1
|
Yoshida R, Motoyama K, Ito T, Hemmi H. Effects of producing high levels of hyperthermophile-specific C 25,C 25-archaeal membrane lipids in Escherichia coli. Biochem Biophys Res Commun 2024; 729:150349. [PMID: 38972140 DOI: 10.1016/j.bbrc.2024.150349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A hyperthermophilic archaeon, Aeropyrum pernix, synthesizes C25,C25-archaeal membrane lipids, or extended archaeal membrane lipids, which contain two C25 isoprenoid chains that are linked to glycerol-1-phosphate via ether bonds and are longer than the usual C20,C20-archaeal membrane lipids. The C25,C25-archaeal membrane lipids are believed to allow the archaeon to survive under harsh conditions, because they are able to form lipid membranes that are impermeable at temperatures approaching the boiling point. The effect that C25,C25-archaeal membrane lipids exert on living cells, however, remains unproven along with an explanation for why the hyperthermophilic archaeon synthesizes these specific lipids instead of the more common C20,C20-archaeal lipids or double-headed tetraether lipids. To shed light on the effects that these hyperthermophile-specific membrane lipids exert on living cells, we have constructed an E. coli strain that produces C25,C25-archaeal membrane lipids. However, a resultant low level of productivity would not allow us to assess the effects of their production in E. coli cells. Herein, we report an enhancement of the productivity of C25,C25-archaeal membrane lipids in engineered E. coli strains via the introduction of metabolic pathways such as an artificial isoprenol utilization pathway where the precursors of isoprenoids are synthesized via a two-step phosphorylation of prenol and isoprenol supplemented to a growth medium. In the strain with the highest titer, a major component of C25,C25-archaeal membrane lipids reached ∼11 % of total lipids of E. coli. It is noteworthy that the high production of the extended archaeal lipids did not significantly affect the growth of the bacterial cells. The permeability of the cell membrane of the strain became slightly lower in the presence of the exogenous membrane lipids with longer hydrocarbon chains, which demonstrated the possibility to enhance bacterial cell membranes by the hyperthermophile-specific lipids, along with the surprising robustness of the E. coli cell membrane.
Collapse
Affiliation(s)
- Ryo Yoshida
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Kento Motoyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 460-8601, Japan.
| |
Collapse
|
2
|
Rahn HP, Sun J, Li Z, Waymouth RM, Levy R, Wender PA. Isoprenoid CARTs: In Vitro and In Vivo mRNA Delivery by Charge-Altering Releasable Transporters Functionalized with Archaea-inspired Branched Lipids. Biomacromolecules 2024; 25:4305-4316. [PMID: 38814265 DOI: 10.1021/acs.biomac.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.
Collapse
Affiliation(s)
- Harrison P Rahn
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhijian Li
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ronald Levy
- Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Rempfert KR, Kraus EA, Nothaft DB, Dildar N, Spear JR, Sepúlveda J, Templeton AS. Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids. Front Microbiol 2023; 14:1198786. [PMID: 38029177 PMCID: PMC10667739 DOI: 10.3389/fmicb.2023.1198786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Nadia Dildar
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Julio Sepúlveda
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| |
Collapse
|
4
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
5
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
6
|
Xu Z, Liu G, Gao L, Xu D, Wan H, Dai X, Zhang X, Tao L, Yan LT. Configurational Entropy-Enabled Thermostability of Cell Membranes in Extremophiles: From Molecular Mechanism to Bioinspired Design. NANO LETTERS 2023; 23:1109-1118. [PMID: 36716197 DOI: 10.1021/acs.nanolett.2c04939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Kejžar J, Osojnik Črnivec IG, Poklar Ulrih N. Advances in Physicochemical and Biochemical Characterization of Archaeosomes from Polar Lipids of Aeropyrum pernix K1 and Stability in Biological Systems. ACS OMEGA 2023; 8:2861-2870. [PMID: 36713696 PMCID: PMC9878630 DOI: 10.1021/acsomega.2c07406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Archaeosomes are vesicles made from archaeal lipids. They are characterized by remarkable thermostability, resistance to enzymatic degradation, long-term stability, and immunomodulatory properties. In this review the current status of physicochemical properties of archaeal lipids and their stability in biological systems is presented, focusing on total polar lipids from Aeropyrum pernix K1. The isolated total polar lipids from Aeropyrum pernix K1 consist exclusively of glycerol ether lipids with isoprenoid groups attached to glycerol via ether linkages. More specifically, the two major polar lipids extracted from the membranes are C25,25-achaetidyl(glucosyl)inositol and C25,25-achaetidylinositol. An overview of the results of the effects of temperature and pH on the stability, structural organization, fluidity, and permeability of archaeosomes composed of pure C25,25 was examined by a combination of techniques, including fluorescence emission spectroscopy, electron paramagnetic resonance, differential scanning calorimetry, and confocal microscopy. We also compared the physicochemical properties of pure vesicles composed of either archaeal lipids or conventional lipids (e.g., 1,2-dipalmitoyl-sn-glycero-3-phosphocholine) with mixed vesicles composed of both lipid types. Archaeal lipids are discussed in terms of their potential use as a targeted drug delivery system based on the results of in vivo and cytotoxicity studies.
Collapse
Affiliation(s)
- Jan Kejžar
- Department
of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Ilja Gasan Osojnik Črnivec
- Department
of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department
of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
- The
Centre of Excellence for Integrated Approaches in Chemistry and Biology
of Proteins (CipKeBiP), Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Frallicciardi J, Gabba M, Poolman B. Determining small-molecule permeation through lipid membranes. Nat Protoc 2022; 17:2620-2646. [PMID: 36002767 DOI: 10.1038/s41596-022-00734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The passive permeability of cell membranes is of key importance in biology, biomedical research and biotechnology as it determines the extent to which various molecules such as drugs, products of metabolism, and toxins can enter or leave the cell unaided by dedicated transport proteins. The quantification of passive solute permeation is possible with radio-isotope distribution experiments, spectroscopic measurements and molecular dynamics simulations. This protocol describes stopped-flow fluorimetry measurements performed on lipid vesicles and living yeast cells to estimate the osmotic permeability of water and solutes across (bio)membranes. Encapsulation of the fluorescent dye calcein into lipid vesicles allows monitoring of volume changes upon osmotic shifts of the medium via (de)quenching of the fluorophore, which we interpret using a well-defined physical model that takes the dynamics of the vesicles into account to calculate the permeability coefficients of solutes. We also present analogous procedures to probe weak acid and base permeability in vesicles and cells by using the read-out of encapsulated or expressed pH-sensitive probes. We describe the preparation of synthetic vesicles of varying lipid composition and determination of vesicle size distribution by dynamic light scattering. Data on membrane permeation are obtained using either conventional or stopped-flow kinetic fluorescence measurements on instruments available in most research institutes and are analyzed with a suite of user-friendly MATLAB scripts ( https://doi.org/10.5281/zenodo.6511116 ). Collectively, these procedures provide a comprehensive toolbox for determining membrane permeability coefficients in a variety of experimental systems, and typically take 2-3 d.
