with clinical variables and different mutation subtypes. RESULTS The median MAD among 103 NSCLC patients was 0.73. EGFR mutation, tyrosine kinase inhibitor (TKI) therapy, radiotherapy, and chemotherapy cycles were all substantially correlated with the MAD score. In patients with lung adenocarcinoma (LUAD), correlation analysis revealed that the MAD score was substantially linked with Notch pathway mutation (P = 0.021). A significant relationship between high MAD and shorter progression-free survival (PFS) was found (HR = 2.004, 95%CI 1.269-3.163, P = 0.003). In patients with advanced NSCLC, histological type (P = 0.004), SMARCA4 mutation (P = 0.038), and LRP1B mutation (P = 0.006) were all independently associated with prognosis. The disease control rate was considerably greater in the low MAD group compared to the high MAD group in 19 LUAD patients receiving immunotherapy (92.9% vs. 40%, P = 0.037). TKI-PFS was longer in 37 patients with low MAD who received first-line TKI therapy (P = 0.014). CONCLUSION Our findings suggested that MAD is a practical and simple algorithm for assessing ITH, and populations with high MAD values are more likely to have EGFR mutations. MAD can be used as a potential biomarker to predict not only the prognosis of NSCLC but also the efficacy of immunotherapy and TKI therapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Chen-Xu Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan Lin
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian, China
| | - Yi Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yan-Ru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
12
|
TP53 and LRP1B Co-Wild Predicts Improved Survival for Patients with LUSC Receiving Anti-PD-L1 Immunotherapy. Cancers (Basel) 2022; 14:cancers14143382. [PMID: 35884443 PMCID: PMC9320428 DOI: 10.3390/cancers14143382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Immunotherapy brought long-term benefits for partial patients with lung squamous cell carcinoma (LUSC). The predictor of anti-PD-L1 therapy was controversial and limited in LUSC. We aimed to explore novel biomarker for LUSC immunotherapy and the potential mechanism. Five hundred and twenty-five Chinese patients (Geneplus cohort) with LUSC underwent targeted sequencing and were involved to explore the genomic profiling. TP53 and LRP1B were the most frequently recurrent genes and correlated to higher tumor mutational burden (TMB). We observed that LUSC patients with TP53 and LRP1B co-wild (co-wild type) were associated with better survival of anti-PD-L1 therapy compared with TP53 mutant or LRP1B mutant (mutant type) in POPAR/OAK cohort. Copy-number variation (CNV) and whole genome doubling (WGD) data from TCGA LUSC cohort were obtained to assess the CNV events. There were fewer CNV alterations and lower chromosome instability in patients with TP53/LRP1B co-wild compared with those with TP53/LRP1B mutant. RNA expression data from the TCGA LUSC cohort were collected to explore the differences in RNA expression and tumor immune microenvironment (TIME) between mutant and co-wild groups. The TP53/LRP1B co-wild type had a significantly increased proportion of multiple tumor-infiltrating lymphocytes (TILs), including activated CD8 T cell, activated dendritic cell (DC), and effector memory CD8 T cell. Immune-related gene sets including checkpoint, chemokine, immunostimulatory, MHC and receptors were enriched in the co-wild type. In conclusion, TP53/LRP1B co-wild LUSC conferred an elevated response rate in anti-PD-L1 therapy and improved survival, which was associated with a chromosome-stable phenotype and an activated immune microenvironment.
Collapse
|
13
|
Yu G, Mu H, Fang F, Zhou H, Li H, Wu Q, Xiong Q, Cui Y. LRP1B mutation associates with increased tumor mutation burden and inferior prognosis in liver hepatocellular carcinoma. Medicine (Baltimore) 2022; 101:e29763. [PMID: 35777027 PMCID: PMC9239668 DOI: 10.1097/md.0000000000029763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is the most common primary liver cancer and the main cause of death in patients with cirrhosis. LRP1B is found to involve in a variety of cancers, but the association of LRP1B mutation with tumor mutation burden (TMB) and prognosis of LIHC is rarely studied. METHODS AND RESULTS Herein, we analyzed the somatic mutation data of 364 LIHC patients from The Cancer Genome Atlas (TCGA) and found that LRP1B showed elevated mutation rate. Calculation of the TMB in LRP1B mutant and LRP1B wild-type groups showed that LRP1B mutant group had higher TMB compared with that in LRP1B wild-type group. Then survival analysis was performed and the survival curve showed that LRP1B mutation was associated with poor survival outcome, and this association remained to be significant after adjusting for multiple confounding factors including age, gender, tumor stage, mutations of BRCA1, BRCA2, and POLE. CONCLUSION Collectively, our results revealed that LRP1B mutation was related to high TMB value and poor prognosis in LIHC, indicating that LRP1B mutation is probably helpful for the selection of immunotherapy and prognosis prediction in LIHC.
Collapse
Affiliation(s)
- Ge Yu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Han Mu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Huikai Li
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Yunlong Cui, Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, PR China (e-mail: )
| |
Collapse
|
14
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
15
|
Zhu M, Zhang L, Cui H, Zhao Q, Wang H, Zhai B, Jiang R, Jiang Z. Co-Mutation of FAT3 and LRP1B in Lung Adenocarcinoma Defines a Unique Subset Correlated With the Efficacy of Immunotherapy. Front Immunol 2022; 12:800951. [PMID: 35069585 PMCID: PMC8770854 DOI: 10.3389/fimmu.2021.800951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) have demonstrated remarkable survival benefits and gained regulatory approval in non-small cell lung cancer (NSCLC) patients without an actionable driver mutation, but currently there is no well-established standard for how to screen the most suitable population for ICIs treatment. Here, we conducted a comprehensive analysis of the somatic mutation landscape of lung adenocarcinoma (LUAD) samples. After the stepwise screening of high-frequency mutated genes, two genes with prominent significance, FAT3 and LRP1B, were finally screened out. Through further analysis, we discovered that the co-mutation of FAT3 and LRP1B was associated with an earlier age of onset and occurred more frequently in Black/African American. Furthermore, co-mutation defines a unique subgroup of lung adenocarcinoma that can increase tumor mutational burden (TMB), boost cytotoxicity and tumor immunogenicity, and facilitate lymphocyte infiltration. The results of gene set enrichment analysis (GSEA) indicated that co-mutation can influence tumorigenesis through a variety of mechanisms. More strikingly, the subset of LUAD with co-mutation of FAT3 and LRP1B exhibited significantly prolonged immunotherapy progression free survival (PFS). In summary, co-mutation of FAT3 and LRP1B is a promising useful biomarker for predicting the efficacy of immunotherapy, which can improve the clinical efficiency of practicing precision medicine in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Mingyu Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.,Center for Precision Cancer Medicine & Translational Research, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Zhang
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.,Center for Precision Cancer Medicine & Translational Research, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haiyan Cui
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.,Center for Precision Cancer Medicine & Translational Research, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.,Center for Precision Cancer Medicine & Translational Research, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Breast Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Baochao Zhai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Medical Affairs Office, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.,Center for Precision Cancer Medicine & Translational Research, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhansheng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
16
|
Hong C, Thiele R, Feuerbach L. GenomeTornadoPlot: a novel R package for CNV visualization and focality analysis. Bioinformatics 2022; 38:2036-2038. [PMID: 35099519 PMCID: PMC8963283 DOI: 10.1093/bioinformatics/btac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/21/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Analysis of focal copy number variations (CNVs) is highly relevant for cancer research, as they pinpoint driver genes. More specifically, due to selective pressure oncogenes and tumor suppressor genes are more often affected by these events than neighboring passengers. In cases where multiple candidates co-reside in a genomic locus, careful comparison is required to either identify multigenic minimally deleted regions of synergistic co-mutations, or the true single driver gene. The study of focal CNVs in large cancer genome cohorts requires specialized visualization and statistical analysis. RESULTS We developed the GenomeTornadoPlot R-package which generates gene-centric visualizations of CNV types, locations and lengths from cohortwise NGS data. Furthermore, the software enables the pairwise comparison of proximate genes to identify co-mutation patterns or driver-passenger hierarchies. The visual examination provided by GenomeTornadoPlot is further supported by adaptable local and global focality scoring. Integrated into the GenomeTornadoPlot R-Package is the comprehensive PCAWG database of CNVs, comprising 2976 cancer genome entities from 46 cohorts of the Pan-cancer Analysis of Whole Genomes project. The GenomeTornadoPlot R-package can be used to perform exploratory or hypothesis-driven analyses on the basis of the PCAWG data or in combination with data provided by the user. AVAILABILITY AND IMPLEMENTATION GenomeTornadoPlot is written in R script and released via github: <https://github.com/chenhong-dkfz/GenomeTornadoPlot/>. The package is under the license of GPL-3.0.
