1
|
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int J Mol Sci 2022; 23:5087. [PMID: 35563476 PMCID: PMC9104363 DOI: 10.3390/ijms23095087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| |
Collapse
|
2
|
Whole-genome association study searching for QTL for Aeromonas salmonicida resistance in rainbow trout. Sci Rep 2021; 11:17857. [PMID: 34497310 PMCID: PMC8426485 DOI: 10.1038/s41598-021-97437-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis, has extensive negative effects on wild and farmed salmonids worldwide. Vaccination induces some protection under certain conditions but disease outbreaks occur even in vaccinated fish. Therefore, alternative disease control approaches are required to ensure the sustainable expansion of rainbow trout aquaculture. Selective breeding can be applied to enhance host resistance to pathogens. The present work used genome-wide association study (GWAS) to identify quantitative trait loci (QTL) associated with A. salmonicida resistance in rainbow trout. A total 798 rainbow trout exposed to A. salmonicida by bath challenge revealed 614 susceptible and 138 resistant fish. Genotyping was conducted using the 57 K single nucleotide polymorphism (SNP) array and the GWAS was performed for survival and time to death phenotypes. We identified a QTL on chromosome 16 and located positional candidate genes in the proximity of the most significant SNPs. In addition, samples from exposed fish were examined for expression of 24 immune-relevant genes indicating a systematic immune response to the infection. The present work demonstrated that resistance to A. salmonicida is moderately heritable with oligogenic architecture. These result will be useful for the future breeding programs for improving the natural resistance of rainbow trout against furunculosis.
Collapse
|
3
|
Li J, Lambright DG, Hsu VW. Coordination of Grp1 recruitment mechanisms by its phosphorylation. Mol Biol Cell 2020; 31:2816-2825. [PMID: 33026967 PMCID: PMC7851867 DOI: 10.1091/mbc.e20-03-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The action of guanine nucleotide exchange factors (GEFs) on the ADP-ribosylation factor (ARF) family of small GTPases initiates intracellular transport pathways. This role requires ARF GEFs to be recruited from the cytosol to intracellular membrane compartments. An ARF GEF known as General receptor for 3-phosphoinositides 1 (Grp1) is recruited to the plasma membrane through its pleckstrin homology (PH) domain that recognizes phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here, we find that the phosphorylation of Grp1 induces its PH domain to recognize instead phosphatidylinositol 4-phosphate (PI4P). This phosphorylation also releases an autoinhibitory mechanism that results in the coil–coil (CC) domain of Grp1 engaging two peripheral membrane proteins of the recycling endosome. Because the combination of these actions results in Grp1 being recruited preferentially to the recycling endosome rather than to the plasma membrane, our findings reveal the complexity of recruitment mechanisms that need to be coordinated in localizing an ARF GEF to an intracellular compartment to initiate a transport pathway. Our elucidation is also remarkable for having revealed that phosphoinositide recognition by a PH domain can be switched through its phosphorylation.
Collapse
Affiliation(s)
- Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - David G Lambright
- Program in Molecular Medicine, Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Shinohara T, Urayama KY, Watanabe A, Akahane K, Goi K, Huang M, Kagami K, Abe M, Sugita K, Okada Y, Goto H, Minegishi M, Iwamoto S, Inukai T. Inherited genetic variants associated with glucocorticoid sensitivity in leukaemia cells. J Cell Mol Med 2020; 24:12920-12932. [PMID: 33002292 PMCID: PMC7701530 DOI: 10.1111/jcmm.15882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.
Collapse
Affiliation(s)
- Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kevin Y Urayama
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan.,Graduate School of Public Health, St Luke's International University, Tokyo, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Meixian Huang
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Goto
- Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
5
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Ricaño-Ponce I, Gutierrez-Achury J, Costa AF, Deelen P, Kurilshikov A, Zorro MM, Platteel M, van der Graaf A, Sanna S, Daffra O, Zhernakova A, Fu J, Trynka G, Smecuol E, Niveloni SI, Bai JC, Kumar V, Wijmenga C. Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease. Eur J Hum Genet 2020; 28:313-323. [PMID: 31591516 PMCID: PMC7028987 DOI: 10.1038/s41431-019-0520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Celiac disease (CeD) is a common immune-mediated disease of the small intestine that is triggered by exposure to dietary gluten. While the HLA locus plays a major role in disease susceptibility, 39 non-HLA loci were also identified in a study of 24,269 individuals. We now build on this earlier study by adding 4125 additional Caucasian samples including an Argentinian cohort. In doing so, we not only confirm the previous associations, we also identify two novel independent genome-wide significant associations at loci: 12p13.31 and 22q13.1. By applying a genomics approach and differential expression analysis in CeD intestinal biopsies, we prioritize potential causal genes at these novel loci, including LTBR, CYTH4, and RAC2. Nineteen prioritized causal genes are overlapping known drug targets. Pathway enrichment analysis and expression of these genes in CeD biopsies suggest that they have roles in regulating multiple pathways such as the tumor necrosis factor (TNF) mediated signaling pathway and positive regulation of I-κB kinase/NF-κB signaling.
Collapse
Affiliation(s)
- Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Javier Gutierrez-Achury
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Ana Florencia Costa
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Maria Magdalena Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Mathieu Platteel
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Adriaan van der Graaf
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Oscar Daffra
- Gastroenterology Service, OSEP Mendoza, Mendoza, Argentina
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
| | - Gosia Trynka
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Edgardo Smecuol
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Sonia Isabel Niveloni
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Julio Cesar Bai
- Small Bowel Section, Department of Medicine, Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700RB, Groningen, the Netherlands.