Collapse
Affiliation(s)
| | - Matteo Gabba
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat Commun 2022; 13:1545. [PMID: 35318330 PMCID: PMC8941075 DOI: 10.1038/s41467-022-29264-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are archaeal monolayer membrane lipids that can provide a competitive advantage in extreme environments. Here, we identify a radical SAM protein, tetraether synthase (Tes), that participates in the synthesis of GDGTs. Attempts to generate a tes-deleted mutant in Sulfolobus acidocaldarius were unsuccessful, suggesting that the gene is essential in this organism. Heterologous expression of tes homologues leads to production of GDGT and structurally related lipids in the methanogen Methanococcus maripaludis (which otherwise does not synthesize GDGTs and lacks a tes homolog, but produces a putative GDGT precursor, archaeol). Tes homologues are encoded in the genomes of many archaea, as well as in some bacteria, in which they might be involved in the synthesis of bacterial branched glycerol dialkyl glycerol tetraethers.
Collapse
|
10
|
Misuraca L, Caliò A, LoRicco JG, Hoffmann I, Winter R, Demé B, Peters J, Oger PM. Alkanes as Membrane Regulators of the Response of Early Membranes to Extreme Temperatures. Life (Basel) 2022; 12:445. [PMID: 35330196 PMCID: PMC8949167 DOI: 10.3390/life12030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
One of the first steps in the origin of life was the formation of a membrane, a physical boundary that allowed the retention of molecules in concentrated solutions. The proto-membrane was likely formed by self-assembly of simple readily available amphiphiles, such as short-chain fatty acids and alcohols. In the commonly accepted scenario that life originated near hydrothermal systems, how these very simple membrane bilayers could be stable enough in time remains a debated issue. We used various complementary techniques such as dynamic light scattering, small angle neutron scattering, neutron spin-echo spectroscopy, and Fourier-transform infrared spectroscopy to explore the stability of a novel protomembrane system in which the insertion of alkanes in the midplane is proposed to shift membrane stability to higher temperatures, pH, and hydrostatic pressures. We show that, in absence of alkanes, protomembranes transition into lipid droplets when temperature increases; while in presence of alkanes, membranes persist for longer times in a concentration-dependent manner. Proto-membranes containing alkanes are stable at higher temperatures and for longer times, have a higher bending rigidity, and can revert more easily to their initial state upon temperature variations. Hence, the presence of membrane intercalating alkanes could explain how the first membranes could resist the harsh and changing environment of the hydrothermal systems. Furthermore, modulating the quantity of alkanes in the first membranes appears as a possible strategy to adapt the proto-membrane behavior according to temperature fluctuations, and it offers a first glimpse into the evolution of the first membranes.
Collapse
Affiliation(s)
- Loreto Misuraca
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France;
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Antonino Caliò
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| | - Josephine G. LoRicco
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| | - Ingo Hoffmann
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Roland Winter
- Fakultät für Chemie und Chemische Biologie, Physikalische Chemie, Technische Universität Dortmund, 44227 Dortmund, Germany;
| | - Bruno Demé
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
| | - Judith Peters
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France;
- Institut Laue Langevin, 38042 Grenoble, France; (I.H.); (B.D.)
- Institut Universitaire de France, 75005 Paris, France
| | - Philippe M. Oger
- INSA Lyon, Université de Lyon, CNRS, UMR5240, 69100 Villeurbanne, France; (A.C.); (J.G.L.)
| |
Collapse
|
11
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT‐0 (Isocaldarchaeol)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Isaac D. Falk
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Bálint Gál
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Jeremy H. Wei
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Paula V. Welander
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Steven G. Boxer
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Noah Z. Burns
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
12
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
13
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT-0 (Isocaldarchaeol)*. Angew Chem Int Ed Engl 2021; 60:17491-17496. [PMID: 33930240 DOI: 10.1002/anie.202104051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid parallel GDGT-0 and the synthesis and self-assembly of derivatives bearing different polar groups.
Collapse
Affiliation(s)
- Isaac D Falk
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Bálint Gál
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Ayesa U, Chong PLG. Polar Lipid Fraction E from Sulfolobus acidocaldarius and Dipalmitoylphosphatidylcholine Can Form Stable yet Thermo-Sensitive Tetraether/Diester Hybrid Archaeosomes with Controlled Release Capability. Int J Mol Sci 2020; 21:ijms21218388. [PMID: 33182284 PMCID: PMC7664881 DOI: 10.3390/ijms21218388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Archaeosomes have drawn increasing attention in recent years as novel nano-carriers for therapeutics. The main obstacle of using archaeosomes for therapeutics delivery has been the lack of an efficient method to trigger the release of entrapped content from the otherwise extremely stable structure. Our present study tackles this long-standing problem. We made hybrid archaeosomes composed of tetraether lipids, called the polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius, and the synthetic diester lipid dipalmitoylphosphatidylcholine (DPPC). Differential polarized phase-modulation and steady-state fluorometry, confocal fluorescence microscopy, zeta potential (ZP) measurements, and biochemical assays were employed to characterize the physical properties and drug behaviors in PLFE/DPPC hybrid archaeosomes in the presence and absence of live cells. We found that PLFE lipids have an ordering effect on fluid DPPC liposomal membranes, which can slow down the release of entrapped drugs, while PLFE provides high negative charges on the outer surface of liposomes, which can increase vesicle stability against coalescence among liposomes or with cells. Furthermore, we found that the zeta potential in hybrid archaeosomes with 30 mol% PLFE and 70 mol% DPPC (designated as PLFE/DPPC(3:7) archaeosomes) undergoes an abrupt increase from −48 mV at 37 °C to −16 mV at 44 °C (termed the ZP transition), which we hypothesize results from DPPC domain melting and PLFE lipid ‘flip-flop’. The anticancer drug doxorubicin (DXO) can be readily incorporated into PLFE/DPPC(3:7) archaeosomes. The rate constant of DXO release from PLFE/DPPC(3:7) archaeosomes into Tris buffer exhibited a sharp increase (~2.5 times), when the temperature was raised from 37 to 42 °C, which is believed to result from the liposomal structural changes associated with the ZP transition. This thermo-induced sharp increase in drug release was not affected by serum proteins as a similar temperature dependence of drug release kinetics was observed in human blood serum. A 15-min pre-incubation of PLFE/DPPC(3:7) archaeosomal DXO with MCF-7 breast cancer cells at 42 °C caused a significant increase in the amount of DXO entering into the nuclei and a considerable increase in the cell’s cytotoxicity under the 37 °C growth temperature. Taken together, our data suggests that PLFE/DPPC(3:7) archaeosomes are stable yet potentially useful thermo-sensitive liposomes wherein the temperature range (from 37 to 42–44 °C) clinically used for mild hyperthermia treatment of tumors can be used to trigger drug release for medical interventions.