Collapse
Affiliation(s)
- Chen Hong
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Robin Thiele
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | | |
Collapse
|
17
|
Bhatti G, Romero R, Gomez-Lopez N, Chaiworapongsa T, Jung E, Gotsch F, Pique-Regi R, Pacora P, Hsu CD, Kavdia M, Tarca AL. The amniotic fluid proteome changes with gestational age in normal pregnancy: a cross-sectional study. Sci Rep 2022; 12:601. [PMID: 35022423 PMCID: PMC8755742 DOI: 10.1038/s41598-021-04050-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
The cell-free transcriptome in amniotic fluid (AF) has been shown to be informative of physiologic and pathologic processes in pregnancy; however, the change in AF proteome with gestational age has mostly been studied by targeted approaches. The objective of this study was to describe the gestational age-dependent changes in the AF proteome during normal pregnancy by using an omics platform. The abundance of 1310 proteins was measured on a high-throughput aptamer-based proteomics platform in AF samples collected from women during midtrimester (16-24 weeks of gestation, n = 15) and at term without labor (37-42 weeks of gestation, n = 13). Only pregnancies without obstetrical complications were included in the study. Almost 25% (320) of AF proteins significantly changed in abundance between the midtrimester and term gestation. Of these, 154 (48.1%) proteins increased, and 166 (51.9%) decreased in abundance at term compared to midtrimester. Tissue-specific signatures of the trachea, salivary glands, brain regions, and immune system were increased while those of the gestational tissues (uterus, placenta, and ovary), cardiac myocytes, and fetal liver were decreased at term compared to midtrimester. The changes in AF protein abundance were correlated with those previously reported in the cell-free AF transcriptome. Intersecting gestational age-modulated AF proteins and their corresponding mRNAs previously reported in the maternal blood identified neutrophil-related protein/mRNA pairs that were modulated in the same direction. The first study to utilize an aptamer-based assay to profile the AF proteome modulation with gestational age, it reveals that almost one-quarter of the proteins are modulated as gestation advances, which is more than twice the fraction of altered plasma proteins (~ 10%). The results reported herein have implications for future studies focused on discovering biomarkers to predict, monitor, and diagnose obstetrical diseases.
Collapse
Affiliation(s)
- Gaurav Bhatti
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics & Gynecology, University of Arizona College of Medicine -Tucson, Tucson, AZ, USA
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
18
|
Yang SF, Lin CW, Chuang CY, Lee YC, Chung WH, Lai HC, Chang LC, Su SC. Host Genetic Associations with Salivary Microbiome in Oral Cancer. J Dent Res 2021; 101:590-598. [PMID: 34875929 DOI: 10.1177/00220345211051967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the growing recognition of a host genetic effect on shaping gut microbiota composition, the genetic determinants of oral microbiota remain largely unexplored, especially in the context of oral diseases. Here, we performed a microbiome genome-wide association study in 2 independent cohorts of patients with oral squamous cell carcinoma (OSCC, n = 144 and 67) and an additional group of noncancer individuals (n = 104). Besides oral bacterial dysbiosis and signatures observed in OSCC, associations of 3 loci with the abundance of genus-level taxa and 4 loci with β diversity measures were detected (q < 0.05) at the discovery stage. The most significant hit (rs10906082 with the genus Lachnoanaerobaculum, P = 3.55 × 10-9 at discovery stage) was replicated in a second OSCC cohort. Moreover, the other 2 taxonomical associations, rs10973953 with the genus Kingella (P = 1.38 × 10-9) and rs4721629 with the genus Parvimonas (P = 3.53 × 10-8), were suggestive in the meta-analysis combining 2 OSCC cohorts. Further pathway analysis revealed that these loci were enriched for genes in regulation of oncogenic and angiogenic responses, implicating a genetic anchor to the oral microbiome in estimation of casual relationships with OSCC. Our findings delineate the role of host genotypes in influencing the structure of oral microbial communities.
Collapse
Affiliation(s)
- S F Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C W Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - C Y Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Y C Lee
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - W H Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - H C Lai
- Department of Medical Biotechnology and Laboratory Science, and Microbiota Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| | - L C Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - S C Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| |
Collapse
|
19
|
Dionísio de Sousa IJ, Cunha AI, Saraiva IA, Portugal RV, Gimba ERP, Guimarães M, Prazeres H, Lopes JM, Soares P, Lima RT. LRP1B Expression as a Putative Predictor of Response to Pegylated Liposomal Doxorubicin Treatment in Ovarian Cancer. Pathobiology 2021; 88:400-411. [PMID: 34689147 DOI: 10.1159/000517372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pegylated liposomal doxorubicin (PLD) is among the most active therapies for recurrent/progressive ovarian cancer (OC). Low-density lipoprotein receptor-related protein 1B (LRP1B) is one of the 10 most significantly deleted genes in human cancers. It mediates endocytosis of several factors from the cellular environment including liposomes. Although the LRP1B role in cancer has not been fully disclosed, its contribution to resistance to liposomal therapies has been hypothesized. This study aimed to evaluate the impact of LRP1B protein as a possible marker of response to PLD in patients with OC. METHODS LRP1B expression and response to PLD were analyzed in OC cell lines by qRT-PCR and PrestoBlue viability assay, respectively. LRP1B protein expression was evaluated for the first time, in tumor samples from PLD-treated patients and controls (other chemotherapies) by immunohistochemistry. Association of LRP1B staining score (determined based on intensity and percentage of positively stained cells) with clinicopathological features, response to therapy and survival outcomes was evaluated. RESULTS OC cells with increased expression of LRP1B were more sensitive to PLD. LRP1B staining score was associated with clinicopathological features, response to therapy, and survival outcomes. Higher LRP1B levels were associated with prolonged progression-free survival. This association was more evident in patients treated with PLD and in responders to PLD. CONCLUSION Our results support a possible role of LRP1B as a predictor of response to PLD in patients with OC.
Collapse
Affiliation(s)
- Isabel J Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Isabel Cunha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês A Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Nova University of Lisbon, Lisboa, Portugal
| | - Raquel V Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Etel R P Gimba
- Natural Science Department, Health and Humanities Institute, Fluminense Federal University, Rio das Ostras, Brazil.,Cellular and Molecular Oncobiology Program, Research Coordination, National Institute of Cancer, Rio de Janeiro, Brazil
| | - Marcos Guimarães
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Hugo Prazeres
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,IPO-Coimbra, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - José M Lopes
- Faculty of Medicine, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula Soares
- Faculty of Medicine, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel T Lima
- Faculty of Medicine, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Cancer Signaling and Metabolism Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Chen C, Wang T, Yang M, Song J, Huang M, Bai Y, Su H. Genomic Profiling of Blood-Derived Circulating Tumor DNA from Patients with Advanced Biliary Tract Cancer. Pathol Oncol Res 2021; 27:1609879. [PMID: 34720757 PMCID: PMC8553707 DOI: 10.3389/pore.2021.1609879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Background: Biliary tract cancer is a highly lethal malignancy with poor clinical outcome. Accumulating evidence indicates targeted therapeutics may provide new hope for improving treatment response in BTC, hence better understanding the genomic profile is particularly important. Since tumor tissue may not be available for some patients, a complementary method is urgently needed. Circulating tumor DNA (ctDNA) provides a noninvasive means for detecting genomic alterations, and has been regarded as a promising tool to guide clinical therapies. Methods: Next-generation sequencing of 150 cancer-related genes was used to detect gene alterations in blood-derived ctDNA from 154 Chinese patients with BTC. Genomic alterations were analyzed and compared with an internal tissue genomic database and TCGA database. Results: 94.8% patients had at least one change detected in their ctDNA. The median maximum somatic allele frequency was 6.47% (ranging 0.1-34.8%). TP53 and KRAS were the most often mutated genes. The frequencies of single nucleotide variation in commonly mutated genes in ctDNA were similar to those detected in tissue samples, TP53 (35.1 vs. 40.4%) and KRAS (20.1 vs. 22.6%). Pathway analysis revealed that mutated genes were mapped to several key pathways including PI3K-Akt, p53, ErbB and Ras signaling pathway. In addition, patients harboring LRP1B, TP53, and ErbB family mutations presented significantly higher tumor mutation burden. Conclusions: These findings demonstrated that ctDNA testing by NGS was feasible in revealing genomic changes and could be a viable alternative to tissue biopsy in patients with metastatic BTC.