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
8
|
Structural Organization and Dynamics of Homodimeric Cytohesin Family Arf GTPase Exchange Factors in Solution and on Membranes. Structure 2019; 27:1782-1797.e7. [PMID: 31601460 PMCID: PMC6948192 DOI: 10.1016/j.str.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Membrane dynamic processes require Arf GTPase activation by guanine nucleotide exchange factors (GEFs) with a Sec7 domain. Cytohesin family Arf GEFs function in signaling and cell migration through Arf GTPase activation on the plasma membrane and endosomes. In this study, the structural organization of two cytohesins (Grp1 and ARNO) was investigated in solution by size exclusion-small angle X-ray scattering and negative stain-electron microscopy and on membranes by dynamic light scattering, hydrogen-deuterium exchange-mass spectrometry and guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange assays. The results suggest that cytohesins form elongated dimers with a central coiled coil and membrane-binding pleckstrin-homology (PH) domains at opposite ends. The dimers display significant conformational heterogeneity, with a preference for compact to intermediate conformations. Phosphoinositide-dependent membrane recruitment is mediated by one PH domain at a time and alters the conformational dynamics to prime allosteric activation by Arf-GTP. A structural model for membrane targeting and allosteric activation of full-length cytohesin dimers is discussed.
Collapse
|
9
|
Wu Y, Chang YM, Stell AJ, Priestnall SL, Sharma E, Goulart MR, Gribben J, Xia D, Garden OA. Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice. Sci Rep 2019; 9:13478. [PMID: 31530890 PMCID: PMC6748983 DOI: 10.1038/s41598-019-50065-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function.
Collapse
Affiliation(s)
- Ying Wu
- Royal Veterinary College, London, UK
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- Royal Veterinary College, London, UK.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Kong Y, Zhao L, Charette JR, Hicks WL, Stone L, Nishina PM, Naggert JK. An FRMD4B variant suppresses dysplastic photoreceptor lesions in models of enhanced S-cone syndrome and of Nrl deficiency. Hum Mol Genet 2019; 27:3340-3352. [PMID: 29947801 DOI: 10.1093/hmg/ddy238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Photoreceptor dysplasia, characterized by formation of folds and (pseudo-)rosettes in the outer retina, is associated with loss of functional nuclear receptor subfamily 2 group E member 3 (NR2E3) and neural retina leucine-zipper (NRL) in both humans and mice. A sensitized chemical mutagenesis study to identify genetic modifiers that suppress photoreceptor dysplasia in Nr2e3rd7mutant mice identified line Tvrm222, which exhibits a normal fundus appearance in the presence of the rd7 mutation. The Tvrm222 modifier of Nr2e3rd7/rd7 was localized to Chromosome 6 and identified as a missense mutation in the FERM domain containing 4B (Frmd4b) gene. The variant is predicted to cause the substitution of a serine residue 938 with proline (S938P). The Frmd4bTvrm222 allele was also found to suppress outer nuclear layer (ONL) rosettes in Nrl-/- mice. Fragmentation of the external limiting membrane (ELM), normally observed in rd7 and Nrl-/-mouse retinas, was absent in the presence of the Frmd4bTvrm222 allele. FRMD4B, a binding partner of cytohesin 3, is proposed to participate in cell junction remodeling. Its biological function in photoreceptor dysplasia has not been previously examined. In vitro experiments showed that the FRMD4B938P variant fails to be efficiently recruited to the cell surface upon insulin stimulation. In addition, we found a reduction in protein kinase B phosphorylation and increased levels of cell junction proteins, Catenin beta 1 and tight junction protein 1, associated with the cell membrane in Tvrm222 retinas. Taken together, this study reveals a critical role of FRMD4B in maintaining ELM integrity and in rescuing morphological abnormalities of the ONL in photoreceptor dysplasia.
Collapse
Affiliation(s)
- Yang Kong
- Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Luong P, Hedl M, Yan J, Zuo T, Fu TM, Jiang X, Thiagarajah JR, Hansen SH, Lesser CF, Wu H, Abraham C, Lencer WI. INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. eLife 2018; 7:38539. [PMID: 30355448 PMCID: PMC6226287 DOI: 10.7554/elife.38539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/15/2018] [Indexed: 01/28/2023] Open
Abstract
Homeostasis at mucosal surfaces requires cross-talk between the environment and barrier epithelial cells. Disruption of barrier function typifies mucosal disease. Here we elucidate a bifunctional role in coordinating this cross-talk for the inflammatory bowel disease risk-gene INAVA. Both activities require INAVA’s DUF3338 domain (renamed CUPID). CUPID stably binds the cytohesin ARF-GEF ARNO to effect lateral membrane F-actin assembly underlying cell-cell junctions and barrier function. Unexpectedly, when bound to CUPID, ARNO affects F-actin dynamics in the absence of its canonical activity as a guanine nucleotide-exchange factor. Upon exposure to IL-1β, INAVA relocates to form cytosolic puncta, where CUPID amplifies TRAF6-dependent polyubiquitination and inflammatory signaling. In this case, ARNO binding to CUPID negatively-regulates polyubiquitination and the inflammatory response. INAVA and ARNO act similarly in primary human macrophages responding to IL-1β and to NOD2 agonists. Thus, INAVA-CUPID exhibits dual functions, coordinated directly by ARNO, that bridge epithelial barrier function with extracellular signals and inflammation.