Collapse
|
15
|
Porter CJ, Werber JR, Zhong M, Wilson CJ, Elimelech M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS NANO 2020; 14:10894-10916. [PMID: 32886487 DOI: 10.1021/acsnano.0c05753] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmembrane protein channels, including ion channels and aquaporins that are responsible for fast and selective transport of water, have inspired membrane scientists to exploit and mimic their performance in membrane technologies. These biomimetic membranes comprise discrete nanochannels aligned within amphiphilic matrices on a robust support. While biological components have been used directly, extensive work has also been conducted to produce stable synthetic mimics of protein channels and lipid bilayers. However, the experimental performance of biomimetic membranes remains far below that of biological membranes. In this review, we critically assess the status and potential of biomimetic desalination membranes. We first review channel chemistries and their transport behavior, identifying key characteristics to optimize water permeability and salt rejection. We compare various channel types within an industrial context, considering transport performance, processability, and stability. Through a re-examination of previous vesicular stopped-flow studies, we demonstrate that incorrect permeability equations result in an overestimation of the water permeability of nanochannels. We find in particular that the most optimized aquaporin-bearing bilayer had a pure water permeability of 2.1 L m-2 h-1 bar-1, which is comparable to that of current state-of-the-art polymeric desalination membranes. Through a quantitative assessment of biomimetic membrane formats, we analytically show that formats incorporating intact vesicles offer minimal benefit, whereas planar biomimetic selective layers could allow for dramatically improved salt rejections. We then show that the persistence of nanoscale defects explains observed subpar performance. We conclude with a discussion on optimal strategies for minimizing these defects, which could enable breakthrough performance.
Collapse
Affiliation(s)
- Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jay R Werber
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J Wilson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Vitkova V, Mitkova D, Yordanova V, Pohl P, Bakowsky U, Staneva G, Batishchev O. Elasticity and phase behaviour of biomimetic membrane systems containing tetraether archaeal lipids. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Gena P, Portincasa P, Matera S, Sonntag Y, Rützler M, Calamita G. Stopped-flow Light Scattering Analysis of Red Blood Cell Glycerol Permeability. Bio Protoc 2020; 10:e3723. [PMID: 33659385 DOI: 10.21769/bioprotoc.3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 11/02/2022] Open
Abstract
Stopped-Flow Light Scattering (SFLS) is a method devised to analyze the kinetics of fast chemical reactions that result in a significant change of the average molecular weight and/or in the shape of the reaction substrates. Several modifications of the original stopped-flow system have been made leading to a significant extension of its technical applications. One of these modifications allows the biophysical characterization of the water and solute permeability of biological and artificial membranes. Here, we describe a protocol of SFLS to measure the glycerol permeability of isolated human red blood cells (RBCs) and evaluate the pharmacokinetics properties (selectivity and potency) of isoform-specific inhibitors of AQP3, AQP7 and AQP9, three mammalian aquaglyceroporins allowing transport of glycerol across membranes. Suspensions of RBCs (1% hematocrit) are exposed to an inwardly directed gradient of 100 mM glycerol in a SFLS apparatus at 20 °C and the resulting changes in scattered light intensity are recorded at a monochromatic wavelength of 530 nm for 120 s. The SFLS apparatus is set up to have a dead time of 1.6-ms and 99% mixing efficiency in less than 1 ms. Data are fitted to a single exponential function and the related time constant (τ, seconds) of the cell-swelling phase of light scattering corresponding to the osmotic movement of water that accompanies the entry of glycerol into erythrocytes is measured. The coefficient of glycerol permeability ( Pgly , cm/s) of RBCs is calculated with the following equation: Pgly = 1/[(S/V)τ] where τ (s) is the fitted exponential time constant and S/V is the surface-to-volume ratio (cm-1) of the analyzed RBC specimen. Pharmacokinetics of the isoform-specific inhibitors of AQP3, AQP7 and AQP9 are assessed by evaluating the extent of RBC Pgly values resulting after the exposure to serial concentrations of the blockers.
Collapse
Affiliation(s)
- Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Sabino Matera
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Yonathan Sonntag
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.,ApoGlyx AB, Malmö, Sweden
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules 2020; 10:biom10040584. [PMID: 32290118 PMCID: PMC7226565 DOI: 10.3390/biom10040584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Since the pioneering work of Carl Woese, Archaea have fascinated biologists of almost all areas given their unique evolutionary status, wide distribution, high diversity, and ability to grow in special environments. Archaea often thrive in extreme conditions such as high temperature, high/low pH, high salinity, and anoxic ecosystems. All of these are threats to the stability and proper functioning of biological molecules, especially proteins and nucleic acids. Post-translational modifications (PTMs), such as phosphorylation, methylation, acetylation, and glycosylation, are reportedly widespread in Archaea and represent a critical adaptive mechanism to extreme habitats. Here, we summarize our current understanding of the contributions of PTMs to aid in extremophile survival, with a particular focus on the maintenance of genome stability.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
- Correspondence: (P.G.); (H.L.)
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Ao Zeng
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
- Correspondence: (P.G.); (H.L.)
| |
Collapse
|
19
|
Parra FL, Frank FM, Alliani BF, Romero EL, Petray PB. Imiquimod-loaded nanoarchaeosomes as a promising immunotherapy against Trypanosoma cruzi infection. Colloids Surf B Biointerfaces 2020; 189:110850. [PMID: 32058257 DOI: 10.1016/j.colsurfb.2020.110850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to evaluate the efficacy of imiquimod-containing nanovesicles prepared with lipids extracted from the hyperhalophile archaebacterium Halorubrum tebenquichense (nanoARC-IMQ) to induce protection against Trypanosoma cruzi infection. The therapeutic efficacy of archaeolipid nanovesicles was assessed in an experimental murine model of acute infection with T. cruzi. The administration of nanoARQ-IMQ prevented mortality as compared to infected untreated animals, reduced parasitemia levels and diminished myocardial and musculoskeletal lesions in mice infected with a lethal strain of T. cruzi. Our findings suggest that the immunotherapy with nanoARC-IMQ has potential to limit the progression of Chagas disease.