Collapse
Affiliation(s)
- Chen Chen
- Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, China
| | - Tao Wang
- Hepatobiliary Surgery, Hunan Provincial People’s Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, China
| | - Mengmei Yang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Jia Song
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hao Su
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Wang M, Xiong Z. The Mutation and Expression Level of LRP1B are Associated with Immune Infiltration and Prognosis in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:6343-6358. [PMID: 34629898 PMCID: PMC8495614 DOI: 10.2147/ijgm.s333390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This study aimed to explore the expression level and mutation of LRP1B in hepatocellular carcinoma (HCC) and to analyse the relationship between its prognostic value and immune invasion. Methods HCC mutant gene sets were obtained from the Cancer Genome Atlas and International Cancer Genome Consortium databases. The Kaplan–Meier method was used to evaluate the prognostic value of LRP1B expression and mutation load in HCC. The relationships between LRP1B expression level and immune cells and immune marker molecules were analysed by using the TIMER database. The association of LRP1B expression with drug sensitivity was obtained by using CellMiner. Gene set enrichment analysis and co-expression by Spearman correlation analysis were used to explore the internal mechanism of LRP1B in HCC. Results Seventeen most commonly mutated genes were screened out, and LRP1B was the only gene associated with HCC prognosis. The copy number variations were significantly correlated with T cell CD8+ (P < 0.05). LRP1B expression level was positively correlated with the infiltration degree of macrophage (P < 0.05, R = 0.132), myeloid dendritic cell (P < 0.05, R = 0.093), neutrophil (P < 0.05, R = 0.134) and T cell CD8+ cells (P < 0.05, R = 0.102) and negatively correlated with B cell (P < 0.05, R = −0.014) and T cell CD4+ (P < 0.05, R = −0.075). LRP1B expression level was significantly correlated with immunomarker molecules and drug sensitivity (all P < 0.05). The prediction of lncRNA RUSC1-AS1/hsa-miR-215-5p/LRP1B axis by bioinformatics may be the potential mechanism underlying LRP1B’s effect on HCC prognosis and progression. Conclusion LRP1B plays a vital role in HCC prognostic value, which is expected to be a new potential therapeutic target for HCC. LRP1B provides a theoretical basis for the clinical targeted therapy of HCC.
Collapse
Affiliation(s)
- Mengmeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, People's Republic of China
| | - Zhifan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, People's Republic of China
| |
Collapse
|
22
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
23
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Tian R, Esmailizadeh A. Gene network analysis to determine the effect of hypoxia-associated genes on brain damages and tumorigenesis using an avian model. J Genet Eng Biotechnol 2021; 19:100. [PMID: 34236536 PMCID: PMC8266987 DOI: 10.1186/s43141-021-00184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxia refers to the condition of low oxygen pressure in the atmosphere and characterization of response to hypoxia as a biological complex puzzle, is challenging. Previously, we carried out a comparative genomic study by whole genome resequencing of highland and lowland Iranian native chickens to identify genomic variants associated with hypoxia conditions. Based on our previous findings, we used chicken as a model and the identified hypoxia-associated genes were converted to human's orthologs genes to construct the informative gene network. The main goal of this study was to visualize the features of diseases due to hypoxia-associated genes by gene network analysis. RESULTS It was found that hypoxia-associated genes contained several gene networks of disorders such as Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and cancers. We found that biological pathways are involved in mitochondrion dysfunctions including peroxynitrous acid production denoted in brain injuries. Lewy body and neuromelanin were reported as key symptoms in Parkinson disease. Furthermore, calmodulin, and amyloid precursor protein were detected as leader proteins in Alzheimer's diseases. Dexamethasone was reported as the candidate toxic drug under the hypoxia condition that implicates diabetes, osteoporosis, and neurotoxicity. Our results suggested DNA damages caused by the high doses of UV radiation in high-altitude conditions, were associated with breast cancer, ovarian cancer, and colorectal cancer. CONCLUSIONS Our results showed that hypoxia-associated genes were enriched in several gene networks of disorders including Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and different types of cancers. Furthermore, we suggested, UV radiation and low oxygen conditions in high-altitude regions may be responsible for the variety of human diseases.
Collapse
Affiliation(s)
- Hamed Kharrati-Koopaee
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Dadpasand
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Rugang Tian
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
24
|
Han R, Chen G, Li M, Peng ZM, Xu L. Screening and clinical significance of lymph node metastasis-related genes within esophagogastric junction adenocarcinoma. Cancer Med 2021; 10:5088-5100. [PMID: 34152098 PMCID: PMC8335809 DOI: 10.1002/cam4.4065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023] Open
Abstract
Background Despite recent improvements in treatment technologies, such as surgical resection and chemoradiotherapy, the prognosis of patients with esophagogastric junction adenocarcinoma (EJA) remains poor due to early lymph node metastasis. Since few studies have investigated genes associated with lymph node metastasis in EJA, we aimed to screen lymph node metastasis‐associated genes and clarify their expression status and prognostic significance in EJA. Methods The differential frequency of mutations between carcinoma and para‐carcinoma tissues from 199 cases with EJA was detected using targeted next‐generation sequencing (tNGS). Following a stratified analysis to determine that gender has no effect on the frequency of gene mutations, lymph node metastasis‐related genes, including CDK6, MET, NOTCH1, and LRP1B, were screened, and CDK6 and LRP1B were selected for further study as they displayed significant differences in mutation rates. Differences in their expression status were verified using immunohistochemical (IHC) staining in 18 CDK6‐ and 17 LRP1B‐mutated samples and a randomly matched control group. Results tNGS revealed that CDK6 and LRP1B mutation frequencies were significantly different between EJA cases with (N ≥ 1) or without (N = 0) lymph node metastasis. In particular, CDK6 mutation frequency was expected less, whereas that of LRP1B was remarkably higher in cases with stage N0 than in those with stage N ≥ 1. IHC staining confirmed significant differences in CDK6 and LRP1B expression status between the study and control cohorts. Chi‐square tests revealed that a high CDK6 expression status correlated significantly with smoking history (p = 0.044), T stage (p = 0.035), N stage (p = 0.000), and advanced TNM stage (p = 0.001) in EJA, whereas a high LRP1B expression status only correlated with BMI (p = 0.013) and N stage (p = 0.000). Furthermore, as confirmed by survival status investigation, a high LRP1B expression status predicted good prognosis, and a high CDK6 expression status was an independent predictor of poor prognosis in patients with EJA. Conclusions Taken together, the findings of this study demonstrate that a high CDK6 and LRP1B expression status promotes and inhibits lymph node metastasis in patients with EJA, respectively, suggesting that both CDK6 and LRP1B are significantly potential predictors of lymph node metastasis and prognosis in EJA.
