1
|
Mochi JA, Jani J, Shah S, Pappachan A. Leishmania donovani adenylosuccinate synthetase requires IMP for dimerization and organization of the active site. FEBS Lett 2024. [PMID: 39462612 DOI: 10.1002/1873-3468.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
Adenylosuccinate synthetase (AdSS), which catalyses the GTP-dependent conversion of inosine monophosphate (IMP) and aspartic acid to succinyl-AMP, plays a major role in purine biosynthesis. In some bacterial AdSS, it is implicated that IMP binding is important to organize the active site, but in certain plant AdSS, GTP performs this role. Here, we report that in Leishmania donovani AdSS, IMP binding favoured dimerization, induced greater conformational change and improved the protein stability more than GTP binding. IMP binding, which resulted in a network of hydrogen bonds, stabilized the conformation of active site loops and brought the switch loop to a closed conformation, which then facilitated GTP binding. Our results provide a basis for designing better inhibitors of leishmanial AdSS.
Collapse
Affiliation(s)
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
3
|
Zhu Y, Zhang S, Yu J. ZmAdSS1 encodes adenylosuccinate synthetase and plays a critical role in maize seed development and the accumulation of nutrients. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111644. [PMID: 36806609 DOI: 10.1016/j.plantsci.2023.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Adenylosuccinate synthetase (AdSS, EC.6.3.4.4) is a key enzyme in the de novo synthesis of purine nucleotides in organisms. Its downstream product AMP plays a critical role in the process of energy metabolism, which can affect the content of ADP and ATP. However, impacts of its loss-of-function on plant metabolism and development has been relatively poorly reported. Here, we report the identification and analysis of a maize yu18 mutant obtained by mutagenesis with ethylmethane sulfonate (EMS). The yu18 is a lethal-seed mutant. Map-based cloning and allelic testing confirmed that yu18 encodes adenylosuccinate synthetase and was named ZmAdSS1. ZmAdSS1 is constitutively expressed. In the yu18 mutant, the activity of the ZmAdSS1 enzyme was decreased, which caused AMP content reduced 33.62%. The yu18 mutation significantly suppressed endoreduplication and disrupted nutrient accumulation, resulting in lower starch and protein contents that are responsible for seed filling. Further transcriptome and metabolome analysis revealed dramatic alterations in the carbohydrate metabolic pathway and amino acid metabolic pathway in yu18 kernels. Our findings demonstrate that ZmAdSS1 participates in the synthesis of AMP and affects endosperm development and nutrient accumulation in maize seeds.
Collapse
Affiliation(s)
- Yaxi Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Shuaisong Zhang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, PR China.
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Rathor P, Borza T, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B. A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:1971. [PMID: 33671243 PMCID: PMC7922944 DOI: 10.3390/ijms22041971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Sophia Stone
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK;
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Svetlana Yurgel
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Philippe Potin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| |
Collapse
|
5
|
Blundell RD, Williams SJ, Arras SDM, Chitty JL, Blake KL, Ericsson DJ, Tibrewal N, Rohr J, Koh YQAE, Kappler U, Robertson AAB, Butler MS, Cooper MA, Kobe B, Fraser JA. Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans. ACS Infect Dis 2016; 2:651-663. [PMID: 27759389 DOI: 10.1021/acsinfecdis.6b00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.
Collapse
Affiliation(s)
- Ross D. Blundell
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Samantha D. M. Arras
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica L. Chitty
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L. Blake
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel J. Ericsson
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- MX Beamlines, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Nidhi Tibrewal
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Jurgen Rohr
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Y. Q. Andre E. Koh
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Metals in Biology, School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Avril A. B. Robertson
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research
Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Karnawat V, Mehrotra S, Balaram H, Puranik M. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes. Biochemistry 2016; 55:2491-9. [PMID: 27050719 DOI: 10.1021/acs.biochem.5b01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.
Collapse
Affiliation(s)
- Vishakha Karnawat
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Sonali Mehrotra
- Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Hemalatha Balaram
- Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research , Pune 411008, India
| |
Collapse
|
7
|
Blundell RD, Williams SJ, Morrow CA, Ericsson DJ, Kobe B, Fraser JA. Purification, crystallization and preliminary X-ray analysis of adenylosuccinate synthetase from the fungal pathogen Cryptococcus neoformans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1033-6. [PMID: 23989157 PMCID: PMC3758157 DOI: 10.1107/s1744309113021921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 03/16/2023]
Abstract
With increasingly large immunocompromised populations around the world, opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality. To combat the paucity of antifungal compounds, new drug targets must be investigated. Adenylosuccinate synthetase is a crucial enzyme in the ATP de novo biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. Although the enzyme is ubiquitous and well characterized in other kingdoms, no crystallographic studies on the fungal protein have been performed. Presented here are the expression, purification, crystallization and initial crystallographic analyses of cryptococcal adenylosuccinate synthetase. The crystals had the symmetry of space group P2(1)2(1)2(1) and diffracted to 2.2 Å resolution.