Collapse
Affiliation(s)
- Federico L Parra
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Fernanda M Frank
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno F Alliani
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eder L Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
| | - Patricia B Petray
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Hanashima S, Yano Y, Murata M. Enantiomers of phospholipids and cholesterol: A key to decipher lipid‐lipid interplay in membrane. Chirality 2020; 32:282-298. [DOI: 10.1002/chir.23171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| |
Collapse
|
21
|
Yamagami M, Tsuchikawa H, Cui J, Umegawa Y, Miyazaki Y, Seo S, Shinoda W, Murata M. Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes. Biochemistry 2019; 58:3869-3879. [DOI: 10.1021/acs.biochem.9b00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaki Yamagami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jin Cui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
22
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
23
|
Bale NJ, Sorokin DY, Hopmans EC, Koenen M, Rijpstra WIC, Villanueva L, Wienk H, Sinninghe Damsté JS. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes. Front Microbiol 2019; 10:377. [PMID: 30930858 PMCID: PMC6423904 DOI: 10.3389/fmicb.2019.00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
We analyzed the polar membrane lipids of 13 strains of halo(alkali)philic euryarchaea from hypersaline lakes. Nine belong to the class Halobacteria, representing two functional groups: aerobic polysaccharide utilizers and sulfur-respiring anaerobes. The other four strains represent halo(alkali)philic methanogens from the class Methanomicrobia and a recently discovered class Methanonatronarchaeia. A wide range of polar lipids were detected across the 13 strains including dialkyl glycerol diethers (archaeols), membrane-spanning glycerol tetraethers and diether-based cardiolipins. The archaeols contained a range of core lipid structures, including combinations of C20 and C25 isoprenoidal alkyl chains, unsaturations, and hydroxy moieties. Several diether lipids were novel, including: (a) a phosphatidylglycerolhexose (PG-Gly) headgroup, (b) a N,N,N-trimethyl aminopentanetetrol (APT)-like lipid with a methoxy group in place of a hydroxy group on the pentanetetrol, (c) a series of polar lipids with a headgroup with elemental composition of either C12H25NO13S or C12H25NO16S2, and (d) novel cardiolipins containing a putative phosphatidylglycerolphosphate glycerophosphate (PGPGP) polar moiety. We found that the lipid distribution of the 13 strains could be generally separated into two groups, the methanogens (group) and the Halobacteria (class) based on the presence of specific core lipids. Within the methanogens, adaption to a high or more moderate salt concentration resulted in different ratios of glycerol dialkyl glycerol tetraethers (GDGTs) to archaeol. The methanogen Methanosalsum natronophilum AME2T had the most complex diether lipid composition of any of the 13 strains, including hydroxy archaeol and macrocyclic archaeol which we surmise is an order-specific membrane adaption. The zwitterionic headgroups APT and APT-Me were detected only in the Methanomicrobiales member Methanocalculus alkaliphilus AMF2T which also contained the highest level of unsaturated lipids. Only alkaliphilic members of the Natrialbales order contained PGPGP cardiolipins and the PG-Gly headgroup. The four analyzed neutrophilic members of the Halobacteria were characterized by the presence of sulfur-containing headgroups and glycolipids. The presence of cardiolipins with one or more i-C25 alkyl chains, generally termed extended archaeol (EXT-AR), in one of the Methanonatronarchaeia strains was unexpected as only one other order of methanogenic archaea has been reported to produce EXT-AR. We examined this further by looking into the genomic potential of various archaea to produce EXT-AR.
Collapse
Affiliation(s)
- Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Hans Wienk
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
The Effect of Buffers on Weak Acid Uptake by Vesicles. Biomolecules 2019; 9:biom9020063. [PMID: 30781892 PMCID: PMC6406578 DOI: 10.3390/biom9020063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
The assessment of weak acid membrane permeability (Pm) frequently involves large unilamellar vesicles. It relies on measurements of the intravesicular pH drop, ΔpHin, in response to a sudden augmentation of external acid concentration. However, ΔpHin may be primarily governed by non-instantaneous protonation and deprotonation reactions of (i) the acid itself, (ii) the buffer molecules, and (iii) the fluorescent pH reporter dye. Moreover, buffer concentration and acid gradient also serve as determinants of ΔpHin, as we show here. The uniexponential time constant (τ) of ΔpHin(t) is an invalid measure of Pm as Arrhenius plots of Pm and τ reveal different activation energies for acid influx. We calculate Pm by fitting a mathematical model to experimental stopped-flow traces. The model takes into account not only the time course of total internal buffer capacity but also (i) water self-dissociation, (ii) volume changes due to acid induced osmotic water flow, and (iii) the spontaneous membrane proton leak. It allows extracting a Pm of 30.8 ± 3.5 μm/s for formic acid for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles.
Collapse
|
25
|
Moss FR, Shuken SR, Mercer JAM, Cohen CM, Weiss TM, Boxer SG, Burns NZ. Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proc Natl Acad Sci U S A 2018; 115:9098-9103. [PMID: 30150407 PMCID: PMC6140541 DOI: 10.1073/pnas.1810706115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5-10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Steven R Shuken
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jaron A M Mercer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Carolyn M Cohen
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford University, Menlo Park, CA 94025
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
26
|
Kalu N, Atsmon-Raz Y, Momben Abolfath S, Lucas L, Kenney C, Leppla SH, Tieleman DP, Nestorovich EM. Effect of late endosomal DOBMP lipid and traditional model lipids of electrophysiology on the anthrax toxin channel activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2192-2203. [PMID: 30409515 DOI: 10.1016/j.bbamem.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 08/19/2018] [Indexed: 01/26/2023]
Abstract
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Yoav Atsmon-Raz
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Laura Lucas
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda 20892, MD, USA
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA.
| |
Collapse
|
27
|
Ruiz-Pérez L, Hurley C, Tomas S, Battaglia G. Separating Extreme pH Gradients Using Amphiphilic Copolymer Membranes. Chemphyschem 2018; 19:1987-1989. [PMID: 29763524 DOI: 10.1002/cphc.201800187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 11/07/2022]
Abstract
Polymeric vesicles, also called polymersomes, are highly efficient biomimetic systems. They can generate compartmentalized volumes at the nanoscale supported by synthetic amphiphilic membranes that closely mimic their biological counterparts. Membrane permeability and the ability to separate extreme pH gradients is a crucial condition a successful biomimetic system must meet. We show that polymersomes formed by non-ionic polybutadiene-b-polyethylene oxide (PBd-b-PEO) amphiphilic block copolymers engineer robust and stable membranes that are able to sustain pH gradients of 10 for a minimum of eight days. The cells' endo-lysomal compartments separate gradients between three and one, while we generated a pH gradient of threefold as great. This feature clearly is of great importance for applications as nanoreactors and drug-delivery systems where separating different aqueous volumes at the nanoscale level is an essential requirement.