Collapse
Affiliation(s)
- Rui Han
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Zhong-Min Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Province, P. R. China
| |
Collapse
|
25
|
Raeisi Dehkordi S, Luebeck J, Bafna V. FaNDOM: Fast nested distance-based seeding of optical maps. PATTERNS (NEW YORK, N.Y.) 2021; 2:100248. [PMID: 34027500 PMCID: PMC8134938 DOI: 10.1016/j.patter.2021.100248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies for analysis of DNA molecules, it is possible to inexpensively generate long OM data ( > 150 kbp) at high coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome for identification of genomic structural variants. We introduce FaNDOM (Fast Nested Distance Seeding of Optical Maps)-an optical map alignment tool that greatly reduces the search space of the alignment process. On four benchmark human datasets, FaNDOM was significantly (4-14×) faster than competing tools while maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell lines and identified many biologically interesting structural variants, including deletions, duplications, gene fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/jluebeck/FaNDOM.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Zhang L, Wang Y, Li Z, Lin D, Liu Y, Zhou L, Wang D, Wu A, Li Z. Clinicopathological features of tumor mutation burden, Epstein-Barr virus infection, microsatellite instability and PD-L1 status in Chinese patients with gastric cancer. Diagn Pathol 2021; 16:38. [PMID: 33933102 PMCID: PMC8088709 DOI: 10.1186/s13000-021-01099-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Gastric cancer (GC) is the 4th most common type of cancer worldwide. Different GC subtypes have unique molecular features that may have different therapeutic methods. The aim of the present study was to investigate Epstein-Barr virus (EBV) infection, microsatellite instability (MSI) status, the expression of programmed death-ligand 1 (PD-L1) and gene mutations in GC patients. Methods The data of 2504 GC patients, who underwent curative gastrectomy with lymphadenectomy at Peking University Cancer Hospital between 2013 and 2018, were reviewed. We analyzed the clinicopathological factors associated with the immunohistochemistry (IHC) profiles of these patients, and genetic alterations were analyzed using next generation sequencing (NGS). Results Mismatch repair-deficient (d-MMR) GC patients were found to have a higher probability of expressing PD-L1 (p = 0.000, PD-L1 cutoff value = 1%). In addition, 4 and 6.9% of the 2504 gastric cancer patients were EBV-positive and d-MMR, respectively. The number of MLH1/PMS2-negative cases was 126 (6%), and the number of MSH2/MSH6-negative cases was 14 (0.9%). d-MMR status was associated with a intestinal group (p = 0.012), but not with tumor differentiation. Furthermore, MSI and d-MMR GC status (detected by NGS and IHC, respectively) were consistently high, and the rate of MSI was higher in patients with d-MMR GC. A number of genes associated with DNA damage repair were detected in GC patients with MSI, including POLE, ETV6, BRCA and RNF43. In patients with a high tumor mutation burden, the most significantly mutated genes were LRP1B (79.07%), ARID1A (74.42%), RNF43 (69.77%), ZFHX3 (65.12%), TP53 (58.14%), GANS (51.16%), BRCA2 (51.16%), PIK3CA (51.16%), NOTCH1 (51.16%), SMARCA4 (48.84%), ATR (46.51%), POLE (41.86%) and ATM (39.53%). Conclusions Using IHC and NGS, MSI status, protein expression, tumor mutation burden (TMB) and genetic alterations were identified in patients with GC, which provides a theoretical basis for the future clinical treatment of GC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Yinkui Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Dongmei Lin
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Yiqiang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Linxin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Dongliang Wang
- ChosenMed, Beijing Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Aiwen Wu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.
| |
Collapse
|
27
|
Cao CH, Liu R, Lin XR, Luo JQ, Cao LJ, Zhang QJ, Lin SR, Geng L, Sun ZY, Ye SK, Yu ZY, Shi Y, Xia X. LRP1B mutation is associated with tumor HPV status and promotes poor disease outcomes with a higher mutation count in HPV-related cervical carcinoma and head & neck squamous cell carcinoma. Int J Biol Sci 2021; 17:1744-1756. [PMID: 33994859 PMCID: PMC8120457 DOI: 10.7150/ijbs.56970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) infection and gene mutations were reputed as key factors in cervical carcinoma (CC) and head and neck squamous cell carcinoma (HNSCC). However, the associations of HPV status and gene mutations remain to be determined. This study aims to identify molecular patterns of LRP1B mutation and HPV status via rewiring tumor samples of HNSCC (n=1478) and CC (n=178) from the TCGA dataset. Here, we found that LRP1B mutation was associated with HPV status in CC (P=0.040) and HNSCC (P=0.044), especially in HPV 16 integrated CC (P=0.036). Cancer survival analysis demonstrated that samples with LRP1B mutation showed poor disease outcomes in CC (P=0.013) and HNSCC (P=0.0124). In addition, the expression status of LPR1B was more favorable for prediction than TP53 or RB1 in CC and HNSCC. Mutation clustering analysis showed that samples with LRP1B mutation showed higher mutation count in CC (P=1.76e-67) and HNSCC (P<10e-10). Further analysis identified 289 co-occurrence genes in these two cancer types, which were enriched in PI3K signaling, cell division process, and chromosome segregation process, et al. The 289-co-occurrence gene signature identified a cluster of patients with a higher portion of copy number variation (CNV) lost in the genome, different tumor HPV status (P<10e-10), higher mutation count (P<10e-10), higher fraction genome altered value (P=2.078e-4), higher aneuploidy score (P=3.362e-4), and earlier started the smoking year (P=2.572e-4), which were associated with shorter overall survival (P=0.0103) in CC and HNSCC samples. Overall, LRP1B mutation was associated with tumor HPV status and was an unfavorable prognostic biomarker for CC and HNSCC.
Collapse
Affiliation(s)
- Can-Hui Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Rang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xin-Ran Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Jia-Qi Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Li-Juan Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Qiu-Ju Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Shou-Ren Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Lan Geng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Zhong-Yi Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Si-Kang Ye
- Department of Critical Care Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhi-Ying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yu Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xi Xia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| |
Collapse
|
28
|
Brown LC, Tucker MD, Sedhom R, Schwartz EB, Zhu J, Kao C, Labriola MK, Gupta RT, Marin D, Wu Y, Gupta S, Zhang T, Harrison MR, George DJ, Alva A, Antonarakis ES, Armstrong AJ. LRP1B mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types. J Immunother Cancer 2021; 9:e001792. [PMID: 33653800 PMCID: PMC7929846 DOI: 10.1136/jitc-2020-001792] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1b (encoded by LRP1B) is a putative tumor suppressor, and preliminary evidence suggests LRP1B-mutated cancers may have improved outcomes with immune checkpoint inhibitors (ICI). METHODS We conducted a multicenter, retrospective pan-cancer analysis of patients with LRP1B alterations treated with ICI at Duke University, Johns Hopkins University (JHU) and University of Michigan (UM). The primary objective was to assess the association between overall response rate (ORR) to ICI and pathogenic or likely pathogenic (P/LP) LRP1B alterations compared with LRP1B variants of unknown significance (VUS). Secondary outcomes were the associations with progression-free survival (PFS) and overall survival (OS) by LRP1B status. RESULTS We identified 101 patients (44 Duke, 35 JHU, 22 UM) with LRP1B alterations who were treated with ICI. The most common tumor types by alteration (P/LP vs VUS%) were lung (36% vs 49%), prostate (9% vs 7%), sarcoma (5% vs 7%), melanoma (9% vs 0%) and breast cancer (3% vs 7%). The ORR for patients with LRP1B P/LP versus VUS alterations was 54% and 13%, respectively (OR 7.5, 95% CI 2.9 to 22.3, p=0.0009). P/LP LRP1B alterations were associated with longer PFS (HR 0.42, 95% CI 0.26 to 0.68, p=0.0003) and OS (HR 0.62, 95% CI 0.39 to 1.01, p=0.053). These results remained consistent when excluding patients harboring microsatellite instability (MSI) and controlling for tumor mutational burden (TMB). CONCLUSIONS This multicenter study shows significantly better outcomes with ICI therapy in patients harboring P/LP versus VUS LRP1B alterations, independently of TMB/MSI status. Further mechanistic and prospective validation studies are warranted.