Collapse
Affiliation(s)
- Ross D. Blundell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel J. Ericsson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Wang X, Akasaka R, Takemoto C, Morita S, Yamaguchi M, Terada T, Shirozu M, Yokoyama S, Chen S, Si S, Xie Y. Overexpression, purification, crystallization and preliminary crystallographic studies of a hyperthermophilic adenylosuccinate synthetase from Pyrococcus horikoshii OT3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1551-5. [PMID: 22139164 DOI: 10.1107/s174430911104108x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/05/2011] [Indexed: 11/10/2022]
Abstract
Adenylosuccinate synthetase (AdSS) is a ubiquitous enzyme that catalyzes the first committed step in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP) in the purine-biosynthetic pathway. Although AdSS from the vast majority of organisms is 430-457 amino acids in length, AdSS sequences isolated from thermophilic archaea are 90-120 amino acids shorter. In this study, crystallographic studies of a short AdSS sequence from Pyrococcus horikoshii OT3 (PhAdSS) were performed in order to reveal the unusual structure of AdSS from thermophilic archaea. Crystals of PhAdSS were obtained by the microbatch-under-oil method and X-ray diffraction data were collected to 2.50 Å resolution. The crystal belonged to the trigonal space group P3(2)12, with unit-cell parameters a = b = 57.2, c = 107.9 Å. There was one molecule per asymmetric unit, giving a Matthews coefficient of 2.17 Å(3) Da(-1) and an approximate solvent content of 43%. In contrast, the results of native polyacrylamide gel electrophoresis and analytical ultracentrifugation showed that the recombinant PhAdSS formed a dimer in solution.
Collapse
Affiliation(s)
- Xiaoying Wang
- Institute of Medicinal Plants, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Role of loop dynamics in thermal stability of mesophilic and thermophilic adenylosuccinate synthetase: a molecular dynamics and normal mode analysis study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:630-7. [PMID: 21440684 DOI: 10.1016/j.bbapap.2011.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/19/2011] [Accepted: 03/18/2011] [Indexed: 01/28/2023]
Abstract
Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.
Collapse
|
10
|
Jefferson ER, Walsh TP, Barton GJ. A comparison of SCOP and CATH with respect to domain-domain interactions. Proteins 2008; 70:54-62. [PMID: 17634986 DOI: 10.1002/prot.21496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis and prediction of protein-protein interaction sites from structural data are restricted by the limited availability of structural complexes that represent the complete protein-protein interaction space. The domain classification schemes CATH and SCOP are normally used independently in the analysis and prediction of protein domain-domain interactions. In this article, the effect of different domain classification schemes on the number and type of domain-domain interactions observed in structural data is systematically evaluated for the SCOP and CATH hierarchies. Although there is a large overlap in domain assignments between SCOP and CATH, 23.6% of CATH interfaces had no SCOP equivalent and 37.3% of SCOP interfaces had no CATH equivalent in a nonredundant set. Therefore, combining both classifications gives an increase of between 23.6 and 37.3% in domain-domain interfaces. It is suggested that if possible, both domain classification schemes should be used together, but if only one is selected, SCOP provides better coverage than CATH. Employing both SCOP and CATH reduces the false negative rate of predictive methods, which employ homology matching to structural data to predict protein-protein interaction by an estimated 6.5%.
Collapse
Affiliation(s)
- Emily R Jefferson
- University of Dundee, School of Life Sciences, Dow Street, Dundee, DD1 5EH Scotland, United Kingdom
| | | | | |
Collapse
|
11
|
Mehrotra S, Balaram H. Kinetic characterization of adenylosuccinate synthetase from the thermophilic archaea Methanocaldococcus jannaschii. Biochemistry 2007; 46:12821-32. [PMID: 17929831 DOI: 10.1021/bi701009y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenylosuccinate synthetase (AdSS) catalyzes the Mg2+ dependent condensation of a molecule of IMP with aspartate to form adenylosuccinate, in a reaction driven by the hydrolysis of GTP to GDP. AdSS from the thermophilic archaea, Methanocaldococcus jannaschii (MjAdSS) is 345 amino acids long against an average length of 430-457 amino acids for most mesophilic AdSS. This short AdSS has two large deletions that map to the middle and C-terminus of the protein. This article discusses the detailed kinetic characterization of MjAdSS. Initial velocity and product inhibition studies, carried out at 70 degrees C, suggest a rapid equilibrium random AB steady-state ordered C kinetic mechanism for the MjAdSS catalyzed reaction. AdSS are known to exhibit monomer-dimer equilibrium with the dimer being implicated in catalysis. In contrast, our studies show that MjAdSS is an equilibrium mixture of dimers and tetramers with the tetramer being the catalytically active form. The tetramer dissociates into dimers with a minor increase in ionic strength of the buffer, while the dimer is extremely stable and does not dissociate even at 1.2 M NaCl. Phosphate, a product of the reaction, was found to be a potent inhibitor of MjAdSS showing biphasic inhibition of enzyme activity. The inhibition was competitive with IMP and noncompetitive with GTP. MjAdSS, like the mouse acidic isozyme, exhibits substrate inhibition, with IMP inhibiting enzyme activity at subsaturating GTP concentrations. Regulation of enzyme activity by the glycolytic intermediate, fructose 1,6 bisphosphate, was also observed with the inhibition being competitive with IMP and noncompetitive against GTP.