Collapse
Affiliation(s)
- Phi Luong
- Division of Gastroenterology, Nutrition and Hepatology, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States
| | - Matija Hedl
- Department of Medicine, Yale University, New Haven, United States
| | - Jie Yan
- Department of Medicine, Yale University, New Haven, United States
| | - Tao Zuo
- Division of Gastroenterology, Nutrition and Hepatology, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Xiaomo Jiang
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Nutrition and Hepatology, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Harvard Digestive Disease Center, Harvard Medical School, Boston, United States
| | - Steen H Hansen
- Division of Gastroenterology, Nutrition and Hepatology, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Harvard Digestive Disease Center, Harvard Medical School, Boston, United States
| | - Cammie F Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Clara Abraham
- Department of Medicine, Yale University, New Haven, United States
| | - Wayne I Lencer
- Division of Gastroenterology, Nutrition and Hepatology, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States.,Harvard Digestive Disease Center, Harvard Medical School, Boston, United States
| |
Collapse
|
12
|
Ito A, Fukaya M, Saegusa S, Kobayashi E, Sugawara T, Hara Y, Yamauchi J, Okamoto H, Sakagami H. Pallidin is a novel interacting protein for cytohesin-2 and regulates the early endosomal pathway and dendritic formation in neurons. J Neurochem 2018; 147:153-177. [PMID: 30151872 DOI: 10.1111/jnc.14579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Cytohesin-2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin-2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin-2 in neurons, we conducted yeast two-hybrid screening of brain cDNA libraries using cytohesin-2 as bait and isolated pallidin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin-2 among cytohesin family members. Glutathione S-transferase pull-down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin-2 and pallidin. Immunofluorescence demonstrated that cytohesin-2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin-2 reduced cytoplasmic EEA1-positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co-expression of wild-type pallidin but not a mutant lacking the ability to interact with cytohesin-2. In contrast, knockdown of cytohesin-2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin-2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. Cover Image for this issue: doi: 10.1111/jnc.14197.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Emi Kobayashi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
13
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
14
|
Shen S, Tao L, Wang X, Kong X, Li X. Common Variants for Heart Failure. Curr Genomics 2015; 16:82-7. [PMID: 26085806 PMCID: PMC4467308 DOI: 10.2174/1389202916999150120153141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/08/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a common disease with high morbidity and mortality; however, none of the drugs available are now entirely optimal for the treatment of HF. In addition to various clinical diseases and environment influences, genetic factors also contribute to the development and progression of HF. Identifying the common variants for HF by genome-wide association studies will facilitate the understanding of pathophysiological mechanisms underlying HF. This review summarizes the recently identified common variants for HF risk and outcome and discusses their implications for the clinic therapy.
Collapse
Affiliation(s)
- Shutong Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiuzhi Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Oguchi T, Ota M, Ito T, Hamano H, Arakura N, Katsuyama Y, Meguro A, Kawa S. Investigation of susceptibility genes triggering lachrymal/salivary gland lesion complications in Japanese patients with type 1 autoimmune pancreatitis. PLoS One 2015; 10:e0127078. [PMID: 25985088 PMCID: PMC4436166 DOI: 10.1371/journal.pone.0127078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a unique form of chronic pancreatitis characterized by high serum IgG4 concentration and a variety of complicating extra-pancreatic lesions. In particular, lachrymal/salivary gland lesions tend to manifest in a highly active AIP disease state, and several genes are speculated to be associated with the onset of this complication. We therefore searched for candidate susceptibility genes related to lachrymal/salivary gland lesions in a genome-wide association study (GWAS) with the GeneChip Human Mapping 500k Array Set (Affymetrix, CA) that was followed by fine mapping of additional single nucleotide polymorphisms (SNPs) in strongly significant genes with TaqMan assays. Venous blood samples were obtained from 50 type 1 AIP patients with lachrymal/salivary gland lesions (A group) and 53 type 1 AIP patients without (B group). The mean values of IgG and IG4 were both significantly different (P<0.05) between the groups. SNPs that showed a significant association with the A group at the genome-wide level (P<0.0001) were identified and subsequently used in fine SNP mapping of candidate genes. In total, five SNPs had a positive association with complicated AIP (most notably rs2284932 [P=0.0000021]) and five SNPs possessed a negative association (particularly rs9371942 [P=0.00000039]). Among them, KLF7, FRMD4B, LOC101928923, and MPPED2 were further examined for complication susceptibility using additional SNPs that were not included in the GWAS. Individual genotyping of KLF7 rs2284932 revealed that the frequency of the minor C allele was significantly increased (P=0.00062, Pc=0.0018, OR=2.98, 95%CI=1.58-5.65) in group A. The minor T allele of rs4473559 in FRMD4 demonstrated a significant association in the A group (P=0.00015, OR=3.38, 95%CI=1.77-7.65). In the LOC101928923 gene, the frequency of the minor C allele of rs4379306 was significantly decreased in group A in both TaqMan and GWAS analyses. Lastly, the minor C allele of MPPED2 rs514644 carried a significantly increased risk of complications. These four genes may be linked with the onset of lachrymal/salivary gland lesions in type 1 AIP patients and require further study.