Collapse
Affiliation(s)
- Landon C Brown
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew D Tucker
- Internal Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ramy Sedhom
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric B Schwartz
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason Zhu
- Levine Cancer Institute, Charlotte, North Carolina, USA
| | - Chester Kao
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew K Labriola
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Rajan T Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniele Marin
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Yuan Wu
- Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Santosh Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Tian Zhang
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Ajjai Alva
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel S Antonarakis
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| |
Collapse
|
29
|
Zhang H, Wang Y, Ji Q, Cai H, Liang X, Xie J, Li H, Wang J, Zhu G, Tian E, Zhu L, Yuan M, Chen R, Zhao M. Clinicopathological and molecular characteristics of patients with hypermutant lung cancer: A retrospective cohort study. Oncol Lett 2021; 21:329. [PMID: 33692861 PMCID: PMC7933761 DOI: 10.3892/ol.2021.12590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor mutation burden (TMB) is an independent indicator used to select patients sensitive to immunotherapy. The present study aimed to investigate the clinicopathological and molecular characteristics of patients with hypermutant lung cancer to identify an economical, simple and complementary method for predicting TMB and immunotherapy responses. In total, 1,000 patients with lung cancer were randomly selected, and their samples were submitted to next-generation sequencing, with their TMB status reviewed. The threshold of hypermutation was set to 17.24 mutations (muts)/Mb. The proportion of smokers was higher in the hypermutant cohort (n=67) compared with in the non-hypermutant cohort (n=933; 85.1 vs. 46.6%; P<0.0001). Compared with in the non-hypermutant cohort, the proportion of squamous cell carcinoma cases and small cell lung cancer cases was higher in the hypermutant cohort (22.4 vs. 13.1% and 6.0 vs. 2.6%, respectively). In addition, compared with in the non-hypermutant cohort, mutations in the low-density lipoprotein receptor-related protein 1B were more frequently observed in the hypermutant cohort (67.2 vs. 14.3%; P<0.0001). A similar trend was obtained for all genes tested, except for the EGFR gene. Furthermore, in the hypermutant cohort, the prevalence of microsatellite instability was extremely high (9.0%). The mutation frequency in DNA damage response (DDR) genes was notably higher in the hypermutant cohort, where several DDR-associated genes were enriched, compared with in the non-hypermutant cohort. The enrichment analysis revealed a strong association between mutations in Notch signaling and high TMB. To the best of our knowledge, the present study is the first to comprehensively investigate the clinical and genetic characteristics of patients with hypermutant lung cancer in a Chinese population. The results of the current study suggested that hypermutant lung cancer exerted distinctive clinical and genetic features, which may be used as complementary indicators for screening patients sensitive to immunotherapy.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Yuan Wang
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Qiaoxia Ji
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Hongmei Cai
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Xiangcun Liang
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Jiong Xie
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Hua Li
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Guiyun Zhu
- Department of Pathology, Hebei Chest Hospital, Shijiazhuang, Hebei 050041, P.R. China
| | - Erpeng Tian
- Molecular Biology Laboratory, Hebei Chest Hospital, Shijiazhuang, Hebei 050041, P.R. China
| | - Lingling Zhu
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | | | | | - Min Zhao
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| |
Collapse
|
30
|
Novel Mutations in a Lethal Case of Lymphomatous Adult T Cell Lymphoma with Cryptic Myocardial Involvement. ACTA ACUST UNITED AC 2021; 28:818-824. [PMID: 33562071 PMCID: PMC7985755 DOI: 10.3390/curroncol28010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The autopsy of a 65-year-old diabetic African American male revealed significant left myocardial involvement by adult T-cell leukemia/lymphoma (ATLL) despite normal pre-mortem fluorodeoxyglucose (FDG) uptake by positron emission tomography/computed tomography (PET/CT). Due to pre-existing diabetic cardiomyopathy with reduced ejection fraction (EF) and compatible imaging studies, cardiac lymphomatous involvement was not suspected. While peripheral blood was negative for leukemia, next-generation sequencing of a lymph node revealed at least eight novel mutations (AXIN1, R712Q, BARD1 R749K, CTNNB1 I315V, CUX1 P102T, DNMT3A S199R, FGFR2 S431L, LRP1B Y2560C and STAG2 I771M). These findings underscore a diagnostic pitfall in a rare lymphomatous variant of ATLL infiltrating myocardium and contribute to its molecular characterization.
Collapse
|
31
|
Yasufuku I, Saigo C, Kito Y, Yoshida K, Takeuchi T. Prognostic significance of LDL receptor-related protein 1B in patients with gastric cancer. J Mol Histol 2021; 52:165-172. [PMID: 33389427 DOI: 10.1007/s10735-020-09932-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
LDLR-related protein 1B (LRP1B) is believed to internalize ligands through receptor-mediated endocytosis. Previous epigenetic and genetic studies have indicated that impaired LRP1B mRNA expression might be related to gastric carcinogenesis. However, expression and prognostic significance of LRP1B protein remain to be elucidated. This study aimed to unravel the clinicopathological characteristics of LRP1B protein expression in gastric cancer. Immunohistochemical staining with antibodies specific to LRP1B peptide, which has an EXXXLL motif-containing region in the C-terminal flexible loop for intracellular sorting, was performed with 100 gastric cancer tissue specimens. Out of 100 tissue specimens, 45 exhibited cytoplasmic localization of LRP1B immunoreactivity. This cytoplasmic localization of LRP1B was significantly higher (P = 0.044) in intestinal-type gastric cancer (25 of 44) than in diffuse-type gastric cancer (20 of 56). Notably, cytoplasmic LRP1B immunoreactivity was significantly associated with low clinicopathological stage and favorable prognosis of patients with diffuse-type gastric cancer (P = 0.014), but nor with intestinal-type gastric cancer (P = 0.994). Multivalent analysis revealed that cytoplasmic LRP1B immunoreactivity had an independent favorable prognostic value in diffuse-type gastric cancer (P = 0.046; hazard ratio 3.058, 95% confidence interval 1.022-9.149). In contrast, no significant relation of cytoplasmic LRP1B immunoreactivity to patients' prognosis was found in intestinal-type gastric cancer. Double immunocytochemical staining demonstrated that cytoplasmic LRP1B was co-localized with RAB11FIP1, which constituted the endocytic recycling compartments in diffuse-type gastric cancer cells. The findings of this study indicated that impaired endocytosis of the cytoplasmic domain of LRP1B, resulting in insufficient ligand internalization, is related to poor prognosis of patients with diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Itaru Yasufuku
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
32
|
Wang L, Yan K, He X, Zhu H, Song J, Chen S, Cai S, Zhao Y, Wang L. LRP1B or TP53 mutations are associated with higher tumor mutational burden and worse survival in hepatocellular carcinoma. J Cancer 2021; 12:217-223. [PMID: 33391418 PMCID: PMC7738815 DOI: 10.7150/jca.48983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) have been proved to be beneficial for advanced HCC. Tumor mutational burden (TMB) is an important predictor for efficacy of ICIs. However, the genetic landscape of Chinese HCC patients and the association between TMB and frequently mutated genes of HCC remain unclear. Methods: Whole-exome sequencing data of 369 liver tumors from the Cancer Genome Altas (TCGA) and next generation sequencing (NGS) data of 657 liver tumors from Chinese clinical dataset were included. Results:TP53 (61.8%) was the most frequently mutated gene in the Chinese cohort, followed by CTNNB1 (17.2%), RB1 (13.7%), and LRP1B (12.3%). The PI3K-Akt signaling (11.2%), the Rap1 signaling (8.1%), and Ras signaling (7.7%), were significantly mapped. LRP1B mutations were significantly associated with higher TMB in both TCGA cohort (P = 0.0003) and Chinese cohort (P = 0.0005). And TP53 mutations were also associated with higher TMB in the TCGA and Chinese cohort (P = 0.0005 and 0.0010, respectively). Prognosis analysis performed in TCGA cohort revealed LRP1B mutations were significantly associated with shorter overall survival (OS, median, 20.9 vs 61.7 months; HR, 2.22; P = 0.0012). TP53 mutation was an independent risk factor affecting both OS (HR 1.58, P = 0.0109) and PFS (HR 1.59, P = 0.0027). Conclusions: The results suggest that LRP1B or TP53 mutations are associated with higher TMB and a poor prognostic factor in HCC.
Collapse
Affiliation(s)
- Longrong Wang
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kai Yan
- Fifth Department of Liver Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xigan He
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongxu Zhu
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Song
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shangli Cai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yiming Zhao
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Wang
- Liver Surgery Department, Shanghai Cancer Center, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
34
|
Forgetta V, Manousaki D, Istomine R, Ross S, Tessier MC, Marchand L, Li M, Qu HQ, Bradfield JP, Grant SFA, Hakonarson H, Paterson AD, Piccirillo C, Polychronakos C, Richards JB. Rare Genetic Variants of Large Effect Influence Risk of Type 1 Diabetes. Diabetes 2020; 69:784-795. [PMID: 32005708 PMCID: PMC7085253 DOI: 10.2337/db19-0831] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
Abstract
Most replicated genetic determinants for type 1 diabetes are common (minor allele frequency [MAF] >5%). We aimed to identify novel rare or low-frequency (MAF <5%) single nucleotide polymorphisms with large effects on risk of type 1 diabetes. We undertook deep imputation of genotyped data followed by genome-wide association testing and meta-analysis of 9,358 type 1 diabetes case and 15,705 control subjects from 12 European cohorts. Candidate variants were replicated in a separate cohort of 4,329 case and 9,543 control subjects. Our meta-analysis identified 27 independent variants outside the MHC, among which 3 were novel and had MAF <5%. Three of these variants replicated with P replication < 0.05 and P combined < P discovery In silico analysis prioritized a rare variant at 2q24.3 (rs60587303 [C], MAF 0.5%) within the first intron of STK39, with an effect size comparable with those of common variants in the INS and PTPN22 loci (combined [from the discovery and replication cohorts] estimate of odds ratio [ORcombined] 1.97, 95% CI 1.58-2.47, P combined = 2.9 × 10-9). Pharmacological inhibition of Stk39 activity in primary murine T cells augmented effector responses through enhancement of interleukin 2 signaling. These findings provide insight into the genetic architecture of type 1 diabetes and have identified rare variants having a large effect on disease risk.