Collapse
Affiliation(s)
- Lorena Ruiz-Pérez
- Department of Chemistry, University College London, 20 Gordon street, WC1H 0AJ, London, UK
| | - Claire Hurley
- Department of Physics, University of Warwick, Coventry West Midlands, CV4 7AL, United Kingdom
| | - Salvador Tomas
- Department of Biological Sciences, Birbeck, University of London, Malet Street, Bloomsbury London, WC1E 7HX, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, 20 Gordon street, WC1H 0AJ, London, UK
| |
Collapse
|
28
|
Tunuguntla RH, Zhang Y, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins". Science 2018; 359:359/6383/eaaq1241. [PMID: 29599214 DOI: 10.1126/science.aaq1241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
Abstract
Horner and Pohl argue that high water transport rates reported for carbon nanotube porins (CNTPs) originate from leakage at the nanotube-bilayer interface. Our results and new experimental evidence are consistent with transport through the nanotube pores and rule out a defect-mediated transport mechanism. Mechanistic origins of the high Arrhenius factor that we reported for narrow CNTPs at pH 8 require further investigation.
Collapse
Affiliation(s)
- Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Robert Y Henley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.,Physics Department, Northeastern University, Boston, MA 02115, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.,School of Natural Sciences, University of California, Merced, CA 94343, USA
| | - T Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Meni Wanunu
- Physics Department, Northeastern University, Boston, MA 02115, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. .,School of Natural Sciences, University of California, Merced, CA 94343, USA
| |
Collapse
|
29
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|
30
|
Elling FJ, Könneke M, Nicol GW, Stieglmeier M, Bayer B, Spieck E, de la Torre JR, Becker KW, Thomm M, Prosser JI, Herndl GJ, Schleper C, Hinrichs KU. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 2017; 19:2681-2700. [PMID: 28419726 DOI: 10.1111/1462-2920.13759] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades. IPLs of these thaumarchaeal strains are generally similar and consist of membrane-spanning, glycerol dibiphytanyl glycerol tetraethers with monoglycosyl, diglycosyl, phosphohexose and hexose-phosphohexose headgroups. However, the relative abundances of these IPLs and their core lipid compositions differ systematically between the phylogenetic subgroups, indicating high potential for chemotaxonomic distinction of thaumarchaeal clades. Comparative lipidomic analyses of 19 euryarchaeal and crenarchaeal strains suggested that the lipid methoxy archaeol is synthesized exclusively by Thaumarchaeota and may thus represent a diagnostic lipid biomarker for this phylum. The unprecedented diversity of the thaumarchaeal lipidome with 118 different lipids suggests that membrane lipid composition and adaptation mechanisms in Thaumarchaeota are more complex than previously thought and include unique lipids with as yet unresolved properties.
Collapse
Affiliation(s)
- Felix J Elling
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Martin Könneke
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany.,Marine Archaea Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134, Ecully, France
| | | | - Barbara Bayer
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria
| | - Eva Spieck
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, 22609, Germany
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Kevin W Becker
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Regensburg, 93053, Germany
| | - James I Prosser
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, UK
| | - Gerhard J Herndl
- Limnology and Bio-Oceanography, Center of Ecology, University of Vienna, Vienna, 1090, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | | | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
31
|
Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017; 21:651-670. [PMID: 28508135 PMCID: PMC5487899 DOI: 10.1007/s00792-017-0939-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/29/2017] [Indexed: 12/30/2022]
Abstract
The cytoplasmic membrane of a prokaryotic cell consists of a lipid bilayer or a monolayer that shields the cellular content from the environment. In addition, the membrane contains proteins that are responsible for transport of proteins and metabolites as well as for signalling and energy transduction. Maintenance of the functionality of the membrane during changing environmental conditions relies on the cell's potential to rapidly adjust the lipid composition of its membrane. Despite the fundamental chemical differences between bacterial ester lipids and archaeal ether lipids, both types are functional under a wide range of environmental conditions. We here provide an overview of archaeal and bacterial strategies of changing the lipid compositions of their membranes. Some molecular adjustments are unique for archaea or bacteria, whereas others are shared between the two domains. Strikingly, shared adjustments were predominantly observed near the growth boundaries of bacteria. Here, we demonstrate that the presence of membrane spanning ether-lipids and methyl branches shows a striking relationship with the growth boundaries of archaea and bacteria.
Collapse
Affiliation(s)
- Melvin F Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
32
|
Mitchell GM, Hesketh A, Lombardi C, Ho C, Fyles TM. A membrane-spanning macrocyclic bolaamphiphile lipid mimic of archaeal lipids. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis of a 72-membered macrocyclic tetraester bolaamphiphile is accomplished in six chemical steps from commercially available starting materials using copper-accelerated azide–alkyne coupling to close the macrocycle in high yield. Related diester amphiphiles and an acyclic tetraester bolaamphiphile were also prepared. The set of lipids bearing nitrophenyl phosphate head groups were incorporated into phospholipid vesicles but failed to undergo phosphate hydrolysis in basic conditions, undergoing efficient elimination in competition. The same lipid cores bearing phosphate-linked nitrobenzoxadiazole (NBD) head groups also incorporated into phospholipid vesicles and the NBD fluorescence was quenched with cobalt ions. The proportion of membrane-spanning bolaamphiphiles was determined from the ratio of cobalt quenching in the presence and in the absence of a detergent. The macrocyclic bolaamphiphile is incorporated into phospholipid vesicles such that 48 ± 4% of the NBD head groups are in the outer leaflet, consistent with a membrane-spanning orientation. The acyclic bolaamphiphile is incorporated with 75 ± 3% of the NBD head groups accessible to quencher in the absence of a detergent suggesting U-shaped incorporation in the outer leaflet of the bilayer membrane. In ring size and spanning ability, the macrocyclic bolaamphiphile mimics naturally occurring macrocyclic archaeal lipids.