Collapse
Affiliation(s)
- Takaya Oguchi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
- * E-mail:
| | - Tetsuya Ito
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Hamano
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Norikazu Arakura
- Endoscopic Examination Center, Shinshu University Hospital, Matsumoto, Japan
| | | | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Shigeyuki Kawa
- Center for Health, Safety, and Environmental Management, Shinshu University, Matsumoto, Japan
| |
Collapse
|
16
|
Torii T, Miyamoto Y, Tago K, Sango K, Nakamura K, Sanbe A, Tanoue A, Yamauchi J. Arf6 guanine nucleotide exchange factor cytohesin-2 binds to CCDC120 and is transported along neurites to mediate neurite growth. J Biol Chem 2014; 289:33887-903. [PMID: 25326380 DOI: 10.1074/jbc.m114.575787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.
Collapse
Affiliation(s)
- Tomohiro Torii
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535,
| | - Yuki Miyamoto
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Kenji Tago
- the Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Kazunori Sango
- the Amyotrophic Lateral Sclerosis/Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506
| | - Kazuaki Nakamura
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Atsushi Sanbe
- the School of Pharmacy, Iwate Medical University, Morioka, Iwate 020-0023, and
| | - Akito Tanoue
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Junji Yamauchi
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, the Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|
17
|
Abstract
Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.
Collapse
|
18
|
Miyamoto Y, Torii T, Nakamura K, Takashima S, Sanbe A, Tanoue A, Yamauchi J. Signaling through Arf6 guanine-nucleotide exchange factor cytohesin-1 regulates migration in Schwann cells. Cell Signal 2013; 25:1379-87. [DOI: 10.1016/j.cellsig.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
19
|
Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta Mol Basis Dis 2011; 1812:956-63. [PMID: 21295138 DOI: 10.1016/j.bbadis.2011.01.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR, NR1I2) is a ligand activated transcription factor that belongs to the nuclear hormone receptor (NR) superfamily. PXR is highly expressed in the liver and intestine, but low levels of expression have also been found in many other tissues. PXR plays an integral role in xenobiotic and endobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters, as well as genes implicated in the metabolism of endobiotics. PXR exerts its transcriptional regulation by binding to its DNA response elements as a heterodimer with the retinoid X receptor (RXR) and recruitment of a host of coactivators. The biological and physiological implications of PXR activation are broad, ranging from drug metabolism and drug-drug interactions to the homeostasis of numerous endobiotics, such as glucose, lipids, steroids, bile acids, bilirubin, retinoic acid, and bone minerals. The purpose of this article is to provide an overview on the transcriptional circuits and metabolic relevance controlled by PXR. This article is part of a Special Issue entitled: Translating Nuclear Receptors from Health to Disease.
Collapse
|
20
|
Matkovich SJ, Van Booven DJ, Cappola TP, Dorn GW. Association of an intronic, but not any exonic, FRMD4B sequence variant and heart failure. Clin Transl Sci 2010; 3:134-9. [PMID: 20718813 DOI: 10.1111/j.1752-8062.2010.00220.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Common forms of heart failure (HF) exhibit familial clustering, but specific genetic risk factors have been challenging to identify. A recent single-nucleotide polymorphism (SNP) microarray study implicated a locus within an intron of FRMD4B in Caucasian HF. Here, we used next-generation resequencing of pooled DNA and individual Sequenom genotyping to test for associations between FRMD4B SNPs and ischemic and/or nonischemic cardiomyopathy in two independent populations. Exonic resequencing of Caucasians and African-Americans identified 32 FRMD4B SNPs, 13 of which had allele frequencies greater than 1%. None of these common FRMD4B SNPs were significantly associated with ischemic, nonischemic, or all-cause HF in either of the study populations. We individually genotyped the seminal intronic rs6787362 FRMD4B SNP in the primary study population and compared genotypes between HF cases and controls. The rs6787362 variant allele was more frequent in Caucasians with ischemic cardiomyopathy, and carriers (heterozygous or homozygous) of the variant allele had increased risk of HF (OR 1.437, CI 1.085-1.904; p= 0.0118). No such association was seen for African-American HF. These results confirm an association between the intronic rs6787362 FRMD4B SNP and ischemic cardiomyopathy in a European-derived population, but do not support the proposition that coding FRMD4B variants are susceptibility factors in common HF.