Collapse
Affiliation(s)
- Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Despoina Manousaki
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephanie Ross
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Catherine Tessier
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Luc Marchand
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Min Li
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Child Health and Human Development Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children's Hospital of Philadelphia, Pliladelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children's Hospital of Philadelphia, Pliladelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Andrew D Paterson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Constantin Polychronakos
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, U.K
| |
Collapse
|
35
|
Teng H, Wei W, Li Q, Xue M, Shi X, Li X, Mao F, Sun Z. Prevalence and architecture of posttranscriptionally impaired synonymous mutations in 8,320 genomes across 22 cancer types. Nucleic Acids Res 2020; 48:1192-1205. [PMID: 31950163 PMCID: PMC7026592 DOI: 10.1093/nar/gkaa019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic synonymous mutations are one of the most frequent genetic variants occurring in the coding region of cancer genomes, while their contributions to cancer development remain largely unknown. To assess whether synonymous mutations involved in post-transcriptional regulation contribute to the genetic etiology of cancers, we collected whole exome data from 8,320 patients across 22 cancer types. By employing our developed algorithm, PIVar, we identified a total of 22,948 posttranscriptionally impaired synonymous SNVs (pisSNVs) spanning 2,042 genes. In addition, 35 RNA binding proteins impacted by these identified pisSNVs were significantly enriched. Remarkably, we discovered markedly elevated ratio of somatic pisSNVs across all 22 cancer types, and a high pisSNV ratio was associated with worse patient survival in five cancer types. Intriguing, several well-established cancer genes, including PTEN, RB1 and PIK3CA, appeared to contribute to tumorigenesis at both protein function and posttranscriptional regulation levels, whereas some pisSNV-hosted genes, including UBR4, EP400 and INTS1, exerted their function during carcinogenesis mainly via posttranscriptional mechanisms. Moreover, we predicted three drugs associated with two pisSNVs, and numerous compounds associated with expression signature of pisSNV-hosted genes. Our study reveals the prevalence and clinical relevance of pisSNVs in cancers, and emphasizes the importance of considering posttranscriptional impaired synonymous mutations in cancer biology.
Collapse
Affiliation(s)
- Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenqing Wei
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiying Xue
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Shi
- Sino-Danish college, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Wang T, Xie S, Luo R, Shi L, Bai P, Wang X, Wan R, Deng J, Wu Z, Li W, Xiao W, Wang Y, Chen B, Zhang K, Xing J. Two novel TSC2 mutations in renal epithelioid angiomyolipoma sensitive to everolimus. Cancer Biol Ther 2019; 21:4-11. [PMID: 31597506 DOI: 10.1080/15384047.2019.1665955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
People who suffers renal angiomyolipoma (AML) has a low quality of life. It is widely known that genetic factors including TSC2 mutation contribute to certain populations of renal AML-bearing patients. In this study, we are the first to identify novel TSC2 mutations in one Chinese renal epithelioid AML patient: c.2652C>A; c.2688G>A based on sequencing result from biopsy tissue. These two somatic mutations cause a translational stop of TSC2, which leads to mTORC1 activation. Given the fact that activation of mTORC1 ensures cell growth and survival, we applied its inhibitor, FDA-approved everolimus, to this woman. After months of treatment with everolimus, Computer-Tomography (CT) scan results showed that everolimus successfully reduced tumor growth and distal metastasis and achieved partial response (PR) to everolimu according to Response Evaluation Criteria in Solid Tumors (RECIST version 1.1). Further Blood Routine Examination results showed the concentration of red cell mass, hemoglobin, white blood cell (WBC), platelets and hematocrit (HCT) significantly returned to normal levels indicating patients with these two TSC2 mutations could be effectively treated by everolimus.
Collapse
Affiliation(s)
- Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Shunqiang Xie
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Rongtuan Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lianguo Shi
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xuegang Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Wan
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jiang Deng
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhun Wu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wen Xiao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yongfeng Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Kaiyan Zhang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Chung AK, OuYang CN, Liu H, Chao M, Luo JD, Lee CY, Lu YJ, Chung IC, Chen LC, Wu SM, Tsang NM, Chang KP, Hsu CL, Li HP, Chang YS. Targeted sequencing of cancer-related genes in nasopharyngeal carcinoma identifies mutations in the TGF-β pathway. Cancer Med 2019; 8:5116-5127. [PMID: 31328403 PMCID: PMC6718742 DOI: 10.1002/cam4.2429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Approximately, 25% of nasopharyngeal carcinoma (NPC) patients develop recurrent disease. NPC may involve relatively few genomic alterations compared to other cancers due to its association with Epstein‐Barr virus (EBV). We envisioned that in‐depth sequencing of tumor tissues might provide new insights into the genetic alterations of this cancer. Thirty‐three NPC paired tumor/adjacent normal or peripheral blood mononuclear cell samples were deep‐sequenced (>1000×) with respect to a panel of 409 cancer‐related genes. Newly identified mutations and its correlation with clinical outcomes were evaluated. Profiling of somatic mutations and copy number variations (CNV) in NPC tumors identified alterations in RTK/RAS/PI3K, NOTCH, DNA repair, chromatin remodeling, cell cycle, NF‐κB, and TGF‐β pathways. In addition, patients harbored CNV among 409 cancer‐related genes and missense mutations in TGF‐β/SMAD signaling were associated with poor overall survival and poor recurrence‐free survival, respectively. The CNV events were correlated with plasma EBV copies, while mutations in TGFBR2 and SMAD4 abrogate SMAD‐dependent TGF‐β signaling. Functional analysis revealed that the new TGFBR2 kinase domain mutants were incapable of transducing the signal, leading to failure of phosphorylation of SMAD2/3 and activation of downstream TGF‐β‐mediated cell growth arrest. This study provides evidence supporting CNV and dysregulated TGF‐β signaling contributes to exacerbating the NPC pathogenesis.
Collapse
Affiliation(s)
- An-Ko Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Biochemistry, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Mei Chao
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Bioinformatics Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., Taipei City, Taiwan, Republic of China
| | - I-Che Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shao-Min Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Ngan-Ming Tsang
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsin-Pai Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| |
Collapse
|
38
|
Cai C, Cooper GF, Lu KN, Ma X, Xu S, Zhao Z, Chen X, Xue Y, Lee AV, Clark N, Chen V, Lu S, Chen L, Yu L, Hochheiser HS, Jiang X, Wang QJ, Lu X. Systematic discovery of the functional impact of somatic genome alterations in individual tumors through tumor-specific causal inference. PLoS Comput Biol 2019; 15:e1007088. [PMID: 31276486 PMCID: PMC6650088 DOI: 10.1371/journal.pcbi.1007088] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/23/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is mainly caused by somatic genome alterations (SGAs). Precision oncology involves identifying and targeting tumor-specific aberrations resulting from causative SGAs. We developed a novel tumor-specific computational framework that finds the likely causative SGAs in an individual tumor and estimates their impact on oncogenic processes, which suggests the disease mechanisms that are acting in that tumor. This information can be used to guide precision oncology. We report a tumor-specific causal inference (TCI) framework, which estimates causative SGAs by modeling causal relationships between SGAs and molecular phenotypes (e.g., transcriptomic, proteomic, or metabolomic changes) within an individual tumor. We applied the TCI algorithm to tumors from The Cancer Genome Atlas (TCGA) and estimated for each tumor the SGAs that causally regulate the differentially expressed genes (DEGs) in that tumor. Overall, TCI identified 634 SGAs that are predicted to cause cancer-related DEGs in a significant number of tumors, including most of the previously known drivers and many novel candidate cancer drivers. The inferred causal relationships are statistically robust and biologically sensible, and multiple lines of experimental evidence support the predicted functional impact of both the well-known and the novel candidate drivers that are predicted by TCI. TCI provides a unified framework that integrates multiple types of SGAs and molecular phenotypes to estimate which genome perturbations are causally influencing one or more molecular/cellular phenotypes in an individual tumor. By identifying major candidate drivers and revealing their functional impact in an individual tumor, TCI sheds light on the disease mechanisms of that tumor, which can serve to advance our basic knowledge of cancer biology and to support precision oncology that provides tailored treatment of individual tumors.