Collapse
Affiliation(s)
- Gavin M. Mitchell
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Amelia Hesketh
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Christie Lombardi
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Cally Ho
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| | - Thomas M. Fyles
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
- Department of Chemistry, University of Victoria, Box 1700 STN CSC, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
33
|
Caforio A, Driessen AJM. Archaeal phospholipids: Structural properties and biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1325-1339. [PMID: 28007654 DOI: 10.1016/j.bbalip.2016.12.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023]
Abstract
Phospholipids are major components of the cellular membranes present in all living organisms. They typically form a lipid bilayer that embroiders the cell or cellular organelles, constitute a barrier for ions and small solutes and form a matrix that supports the function of membrane proteins. The chemical composition of the membrane phospholipids present in the two prokaryotic domains Archaea and Bacteria are vastly different. Archaeal lipids are composed of highly-methylated isoprenoid chains that are ether-linked to a glycerol-1-phosphate backbone while bacterial phospholipids consist of straight fatty acids bound by ester bonds to the enantiomeric glycerol-3-phosphate backbone. The chemical structure of the archaeal lipids and their compositional diversity ensures the required stability at extreme environmental conditions as many archaea thrive at such conditions including high or low temperature, high salinity and extreme acidic or alkaline pH values. However, not all archaea are extremophiles, and the presence of ether-linked phospholipids is a phylogenetic marker that distinguishes Archaea from other life forms. During the past decade, our understanding of the biosynthesis of archaeal lipids has progressed resulting in the characterization of the main biosynthetic steps of the pathway including the reconstitution of lipid biosynthesis in vitro. Here we describe the chemical and physical properties of archaeal lipids and membranes derived thereof, summarize the existing knowledge about the enzymology of the archaeal lipid biosynthetic pathway and discuss evolutionary theories associated with the "Lipid Divide" that resulted in the differentiation of bacterial and archaeal organisms. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Antonella Caforio
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
34
|
Feyhl-Buska J, Chen Y, Jia C, Wang JX, Zhang CL, Boyd ES. Influence of Growth Phase, pH, and Temperature on the Abundance and Composition of Tetraether Lipids in the Thermoacidophile Picrophilus torridus. Front Microbiol 2016; 7:1323. [PMID: 27625636 PMCID: PMC5003844 DOI: 10.3389/fmicb.2016.01323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
The abundance and composition of glycerol dibiphytanyl glycerol tetraether (GDGT) and glycerol tribiphytanyl glycerol tetraether (GTGT) lipids were determined as a function of growth phase as a proxy for nutrient availability, the pH of growth medium, and incubation temperature in cultures of the thermoacidophile Picrophilus torridus. Regardless of the cultivation condition, the abundance of GDGTs and GTGTs was greater in the polar than core fraction, with a marked decrease in core GDGTs in cultures harvested during log phase growth. These data are consistent with previous suggestions indicating that core GDGTs are re-functionalized during polar lipid synthesis. Under all conditions examined, polar lipids were enriched in a GDGT with 2 cyclopentyl rings (GDGT-2), indicating GDGT-2 is the preferred lipid in this taxon. However, lag or stationary phase grown cells or cells subjected to pH or thermal stress were enriched in GDGTs with 4, 5, or 6 rings and depleted in GDGTs with 1, 2, 3, rings relative to log phase cells grown under optimal conditions. Variation in the composition of polar GDGT lipids in cells harvested during various growth phases tended to be greater than in cells cultivated over a pH range of 0.3–1.1 and a temperature range of 53–63°C. These results suggest that the growth phase, the pH of growth medium, and incubation temperature are all important factors that shape the composition of tetraether lipids in Picrophilus. The similarity in enrichment of GDGTs with more rings in cultures undergoing nutrient, pH, and thermal stress points to GDGT cyclization as a generalized physiological response to stress in this taxon.
Collapse
Affiliation(s)
- Jayme Feyhl-Buska
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Yufei Chen
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Chengling Jia
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Jin-Xiang Wang
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Chuanlun L Zhang
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State UniversityBozeman, MT, USA; NASA Astrobiology InstituteMountain View, CA, USA
| |
Collapse
|
35
|
Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream. Appl Environ Microbiol 2016; 82:4492-504. [PMID: 27208107 DOI: 10.1128/aem.00250-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of the rate of ammonia oxidation. The discovery of ammonia-oxidizing archaea (AOA) in marine and terrestrial environments has transformed the concept that ammonia oxidation is operated only by bacterial species, suggesting that AOA play a significant role in the global nitrogen cycle. However, the archaeal contribution to ammonia oxidation in the global biosphere is not yet completely understood. This study successfully identified key factors controlling nitrogen and oxygen isotopic ratios of nitrite produced from thermophilic Thaumarchaeota and elucidated the applicability and its limit of nitrite isotopes as a geochemical clock of ammonia oxidation rate in nature. Oxygen isotope analysis in this study also provided new biochemical information on archaeal ammonia oxidation.
Collapse
|
36
|
Haq K, Jia Y, Krishnan L. Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity. Expert Rev Vaccines 2016; 15:1557-1566. [DOI: 10.1080/14760584.2016.1195265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K. Haq
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Canada
| | - Y. Jia
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Canada
| | - L. Krishnan
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Canada
| |
Collapse
|
37
|
Schroeder TBH, Leriche G, Koyanagi T, Johnson MA, Haengel KN, Eggenberger OM, Wang CL, Kim YH, Diraviyam K, Sept D, Yang J, Mayer M. Effects of Lipid Tethering in Extremophile-Inspired Membranes on H(+)/OH(-) Flux at Room Temperature. Biophys J 2016; 110:2430-2440. [PMID: 27276261 PMCID: PMC4906265 DOI: 10.1016/j.bpj.2016.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 01/22/2023] Open
Abstract
This work explores the proton/hydroxide permeability (PH+/OH-) of membranes that were made of synthetic extremophile-inspired phospholipids with systematically varied structural elements. A fluorescence-based permeability assay was optimized to determine the effects on the PH+/OH- through liposome membranes with variations in the following lipid attributes: transmembrane tethering, tether length, and the presence of isoprenoid methyl groups on one or both lipid tails. All permeability assays were performed in the presence of a low concentration of valinomycin (10 nM) to prevent buildup of a membrane potential without artificially increasing the measured PH+/OH-. Surprisingly, the presence of a transmembrane tether did not impact PH+/OH- at room temperature. Among tethered lipid monolayers, PH+/OH- increased with increasing tether length if the number of carbons in the untethered acyl tail was constant. Untethered lipids with two isoprenoid methyl tails led to lower PH+/OH- values than lipids with only one or no isoprenoid tails. Molecular dynamics simulations revealed a strong positive correlation between the probability of observing water molecules in the hydrophobic core of these lipid membranes and their proton permeability. We propose that water penetration as revealed by molecular dynamics may provide a general strategy for predicting proton permeability through various lipid membranes without the need for experimentation.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan; Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Mitchell A Johnson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kathryn N Haengel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Olivia M Eggenberger
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Claire L Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Young Hun Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Karthik Diraviyam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
38
|
Milianta PJ, Muzzio M, Denver J, Cawley G, Lee S. Water Permeability across Symmetric and Asymmetric Droplet Interface Bilayers: Interaction of Cholesterol Sulfate with DPhPC. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12187-12196. [PMID: 26492572 DOI: 10.1021/acs.langmuir.5b02748] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular membranes employ a variety of strategies for controlling the flow of small molecules into the cytoplasmic space, including incorporation of sterols for modulation of permeability and maintenance of lipid asymmetry to provide both sides of the membrane with differing biophysical properties. The specific case of cholesterol asymmetry, especially, is known to have profound effects in neurological cellular systems. Synthetic membrane models that can readily determine valuable physical parameters, such as water transport rates, for sterol-containing membranes of defined lipid composition remain in demand. We report the use of the droplet interface bilayer (DIB), composed of adherent aqueous droplets surrounded by a lipid monolayer and immersed in a hydrophobic medium, for measurement of water permeability across the membrane, with rapid visualization and ease of experimental setup. We studied droplet bilayer membranes composed of the prototypical synthetic membrane lipid (i.e., the archaeal lipid DPhPC) as well as of symmetric and asymmetric DIBs formed by DPhPC and sodium cholesterol sulfate (S-Chol). The presence of S-Chol in DPhPC in symmetric DIB reduced the passive water permeability rate (P(f)) at all concentrations and increased the activation energy (E(a)) to 17-18 kcal/mol. When only one side of the DIB contains S-Chol (asymmetric DIB), an E(a) of 14-15 kcal/mol was obtained, a value intermediate that of pure lipid and symmetrical DIB containing lipid and S-Chol. Our data are consistent with a capability for regulation of water transport by one leaflet independent of the other. The engineering of our various systems is believed to have implications for garnering detailed knowledge regarding the transport of small moieties across bilayers in a wide variety of lipid systems.