Collapse
Affiliation(s)
- Scot J Matkovich
- The Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
21
|
DiNitto JP, Lee MT, Malaby AW, Lambright DG. Specificity and membrane partitioning of Grsp1 signaling complexes with Grp1 family Arf exchange factors. Biochemistry 2010; 49:6083-92. [PMID: 20527794 DOI: 10.1021/bi1000454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Arf exchange factor Grp1 selectively binds phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P(3)], which is required for recruitment to the plasma membrane in stimulated cells. The mechanisms for phosphoinositide recognition by the PH domain, catalysis of nucleotide exchange by the Sec7 domain, and autoinhibition by elements proximal to the PH domain are well-characterized. The N-terminal heptad repeats in Grp1 have also been shown to mediate homodimerization in vitro as well as heteromeric interactions with heptad repeats in the FERM domain-containing protein Grsp1 both in vitro and in cells [Klarlund, J. K., et al. (2001) J. Biol. Chem. 276, 40065-40070]. Here, we have characterized the oligomeric state of Grsp1 and Grp1 family proteins (Grp1, ARNO, and Cytohesin-1) as well as the oligomeric state, stoichiometry, and specificity of Grsp1 complexes with Grp1, ARNO, and Cytohesin-1. At low micromolar concentrations, Grp1 and ARNO are homodimeric whereas Cytohesin-1 and Grsp1 are monomeric. When mixed with Grsp1, Grp1 homodimers and Cytohesin-1 monomers spontaneously re-equilibrate to form heterodimers, whereas approximately 50% of ARNO remains homodimeric under the same conditions. Fluorescence resonance energy transfer experiments suggest that the Grsp1 heterodimers with Grp1 and Cytohesin-1 adopt a largely antiparallel orientation. Finally, formation of Grsp1-Grp1 heterodimers does not substantially influence the binding of Grp1 to the headgroups of PtdIns(3,4,5)P(3) or PtdIns(4,5)P(2), nor does it influence partitioning with liposomes containing PtdIns(3,4,5)P(3), PtdIns(4,5)P(2), and/or phosphatidylserine.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
22
|
Lim J, Zhou M, Veenstra TD, Morrison DK. The CNK1 scaffold binds cytohesins and promotes insulin pathway signaling. Genes Dev 2010; 24:1496-506. [PMID: 20634316 DOI: 10.1101/gad.1904610] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein scaffolds play an important role in signal transduction, regulating the localization of signaling components and mediating key protein interactions. Here, we report that the major binding partners of the Connector Enhancer of KSR 1 (CNK1) scaffold are members of the cytohesin family of Arf guanine nucleotide exchange factors, and that the CNK1/cytohesin interaction is critical for activation of the PI3K/AKT cascade downstream from insulin and insulin-like growth factor 1 (IGF-1) receptors. We identified a domain located in the C-terminal region of CNK1 that interacts constitutively with the coiled-coil domain of the cytohesins, and found that CNK1 facilitates the membrane recruitment of cytohesin-2 following insulin stimulation. Moreover, through protein depletion and rescue experiments, we found that the CNK1/cytohesin interaction promotes signaling from plasma membrane-bound Arf GTPases to the phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) to generate a PIP(2)-rich microenvironment that is critical for the membrane recruitment of insulin receptor substrate 1 (IRS1) and signal transmission to the PI3K/AKT cascade. These findings identify CNK1 as a new positive regulator of insulin signaling.
Collapse
Affiliation(s)
- Junghwa Lim
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
23
|
Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 2010; 285:24270-81. [PMID: 20525696 DOI: 10.1074/jbc.m110.125658] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Okura, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Oh SJ, Santy LC. Differential effects of cytohesins 2 and 3 on beta1 integrin recycling. J Biol Chem 2010; 285:14610-6. [PMID: 20223830 DOI: 10.1074/jbc.m109.043935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ADP-ribosylation actor 6 (ARF6) regulates the endocytosis and recycling of a variety of proteins and also promotes peripheral actin rearrangements and cell motility. ARF6 is activated by a large number of guanine nucleotide exchange factors, which likely regulate ARF6 at different locations and during different processes. In this study we investigate the roles of the cytohesin ADP-ribosylation factor (ARF)-guanine nucleotide exchange factors during the recycling of integrin beta1. Intriguingly, we find that knockdown and overexpression of ARNO/cytohesin 2 and GRP1/cytohesin 3 have opposing effects on cell adhesion and spreading on fibronectin and on cell migration. We find that ARNO/cytohesin 2 is required for integrin beta1 recycling, whereas GRP1/cytohesin 3 is dispensable for this process. This is the first demonstration of unique roles for these proteins.
Collapse
Affiliation(s)
- Seung Ja Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
25
|
Cappola TP, Li M, He J, Ky B, Gilmore J, Qu L, Keating B, Reilly M, Kim CE, Glessner J, Frackelton E, Hakonarson H, Syed F, Hindes A, Matkovich SJ, Cresci S, Dorn GW. Common variants in HSPB7 and FRMD4B associated with advanced heart failure. ACTA ACUST UNITED AC 2010; 3:147-54. [PMID: 20124441 DOI: 10.1161/circgenetics.109.898395] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure results from abnormalities in multiple biological processes that contribute to cardiac dysfunction. We tested the hypothesis that inherited variation in genes of known importance to cardiovascular biology would thus contribute to heart failure risk. METHODS AND RESULTS We used the ITMAT/Broad/CARe cardiovascular single-nucleotide polymorphism array to screen referral populations of patients with advanced heart failure for variants in approximately 2000 genes of predicted importance to cardiovascular biology. Our design was a 2-stage case-control study. In stage 1, genotypes in Caucasian patients with heart failure (n=1590; ejection fraction, 32+/-16%) were compared with those in unaffected controls (n=577; ejection fraction, 67+/-8%) who were recruited from the same referral centers. Associations were tested for independent replication in stage 2 (308 cases and 2314 controls). Two intronic single-nucleotide polymorphisms showed replicated associations with all-cause heart failure as follows: rs1739843 in HSPB7 (combined P=3.09x10(-6)) and rs6787362 in FRMD4B (P=6.09x10(-6)). For both single-nucleotide polymorphisms, the minor allele was protective. In subgroup analyses, rs1739843 associated with both ischemic and nonischemic heart failure, whereas rs6787362 associated principally with ischemic heart failure. Linkage disequilibrium surrounding rs1739843 suggested that the causal variant resides in a region containing HSPB7 and a neighboring gene, CLCNKA, whereas the causal variant near rs6787362 is probably within FRMD4B. Allele frequencies for these single-nucleotide polymorphisms were substantially different in African Americans (635 cases and 714 controls) and showed no association with heart failure in this population. CONCLUSIONS Our findings identify regions containing HSPB7 and FRMD4B as novel susceptibility loci for advanced heart failure. More broadly, in an era of genome-wide association studies, we demonstrate how knowledge of candidate genes can be leveraged as a complementary strategy to discern the genetics of complex disorders.