Collapse
Affiliation(s)
- Chunhui Cai
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Gregory F. Cooper
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Kevin N. Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Xiaojun Ma
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Zhenlong Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xueer Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Yifan Xue
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Adrian V. Lee
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Magee Women’s Cancer Research Center, Pittsburgh, PA, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Nathan Clark
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- Department of Computational Biology and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vicky Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Songjian Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Lujia Chen
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Liyue Yu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Harry S. Hochheiser
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Xia Jiang
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (QJW); (XL)
| | - Xinghua Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Causal Discovery, Pittsburgh, PA, United States of America
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- * E-mail: (QJW); (XL)
| |
Collapse
|
39
|
Cai L, Brophy RH, Tycksen ED, Duan X, Nunley RM, Rai MF. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells. FASEB J 2019; 33:8386-8405. [PMID: 30991832 DOI: 10.1096/fj.201802281r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periostin (POSTN), a secretory matricellular matrix protein, plays a multitude of biologic functions. Various splice variants of POSTN have been described; however, their expression pattern and functional implications are not completely understood. This study was undertaken to decipher the differential expression pattern of POSTN and its splice variants in various tissues and cell types. We show that POSTN was more highly expressed in anterior cruciate ligament (ACL) remnants compared with articular cartilage at the cellular and tissue level. Isoforms 1 and 8 were highly expressed only in articular chondrocytes, suggesting their splice-specific regulation in chondrocytes. To discern the role of total POSTN and full-length human POSTN isoform 1 (hPOSTN-001), we stably transfected human chondrosarcoma 1 (hCh-1) cell line with hPOSTN-001 using a pcDNA3.1-hPOSTN-001 construct. RNA-sequencing analysis of hCh-1 cells identified differentially expressed genes with a known role in chondrocyte function and osteoarthritis. Similar expression of a subset of candidate genes was revealed in ACL progenitor cells and chondrocytes as well as in ACL progenitor cells in which POSTN activity was altered by overexpression and by small interfering RNA gene knockdown. Cells expressing total POSTN, not isoform 1, exhibited increased cell adhesion potential. These findings suggest an important role for POSTN in the knee.-Cai, L., Brophy, R. H., Tycksen, E. D., Duan, X., Nunley, R. M., Rai, M. F. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells.
Collapse
Affiliation(s)
- Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric D Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan M Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
miR-500 promotes cell proliferation by directly targetting LRP1B in prostate cancer. Biosci Rep 2019; 39:BSR20181854. [PMID: 30877185 PMCID: PMC6449515 DOI: 10.1042/bsr20181854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/10/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that miRNAs play a crucial role in the development of prostate cancer (PC); however, the role of miR-500 in PC remains poorly understood. The data presented here reveal abnormal increases in miR-500 expression in PC tissues and cell lines. Suppression of miR-500 expression significantly inhibited the proliferation of PC-3 and LnCap cells and was negatively regulative with low-density lipoprotein receptor-related protein 1B (LRP1B). Increased cell cycle arrest at the G1 stage and decreased protein expression of cyclinD1 and CDK2 was observed in response to miR-500 knockdown in PC-3 and LnCap cells, in combination with LRP1B overexpression. LRP1B was identified as a target of miR-500 and was significantly decreased in PC tissues. Taken together, these findings demonstrate that miR-500 plays an important role in the proliferation of PC cells via the inhibition of LRP1B expression.
Collapse
|
41
|
Asano Y, Takeuchi T, Okubo H, Saigo C, Kito Y, Iwata Y, Futamura M, Yoshida K. Nuclear localization of LDL receptor-related protein 1B in mammary gland carcinogenesis. J Mol Med (Berl) 2019; 97:257-268. [PMID: 30607440 DOI: 10.1007/s00109-018-01732-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023]
Abstract
LRP1B intracellular domain is released and transported to the nucleus; however, pathological consequences of this nuclear transport are largely unclear. We aimed to unravel the pathobiological significance of nuclear localization of LRP1B intracellular domain in mammary gland carcinogenesis. Immunohistochemical staining using antibodies for LRP1B intracellular domain was performed to determine LRP1B expression in 92 invasive ductal breast carcinomas. LRP1B immunoreactivity was detected in the surface membrane and cytoplasm of 60 of 92 invasive ductal carcinomas and in the nucleus of 15 of 92 carcinomas. Nuclear LRP1B was significantly associated with poor patient prognosis, particularly luminal A type breast cancer, where it was significantly related to nodal metastasis. Doxycycline-dependent nuclear expression of LRP1B intracellular domain was established in cultured breast cancer cells. Enforced nuclear expression significantly increased Matrigel invasion activity in MCF-7 and T47D luminal A breast cancer cells. Moreover, enforced nuclear expression of LRP1B intracellular domain facilitated MCF-7 cells growth in mammary fat pad of nude mice, which was supplemented with estrogen. Comprehensive microarray-based analysis demonstrated that nuclear expression of LRP1B intracellular domain significantly increased long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) expression, which facilitates breast cancer invasion with poor prognosis. Nuclear-localized LRP1B intracellular domain promoted breast cancer progression with poor prognosis, possibly through the NEAT1 pathway. Nuclear transport of LRP1B intracellular domain could be a therapeutic target for breast cancer patients. KEY MESSAGES: Nuclear LRP1B was significantly associated with poor patient prognosis. Nuclear LRP1B increased Matrigel invasion activity of breast cancer cells. Nuclear expression of LRP1B intracellular domain increased NEAT1 expression.
Collapse
Affiliation(s)
- Yoshimi Asano
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hiroshi Okubo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshinori Iwata
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Breast and Molecular Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
42
|
Li B, Liu C, Cheng G, Peng M, Qin X, Liu Y, Li Y, Qin D. LRP1B Polymorphisms Are Associated with Multiple Myeloma Risk in a Chinese Han Population. J Cancer 2019; 10:577-582. [PMID: 30719154 PMCID: PMC6360415 DOI: 10.7150/jca.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is an extremely complex plasma cell malignancy that is genetically heterogeneous. A recent Genome-wide association study (GWAS) indicated that variation at 2q22 (rs61070260) influences MM risk. This association has not been validated to date in a Chinese Han population. In this study, we evaluated the association between rs61070260 in LRP1B and MM risk in a Chinese Han population involving 739 MM patients and 592 healthy controls. Our results indicated that rs61070260 in LRP1B was significantly associated with MM susceptibility (P=3.937×10-37). Furthermore, the linkage disequilibrium (LD) analysis of rs61070260 revealed an LD block encompassing exons 26, 27 and 28 of the LRP1B gene, and a subsequent sequencing analysis identified three SNPs (rs762074421, rs756168629, rs113600691) in exons 26 and 28 of LRP1B. For the SNP rs756168629 in exon 26, a missense mutation which results in a transition from arginine to histidine at position 1661 of the LRP1B protein, has not been found in Chinese populations according to the Chinese Millionome Database and Genome Aggregation Database (EAS), and this mutation was predicted to be deleterious or damaging by SIFT and PolyPhen. These findings firmly establish the role of LRP1B in contributing to MM susceptibility. In addition, the identification of a rare coding mutation (p.R1661H) in LRP1B detected in MM individuals was suggested to be harmful to the encoded protein, which was characterized as a candidate tumour suppressor; thus, LRP1B is likely to be a disease-associated gene that is implicated in the development and progression of MM.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R.China
| | - Guixue Cheng
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Mengle Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R.China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R.China
| | - Dongchun Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou 450052, Henan , P.R. China
| |
Collapse
|
43
|
Leung EY, Askarian-Amiri ME, Singleton DC, Ferraro-Peyret C, Joseph WR, Finlay GJ, Broom RJ, Kakadia PM, Bohlander SK, Marshall E, Baguley BC. Derivation of Breast Cancer Cell Lines Under Physiological (5%) Oxygen Concentrations. Front Oncol 2018; 8:425. [PMID: 30370249 PMCID: PMC6194255 DOI: 10.3389/fonc.2018.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.