Collapse
Affiliation(s)
- Peter J Milianta
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michelle Muzzio
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jacqueline Denver
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Geoffrey Cawley
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College , 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
39
|
Abstract
Because membranes play a central role in regulating fluxes inward and outward from the cells, maintaining the appropriate structure of the membrane is crucial to maintain cellular integrity and functions. Microbes often face contrasted and fluctuating environmental conditions, to which they need to adapt or die. Membrane adaptation is achieved by a modification of the membrane lipid composition, a strategy termed homeoviscous adaptation. Homeoviscous adaptation in archaea involves strategies similar to that observed in bacteria and eucarya, such as the regulation of lipid chain length or saturation levels, as well as strategies specific to archaea, such as the regulation of the number of cycles along the isoprenoid chains or the regulation of the ratio between mono and bipolar lipids. Although not described yet described in hyperthermophilic bacteria, it is possible that these two strategies also apply to these latter organisms.
Collapse
|
40
|
Chakraborty H, Haldar S, Chong PLG, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Depth-Dependent Organization and Dynamics of Archaeal and Eukaryotic Membranes: Development of Membrane Anisotropy Gradient with Natural Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11591-11597. [PMID: 26445271 DOI: 10.1021/acs.langmuir.5b02760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lipid composition of archaea is unique and has been correlated with increased stability under extreme environmental conditions. In this article, we have focused on the evolution of membrane organization and dynamics with natural evolution. Dynamic anisotropy along the membrane normal (i.e., gradients of mobility, polarity, and heterogeneity) is a hallmark of fluid phase diester or diether phospholipid membranes. We monitored gradients of mobility, polarity, and heterogeneity along the membrane normal in membranes made of a representative archaeal lipid using a series of membrane depth-dependent fluorescent probes, and compared them to membranes prepared from a typical diether lipid from higher organisms (eukaryotes). Our results show that the representative dynamic anisotropy gradient along the membrane normal is absent in membranes made from archaeal lipids. We hypothesize that the dynamic gradient observed in membranes of diester and diether phospholipids is a consequence of natural evolution of membrane lipids in response to the requirement of carrying out complex cellular functions by membrane proteins.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500 007, India
- School of Chemistry, Sambalpur University , Burla, Odisha 768 019, India
| | - Sourav Haldar
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500 007, India
| | - Parkson Lee-Gau Chong
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine , Philadelphia, Pennsylvania 19140, United States
| | - Mamata Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400 005, India
| | - G Krishnamoorthy
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400 005, India
| | | |
Collapse
|
41
|
Cario A, Grossi V, Schaeffer P, Oger PM. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Front Microbiol 2015; 6:1152. [PMID: 26539180 PMCID: PMC4612709 DOI: 10.3389/fmicb.2015.01152] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80 MPa. We analyzed the membrane lipids of T. barophilus by high performance liquid chromatography–mass spectrometry as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C) the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol) is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol. Reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of apolar lipids having an irregular polyisoprenoid carbon skeleton (unsaturated lycopane derivatives), suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other Archaea harboring a mixture of di- and tetraether lipids.
Collapse
Affiliation(s)
- Anaïs Cario
- CNRS, Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, UMR 5276, Université Claude Bernard Lyon 1 Lyon, France
| | - Vincent Grossi
- CNRS, Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, UMR 5276, Université Claude Bernard Lyon 1 Lyon, France
| | - Philippe Schaeffer
- CNRS, Laboratoire de Biogéochimie Moléculaire, Institut de Chimie de Strasbourg, Ecole de Chimie, Polymères et Matériaux, UMR 7177, Université de Strasbourg Strasbourg, France
| | - Philippe M Oger
- CNRS, Laboratoire de Géologie de Lyon, Ecole Normale Supérieure de Lyon, UMR 5276, Université Claude Bernard Lyon 1 Lyon, France
| |
Collapse
|
42
|
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015; 19:721-40. [DOI: 10.1007/s00792-015-0760-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
43
|
Li J, Zhang H, Qiu F, Yang Y, Chen JZY. Conformation of a charged vesicle. SOFT MATTER 2015; 11:1788-1793. [PMID: 25608843 DOI: 10.1039/c4sm02282c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the first systematic study of vesicle conformational change caused by Coulomb interaction between surface charges on a lipid vesicle. The equilibrium configuration of a charged vesicle is found, as the result of the competition between the local bending elastic energy and the long-range electrostatic interaction within the membrane where the counter-ion effects are neglected. Because of the Rayleigh instability, a charged vesicle undergoes conformational transitions as a function of the surface charge density.