Collapse
Affiliation(s)
- Thomas P Cappola
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A 2009; 107:748-53. [PMID: 20080746 DOI: 10.1073/pnas.0908423107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Par-3/Par-6/aPKC/Cdc42 complex regulates the conversion of primordial adherens junctions (AJs) into belt-like AJs and the formation of linear actin cables during epithelial polarization. However, the mechanisms by which this complex functions are not well elucidated. In the present study, we found that activation of Arf6 is spatiotemporally regulated as a downstream signaling pathway of the Par protein complex. When primordial AJs are formed, Par-3 recruits a scaffolding protein, termed the FERM domain containing 4A (FRMD4A). FRMD4A connects Par-3 and the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-1. We propose that the Par-3/FRMD4A/cytohesin-1 complex ensures accurate activation of Arf6, a central player in actin cytoskeleton dynamics and membrane trafficking, during junctional remodeling and epithelial polarization.
Collapse
|
27
|
MacNeil AJ, Pohajdak B. Getting aGRASPon CASP: properties and role of the cytohesin‐associated scaffolding protein in immunity. Immunol Cell Biol 2008; 87:72-80. [DOI: 10.1038/icb.2008.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Adam J MacNeil
- Department of Biology, Dalhousie University Nova Scotia Halifax Canada
| | - Bill Pohajdak
- Department of Biology, Dalhousie University Nova Scotia Halifax Canada
| |
Collapse
|
28
|
DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S, Guilherme A, Czech MP, Lambright DG. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol Cell 2008; 28:569-83. [PMID: 18042453 DOI: 10.1016/j.molcel.2007.09.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/30/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kolanus W. Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol Rev 2007; 218:102-13. [PMID: 17624947 DOI: 10.1111/j.1600-065x.2007.00542.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the cytohesin protein family, a group of guanine nucleotide exchange factors for adenosine diphosphate ribosylation factor (ARF) guanosine triphosphatases, have recently emerged as important regulators of signal transduction in vertebrate and invertebrate biology. These proteins share a modular domain structure, comprising carboxy-terminal membrane recruitment elements, a Sec7 homology effector domain, and an amino-terminal coiled-coil domain that serve as a platform for their integration into larger signaling complexes. Although these proteins have a highly similar overall build, their individual biological functions appear to be at least partly specific. Cytohesin-1 had been identified as a regulator of beta2 integrin inside-out regulation in immune cells and was subsequently shown to be involved in mitogen-associated protein kinase signaling in tumor cell proliferation as well as in T-helper cell activation and differentiation. Cytohesin-3, which had been discovered to be strongly associated with T-cell anergy, was very recently described as an essential component of insulin signal transduction in Drosophila and in human and murine liver cells. Future work will aim to dissect the mechanistic details of the modes of action of the cytohesins as well as to define the precise roles of these versatile proteins in vertebrates at the genetic level.
Collapse
Affiliation(s)
- Waldemar Kolanus
- Laboratory of Molecular Immunology, Program Unit Molecular Immune and Cell Biology, LIMES (Life and Medical Sciences Bonn), University of Bonn, Bonn, Germany.
| |
Collapse
|
30
|
Abstract
The ADP-ribosylation factor (ARF) small GTPases regulate vesicular traffic and organelle structure by recruiting coat proteins, regulating phospholipid metabolism and modulating the structure of actin at membrane surfaces. Recent advances in our understanding of the signalling pathways that are regulated by ARF1 and ARF6, two of the best characterized ARF proteins, provide a molecular context for ARF protein function in fundamental biological processes, such as secretion, endocytosis, phagocytosis, cytokinesis, cell adhesion and tumour-cell invasion.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences and the Walther Cancer Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| | | |
Collapse
|
31
|
Poirier MB, Hamann G, Domingue ME, Roy M, Bardati T, Langlois MF. General Receptor for Phosphoinositides 1, a Novel Repressor of Thyroid Hormone Receptor Action that Prevents Deoxyribonucleic Acid Binding. Mol Endocrinol 2005; 19:1991-2005. [PMID: 15878955 DOI: 10.1210/me.2004-0449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) bind to response elements (TREs) located in the promoter region of target genes and modulate their transcription. The effects of TRs require the presence of coregulators that act as adaptor molecules between TRs and complexes that are involved in chromatin remodeling or that directly contact the basal transcription machinery. Using the yeast two-hybrid system, we identified a new interacting partner for TRs: GRP1 (general receptor for phosphoinositides-1), a nucleotide exchange factor, which had never been shown to interact with nuclear receptors. We reconfirmed the interaction between TRs and GRP1 in yeast and glutathione-S-transferase pull-down assays, and determined the areas of TRs and GRP1 involved in the interaction. Coimmunoprecipitation studies demonstrated that the interaction between GRP1 and TRs takes place in the cytoplasm and the nucleus of mammalian cells. To assess functional consequences of the interaction, we used transient transfection of CV-1 cells with TR and GRP1 expression vectors and luciferase reporter genes. On positive TREs, GRP1 decreased activation by 45-60%. On the negative TREs it increased repression by blunting the activation in the absence of T3, except for TRbeta2, which was not affected. Using EMSA, we have determined that addition of GRP1 diminishes the formation of TR/TR homodimers and TR/retinoid X receptor heterodimers on TREs, which could explain the effect of GRP1 on transcription. Furthermore, protein interaction assays using increasing concentrations of double-stranded TREs show a dose-dependent decrease of the interaction between GRP1 and TRs. The homo/heterodimers formed by TRs and retinoic X receptor-alpha were not influenced by the presence of GRP1, also suggesting that GRP1 interferes directly with DNA binding. Taken together, these data provide evidence that GRP1 is a new corepressor for TRs, which modulates both positive and negative regulation by T3 by decreasing TR-complex formation on TREs.