Collapse
Affiliation(s)
- Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carole Ferraro-Peyret
- Univ Lyon, Claude Bernard University, Cancer Research Center of Lyon, INSERM 1052, CNRS5286, Faculty of Pharmacy, Lyon, France.,Hospices Civils de Lyon, Molecular Biology of Tumors, GHE Hospital, Bron, France
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Reuben J Broom
- Auckland City Hospital-Oncology, Grafton, Auckland, New Zealand
| | - Purvi M Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elaine Marshall
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
45
|
Expression of a recombinant full-length LRP1B receptor in human non-small cell lung cancer cells confirms the postulated growth-suppressing function of this large LDL receptor family member. Oncotarget 2018; 7:68721-68733. [PMID: 27626682 PMCID: PMC5356585 DOI: 10.18632/oncotarget.11897] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/13/2016] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B), a member of the LDL receptor family, is frequently inactivated in multiple malignancies including lung cancer. LRP1B is therefore considered as a putative tumor suppressor. Due to its large size (4599 amino acids), until now only minireceptors or receptor fragments have been successfully cloned. To assess the effect of LRP1B on the proliferation of non-small cell lung cancer cells, we constructed and expressed a transfection vector containing the 13.800 bp full-length murine Lrp1b cDNA using a PCR-based cloning strategy. Expression of LRP1B was analyzed by quantitative RT-PCR (qRT-PCR) using primers specific for human LRP1B or mouse Lrp1b. Effective expression of the full length receptor was demonstrated by the appearance of a single 600 kDa band on Western Blots of HEK 293 cells. Overexpression of Lrp1b in non-small cell lung cancer cells with low or absent endogenous LRP1B expression significantly reduced cellular proliferation compared to empty vector-transfected control cells. Conversely, in Calu-1 cells, which express higher endogenous levels of the receptor, siRNA-mediated LRP1B knockdown significantly enhanced cellular proliferation. Taken together, these findings demonstrate that, consistent with the postulated tumor suppressor function, overexpression of full-length Lrp1b leads to impaired cellular proliferation, while LRP1B knockdown has the opposite effect. The recombinant Lrp1b construct represents a valuable tool to unravel the largely unknown physiological role of LRP1B and its potential functions in cancer pathogenesis.
Collapse
|
46
|
Divers J, Palmer ND, Langefeld CD, Brown WM, Lu L, Hicks PJ, Smith SC, Xu J, Terry JG, Register TC, Wagenknecht LE, Parks JS, Ma L, Chan GC, Buxbaum SG, Correa A, Musani S, Wilson JG, Taylor HA, Bowden DW, Carr JJ, Freedman BI. Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes. BMC Genet 2017; 18:105. [PMID: 29221444 PMCID: PMC5723099 DOI: 10.1186/s12863-017-0572-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
Background Coronary artery calcified atherosclerotic plaque (CAC) predicts cardiovascular disease (CVD). Despite exposure to more severe conventional CVD risk factors, African Americans (AAs) are less likely to develop CAC, and when they do, have markedly lower levels than European Americans. Genetic factors likely contribute to the observed ethnic differences. To identify genes associated with CAC in AAs with type 2 diabetes (T2D), a genome-wide association study (GWAS) was performed using the Illumina 5 M chip in 691 African American-Diabetes Heart Study participants (AA-DHS), with replication in 205 Jackson Heart Study (JHS) participants with T2D. Genetic association tests were performed on the genotyped and 1000 Genomes-imputed markers separately for each study, and combined in a meta-analysis. Results Single nucleotide polymorphisms (SNPs), rs11353135 (2q22.1), rs16879003 (6p22.3), rs5014012, rs58071836 and rs10244825 (all on chromosome 7), rs10918777 (9q31.2), rs13331874 (16p13.3) and rs4459623 (18q12.1) were associated with presence and/or quantity of CAC in the AA-DHS and JHS, with meta-analysis p-values ≤8.0 × 10−7. The strongest result in AA-DHS alone was rs6491315 in the 13q32.1 region (parameter estimate (SE) = −1.14 (0.20); p-value = 9.1 × 10−9). This GWAS peak replicated a previously reported AA-DHS CAC admixture signal (rs7492028, LOD score 2.8). Conclusions Genetic association between SNPs on chromosomes 2, 6, 7, 9, 16 and 18 and CAC were detected in AAs with T2D from AA-DHS and replicated in the JHS. These data support a role for genetic variation on these chromosomes as contributors to CAC in AAs with T2D, as well as to variation in CAC between populations of African and European ancestry. Electronic supplementary material The online version of this article (10.1186/s12863-017-0572-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA.
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA
| | - W Mark Brown
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA
| | - Lingyi Lu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA
| | - Pamela J Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S Carrie Smith
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jianzhao Xu
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James G Terry
- Department of Radiology and Vanderbilt Center for Translation and Clinical Cardiovascular Research (VTRACC), Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Department of Epidemiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John S Parks
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lijun Ma
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gary C Chan
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarah G Buxbaum
- School of Public Health Initiative, Jackson State University, Jackson, MS, USA
| | | | | | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Herman A Taylor
- Morehouse School of Medicine, Morehouse College, Atlanta, Georgia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John Jeffrey Carr
- Department of Radiology and Vanderbilt Center for Translation and Clinical Cardiovascular Research (VTRACC), Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Barry I Freedman
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
47
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
48
|
Wang N, Wang R, Hu Q, Xu W, Zhu Y, Yan F, Chen S. Characterization of a low-density lipoprotein receptor, Lrp13, in Chinese tongue sole (Cynoglossus semilaevis) and medaka (Oryzias latipes). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1289-1298. [PMID: 28741124 DOI: 10.1007/s10695-017-0372-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
As an important economic marine species cultured in China, Chinese tongue sole (Cynoglossus semilaevis) has interested us due to its sexual dimorphism and ZW/ZZ sex determination system. In a previous study, dmrt1 was identified as a dosage-dependent male-determining gene. In the present study, a female-specific expressed gene, cse0440, initially annotated as lrp1b-like, was identified from chromosome W of C. semilaevis. In view of the differences between cse0440 and lrp1b in terms of expression pattern, a phylogenetic analysis containing 85 LRP proteins was constructed and provided an evidence to re-annotate cse0440 as cseLRP13. In addition, two orthologues of cseLRP13 were separately identified from W and Z chromosomes: cseLRP13-W and cseLRP13-Z. The subsequent multiple sequence alignment and syntenic arrangements of LRP13 in C. semilaevis, Japanese medaka (Oryzias latipes), large yellow croaker (Larimichthys crocea), striped bass (Morone saxatilis), white perch (Morone americana) and Fugu rubripes (Takifugu rubripes) further supported this re-annotation. RT-PCR and in situ hybridization revealed that cselrp13 was exclusively expressed in the oocytes and follicles of ovaries. These results suggested that lrp13 may play important roles in female reproduction. In future, with the advancement of micromanipulation in flatfish, the detailed function of two lrp13 orthologues in C. semilaevis will be elucidated.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| | - Ruoqing Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ying Zhu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Fang Yan
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
49
|
Common Expression Quantitative Trait Loci Shared by Histone Genes. Int J Genomics 2017; 2017:6202567. [PMID: 28929106 PMCID: PMC5591967 DOI: 10.1155/2017/6202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
A genome-wide association study (GWAS) was conducted to examine expression quantitative trait loci (eQTLs) for histone genes. We examined common eQTLs for multiple histone genes in 373 European lymphoblastoid cell lines (LCLs). A linear regression model was employed to identify single-nucleotide polymorphisms (SNPs) associated with expression of the histone genes, and the number of eQTLs was determined by linkage disequilibrium analysis. Additional associations of the identified eQTLs with other genes were also examined. We identified 31 eQTLs for 29 histone genes through genome-wide analysis using 29 histone genes (P < 2.97 × 10−10). Among them, 12 eQTLs were associated with the expression of multiple histone genes. Transcriptome-wide association analysis using the identified eQTLs showed their associations with additional 80 genes (P < 4.75 × 10−6). In particular, expression of RPPH1, SCARNA2, and SCARNA7 genes was associated with 26, 25, and 23 eQTLs, respectively. This study suggests that histone genes shared 12 common eQTLs that might regulate cell cycle-dependent transcription of histone and other genes. Further investigations are needed to elucidate the transcriptional mechanisms of these genes.
Collapse
|
50
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|