Collapse
Affiliation(s)
- Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
44
|
Yasmann A, Sukharev S. Properties of diphytanoyl phospholipids at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:350-357. [PMID: 25474305 DOI: 10.1021/la503800g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diphytanoylphosphatidyl choline (DPhPC) is a synthetic ester lipid with methylated tails found in archaeal ether lipids. Because of the stability of DPhPC bilayers and the absence of phase transitions over a broad range of temperatures, the lipid is used as an artificial membrane matrix for the reconstitution of channels, pumps, and membrane-active peptides. We characterized monomolecular films made of DPhPC and its natural ether analog DOPhPC at the air-water interface. We measured compression isotherms and dipole potentials of films made of DPhPC, DPhPE, and DOPhPC. We determined that at 40 mN/m the molecular area of DPhPC is 81.2 Å(2), consistent with X-ray and neutron scattering data obtained in liposomes. This indicates that 40 mN/m is the monolayer-bilayer equivalence pressure for this lipid. At this packing density, the compressibility modulus (Cs(-1 )= 122 ± 7 mN/m) and interfacial dipole potential (V = 355 ± 16 mV) were near their maximums. The molecular dipole moment was estimated to be 0.64 ± 0.02 D. The ether DOPhPC compacted to 70.4 Å(2)/lipid at 40 mN/m displaying a peak compressibility similar to that of DPhPC. The maximal dipole potential of the ether lipid was about half of that for DPhPC at this density, and the elemental dipole moment was about a quarter. The spreading of DPhPC and DOPhPC liposomes reduced the surface tension of the aqueous phase by 46 and 49 mN/m, respectively. This corresponds well to the monolayer collapse pressure. The equilibration time shortened as the temperature increased from 20 to 60 °C, but the surface pressure at equilibrium did not change. The data illustrates the properties of branched chains and the contributions of ester bonds in setting the mechanical and electrostatic parameters of diphytanoyl lipids. These properties determine an environment in which reconstituted voltage- or mechano-activated proteins may function. Electrostatic properties are important in the preparation of asymmetric folded bilayers, whereas lateral compressibility defines the tension in mechanically stimulated droplet interface bilayers.
Collapse
Affiliation(s)
- Anthony Yasmann
- Department of Biology, University of Maryland , College Park, Maryland 20742, United States
| | | |
Collapse
|
45
|
Poger D, Caron B, Mark AE. Effect of Methyl-Branched Fatty Acids on the Structure of Lipid Bilayers. J Phys Chem B 2014; 118:13838-48. [DOI: 10.1021/jp503910r] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Poger
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bertrand Caron
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular
Biosciences and ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
46
|
McCartney CA, Dewhurst RJ, Bull ID. Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates1. J Anim Sci 2014; 92:4095-8. [DOI: 10.2527/jas.2014-7929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C. A. McCartney
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
- Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - R. J. Dewhurst
- Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - I. D. Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
47
|
Vanysacker L, Boerjan B, Declerck P, Vankelecom IFJ. Biofouling ecology as a means to better understand membrane biofouling. Appl Microbiol Biotechnol 2014; 98:8047-72. [DOI: 10.1007/s00253-014-5921-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
|
48
|
Wang S, Larson RG. Water channel formation and ion transport in linear and branched lipid bilayers. Phys Chem Chem Phys 2014; 16:7251-62. [DOI: 10.1039/c3cp55116d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lipid bilayer stability and water channel morphologies are affected by the presence of methyl branches on lipid tails.
Collapse
Affiliation(s)
- Shihu Wang
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor, USA
| | - Ronald G. Larson
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor, USA
| |
Collapse
|
49
|
Cross TA, Murray DT, Watts A. Helical membrane protein conformations and their environment. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:731-55. [PMID: 23996195 PMCID: PMC3818118 DOI: 10.1007/s00249-013-0925-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 02/02/2023]
Abstract
Evidence that membrane proteins respond conformationally and functionally to their environment is growing. Structural models, by necessity, have been characterized in preparations where the protein has been removed from its native environment. Different structural methods have used various membrane mimetics that have recently included lipid bilayers as a more native-like environment. Structural tools applied to lipid bilayer-embedded integral proteins are informing us about important generic characteristics of how membrane proteins respond to the lipid environment as compared with their response to other nonlipid environments. Here, we review the current status of the field, with specific reference to observations of some well-studied α-helical membrane proteins, as a starting point to aid the development of possible generic principles for model refinement.
Collapse
Affiliation(s)
- Timothy A. Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Dylan T. Murray
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Anthony Watts
- Biomembrane structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
50
|
Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas B, González-López J. Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int J Mol Sci 2013; 14:18572-98. [PMID: 24022691 PMCID: PMC3794796 DOI: 10.3390/ijms140918572] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/22/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Biological wastewater treatment (WWT) frequently relies on biofilms for the removal of anthropogenic contaminants. The use of inert carrier materials to support biofilm development is often required, although under certain operating conditions microorganisms yield structures called granules, dense aggregates of self-immobilized cells with the characteristics of biofilms maintained in suspension. Molecular techniques have been successfully applied in recent years to identify the prokaryotic communities inhabiting biofilms in WWT plants. Although methanogenic Archaea are widely acknowledged as key players for the degradation of organic matter in anaerobic bioreactors, other biotechnological functions fulfilled by Archaea are less explored, and research on their significance and potential for WWT is largely needed. In addition, the occurrence of biofilms in WWT plants can sometimes be a source of operational problems. This is the case for membrane bioreactors (MBR), an advanced technology that combines conventional biological treatment with membrane filtration, which is strongly limited by biofouling, defined as the undesirable accumulation of microbial biofilms and other materials on membrane surfaces. The prevalence and spatial distribution of archaeal communities in biofilm-based WWT as well as their role in biofouling are reviewed here, in order to illustrate the significance of this prokaryotic cellular lineage in engineered environments devoted to WWT.
Collapse
Affiliation(s)
- Kadiya Calderón
- Environmental Microbiology Group, Department of Microbiology, Faculty of Pharmacy, and Institute of Water Research, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (C.G.-S.); (B.R.); (J.G.-L.)
| | - Alejandro González-Martínez
- Environmental Microbiology Group, Department of Civil Engineering, and Institute of Water Research, University of Granada; Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (A.G.-M.); (F.O.)
| | - Cinta Gómez-Silván
- Environmental Microbiology Group, Department of Microbiology, Faculty of Pharmacy, and Institute of Water Research, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (C.G.-S.); (B.R.); (J.G.-L.)
| | - Francisco Osorio
- Environmental Microbiology Group, Department of Civil Engineering, and Institute of Water Research, University of Granada; Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (A.G.-M.); (F.O.)
| | - Belén Rodelas
- Environmental Microbiology Group, Department of Microbiology, Faculty of Pharmacy, and Institute of Water Research, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (C.G.-S.); (B.R.); (J.G.-L.)
| | - Jesús González-López
- Environmental Microbiology Group, Department of Microbiology, Faculty of Pharmacy, and Institute of Water Research, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain; E-Mails: (C.G.-S.); (B.R.); (J.G.-L.)
| |
Collapse
|