Collapse
Affiliation(s)
- Marie-Belle Poirier
- Department of Medicine and Physiology, Division of Endocrinology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
32
|
Cronin TC, DiNitto JP, Czech MP, Lambright DG. Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains. EMBO J 2004; 23:3711-20. [PMID: 15359279 PMCID: PMC523182 DOI: 10.1038/sj.emboj.7600388] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 08/06/2004] [Indexed: 11/09/2022] Open
Abstract
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). Loss of contacts with the beta1/beta2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P(3) affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P(2) is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the beta1/beta2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition.
Collapse
Affiliation(s)
- Thomas C Cronin
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan P DiNitto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Two Biotech, 373 Plantation Street, Worcester, MA 01605, USA. Tel.: +1 508 856 6876; Fax: +1 508 856 4289; E-mail:
| |
Collapse
|
33
|
Cox R, Mason-Gamer RJ, Jackson CL, Segev N. Phylogenetic analysis of Sec7-domain-containing Arf nucleotide exchangers. Mol Biol Cell 2004; 15:1487-505. [PMID: 14742722 PMCID: PMC379250 DOI: 10.1091/mbc.e03-06-0443] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The eukaryotic family of ADP-ribosylation factor (Arf) GTPases plays a key role in the regulation of protein trafficking, and guanine-nucleotide exchange is crucial for Arf function. Exchange is stimulated by members of another family of proteins characterized by a 200-amino acid Sec7 domain, which alone is sufficient to catalyze exchange on Arf. Here, we analyzed the phylogeny of Sec7-domain-containing proteins in seven model organisms, representing fungi, plants, and animals. The phylogenetic tree has seven main groups, of which two include members from all seven model systems. Three groups are specific for animals, whereas two are specific for fungi. Based on this grouping, we propose a phylogenetically consistent set of names for members of the Sec7-domain family. Each group, except for one, contains proteins with known Arf exchange activity, implying that all members of this family have this activity. Contrary to the current convention, the sensitivity of Arf exchange activity to the inhibitor brefeldin A probably cannot be predicted by group membership. Multiple alignment reveals group-specific domains outside the Sec7 domain and a set of highly conserved amino acids within it. Determination of the importance of these conserved elements in Arf exchange activity and other cellular functions is now possible.
Collapse
Affiliation(s)
- Randal Cox
- Department of Biochemistry, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
34
|
Chauhan S, Pandey R, Way JF, Sroka TC, Demetriou MC, Kunz S, Cress AE, Mount DW, Miesfeld RL. Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation. Biochem Biophys Res Commun 2003; 310:421-32. [PMID: 14521927 PMCID: PMC2740477 DOI: 10.1016/j.bbrc.2003.08.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have developed a cell model to investigate steroid control of differentiation using a subline of HT1080 cells (HT-AR1) that have been engineered to express the human androgen receptor. Dihydrotestosterone (DHT) treatment of HT-AR1 cells induced growth arrest and cytoskeletal reorganization that was associated with the expression of fibronectin and the neuroendocrine markers chromogranin A and neuron-specific enolase. Expression profiling analysis identified the human FERM domain-encoding gene EHM2 as uniquely induced in HT-AR1 cells as compared to 16 other FERM domain containing genes. Since FERM domain proteins control cytoskeletal functions in differentiating cells, and the human EHM2 gene has not been characterized, we investigated EHM2 steroid-regulation, genomic organization, and sequence conservation. We found that DHT, but not dexamethasone, induced the expression of a 3.8 kb transcript in HT-AR1 cells encoding a 504 amino acid protein, and moreover, that human brain tissue contains a 5.8 kb transcript encoding a 913 amino acid isoform. Construction of an unrooted phylogenetic tree using 98 FERM domain proteins revealed that the human EHM2 gene is a member of a distinct subfamily consisting of nine members, all of which contain a highly conserved 325 amino acid FERM domain.
Collapse
Affiliation(s)
- Sanjay Chauhan
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Pandey
- Division of Bioinformatics, The Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey F. Way
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Thomas C. Sroka
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ 85721, USA
| | | | - Susan Kunz
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Anne E. Cress
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ 85721, USA
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - David W. Mount
- Division of Bioinformatics, The Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Roger L. Miesfeld
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Corresponding author. Fax: 1-520-621-1697. E-mail address: (R.L. Miesfeld)
| |
Collapse
|
35
|
Venkateswarlu K. Interaction protein for cytohesin exchange factors 1 (IPCEF1) binds cytohesin 2 and modifies its activity. J Biol Chem 2003; 278:43460-9. [PMID: 12920129 DOI: 10.1074/jbc.m304078200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosylation factor 6 (ARF6) small GTPase functions as a GDP/GTP-regulated switch in the pathways that stimulate actin reorganization and membrane ruffling. The formation of active ARF6GTP is stimulated by guanine nucleotide exchange factors (GEFs) such as cytohesins, which translocate to the plasma membrane in agonist-stimulated cells by binding the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate through the pleckstrin homology domain with subsequent ARF6 activation. Using cytohesin 2 as bait in yeast two-hybrid screening, we have isolated a cDNA encoding a protein termed interaction protein for cytohesin exchange factors 1 (IPCEF1). Using yeast two-hybrid and glutathione S-transferase pull-down assays coupled with deletion mutational analysis, the specific domains required for the cytohesin 2-IPCEF1 interaction were mapped to the coiled-coil domain of cytohesin 2 and the C-terminal 121 amino acids of IPCEF1. IPCEF1 also interacts with the other members of the cytohesin family of ARF GEFs, suggesting that the interaction with IPCEF1 is highly conserved among the cytohesin family of ARF GEFs. The interaction of cytohesin 2 and IPCEF1 in mammalian cells was demonstrated by immunoprecipitation. Immunofluorescence analysis revealed that IPCEF1 co-localizes with cytohesin 2 to the cytosol in unstimulated cells and translocates to the plasma membrane via binding to cytohesin 2 in epidermal growth factor-stimulated cells. However, a deletion mutant of IPCEF1 that lacks the cytohesin 2 binding site failed to co-migrate with cytohesin 2 to the membrane in stimulated cells. The functional significance of the IPCEF1-cytohesin 2 interaction is demonstrated by showing that IPCEF1 increases the in vitro and in vivo stimulation of ARFGTP formation by cytohesin 2.
Collapse
|
36
|
Li HS, Shome K, Rojas R, Rizzo MA, Vasudevan C, Fluharty E, Santy LC, Casanova JE, Romero G. The guanine nucleotide exchange factor ARNO mediates the activation of ARF and phospholipase D by insulin. BMC Cell Biol 2003; 4:13. [PMID: 12969509 PMCID: PMC212319 DOI: 10.1186/1471-2121-4-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 09/11/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. RESULTS Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: DeltaCC-ARNO and CC-ARNO were partially translocated to the membranes while DeltaPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. CONCLUSIONS Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.
Collapse
Affiliation(s)
- Hai-Sheng Li
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Kuntala Shome
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Raúl Rojas
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Megan A Rizzo
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Chandrasekaran Vasudevan
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Eric Fluharty
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Lorraine C Santy
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| |
Collapse
|
37
|
Stricker R, Vandekerckhove J, Krishna MU, Falck JR, Hanck T, Reiser G. Oligomerization controls in tissue-specific manner ligand binding of native, affinity-purified p42IP4/centaurin α1 and cytohesins—proteins with high affinity for the messengers d-inositol 1,3,4,5-tetrakisphosphate/phosphatidylinositol 3,4,5-trisphosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:102-15. [PMID: 14499594 DOI: 10.1016/s1570-9639(03)00241-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several distinct receptor proteins for the second messengers Ins(1,3,4,5)P(4) and PtdIns(3,4,5)P(3) are already known, such as the brain-specific p42(IP4), which we have previously cloned from different species, and cytohesins. However, it is still unclear whether proteins interacting with phosphoinositide and inositolpolyphosphate second messengers are regulated differently in different tissues. Here, we investigated these native proteins for comparison also from rat lung cytosol and purified them by PtdIns(3,4,5)P(3) affinity chromatography. Proteins selectively binding Ins(1,3,4,5)P(4) with high affinity also showed high affinity and specificity towards PtdIns(3,4,5)P(3). In lung cytosol, two prominent protein bands were found in the eluate from a PtdIns(3,4,5)P(3) affinity column. We identified these proteins by mass spectrometry as the cytohesin family of Arf guanosine nucleotide exchange factors (cytohesin 1, ARNO, GRP-1) and as Bruton's tyrosine kinase. Western blot analysis indicated that p42(IP4) was present in lung only at very low concentrations. Applying the affinity purification scheme established for rat lung cytosol to cytosol from rat brain, however, yielded only p42(IP4). We identified cytohesins in rat brain by Western blotting and PCR, but cytohesins surprisingly did not bind to the PtdIns(3,4,5)P(3)-affinity column. Gel filtration experiments of brain cytosol revealed that brain cytohesins are bound to large molecular weight complexes (150 to more than 500 kDa). Thus, we hypothesize that this finding explains why brain cytohesins apparently do not bind the inositolphosphate ligand. In lung cytosol, on the other hand, cytohesins occur as dimers. Gel filtration also showed that p42(IP4) in brain cytosol occurs as a monomer. Thus, oligomerization (homomeric or heteromeric) of InsP(4)/PtdInsP(3) binding proteins can modulate their function in a tissue-dependent manner because it can modify their ability to interact with the ligands.
Collapse
Affiliation(s)
- Rolf Stricker
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|