Collapse
Affiliation(s)
- Sonali Mehrotra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | | |
Collapse
|
12
|
Iancu CV, Zhou Y, Borza T, Fromm HJ, Honzatko RB. Cavitation as a mechanism of substrate discrimination by adenylosuccinate synthetases. Biochemistry 2006; 45:11703-11. [PMID: 16981730 PMCID: PMC4869520 DOI: 10.1021/bi0607498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket.
Collapse
|
13
|
Sun H, Li N, Wang X, Chen T, Shi L, Zhang L, Wang J, Wan T, Cao X. Molecular cloning and characterization of a novel muscle adenylosuccinate synthetase, AdSSL1, from human bone marrow stromal cells. Mol Cell Biochem 2005; 269:85-94. [PMID: 15786719 DOI: 10.1007/s11010-005-2539-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vertebrates have muscle and non-muscle isozymes of adenylosuccinate synthetase (AdSS, EC 6.3.4.4), which catalyzes the first committed step in AMP synthesis. A novel muscle isozyme of adenylosuccinate synthetase, human AdSSL1, is identified from human bone marrow stromal cells. AdSSL1 is 98% identical to mouse muscle type AdSS1 and contains conserved sequence and structural features of adenylosuccinate synthetase. Human AdSSL1 gene is mapped to chromosome 14p32.33. After stimulation, leukemia cells express AdSSL1 in a time-dependent manner different from that of non-muscle adenylosuccinate synthetase. The human AdSSL1 is predominantly expressed in skeletal muscle and cardiac tissue consistent with the potential role for the enzyme in muscle metabolism. Overexpressed AdSSL1 protein in COS-7 cells locates in cytoplasm. Recombinant AdSSL1 protein possesses typical enzymatic activity to catalyze adenylosuccinate formation. The identification of human AdSSL1 with predominant expression in muscle tissue will facilitate future genetic and biochemical analysis of the enzyme in muscle physiology.
Collapse
Affiliation(s)
- Hongying Sun
- Institute of Immunology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Raman J, Mehrotra S, Anand RP, Balaram H. Unique kinetic mechanism of Plasmodium falciparum adenylosuccinate synthetase. Mol Biochem Parasitol 2005; 138:1-8. [PMID: 15500910 DOI: 10.1016/j.molbiopara.2004.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/12/2004] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
Adenylosuccinate synthetase (AdSS) catalyses the Mg(2+) dependent formation of adenylosuccinate from IMP and aspartate, the reaction being driven by the hydrolysis of GTP to GDP. All characterized AdSS thus far exhibit a random kinetic mechanism. We present here kinetic evidence that unlike all other AdSS, Plasmodium falciparum AdSS (PfAdSS) has ordered substrate binding. Inhibition studies show that binding of GTP requires IMP binding while aspartate binds to the enzyme-IMP-GTP complex. A structural basis for this difference in mechanism is presented. Kinetically, PfAdSS is closer to the mouse acidic isozyme rather than to the mouse basic isozyme. The mouse acidic isozyme is thought to play a role in the purine nucleotide biosynthetic pathway. Regulation of PfAdSS in vivo can therefore, be expected to be similar to the mouse acidic isozyme, in agreement with the role of PfAdSS as the only pathway for the synthesis of adenine nucleotides in the parasite. However, PfAdSS differs from both the mammalian homologs in that fructose-1,6-bisphosphate, a potent inhibitor of the mammalian enzyme, is an activator of PfAdSS. The differences highlighted here are promising in terms of species-specific drug design, targeting this essential enzyme in the parasite.
Collapse
Affiliation(s)
- Jayalakshmi Raman
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | |
Collapse
|
15
|
Eaazhisai K, Jayalakshmi R, Gayathri P, Anand RP, Sumathy K, Balaram H, Murthy MRN. Crystal structure of fully ligated adenylosuccinate synthetase from Plasmodium falciparum. J Mol Biol 2004; 335:1251-64. [PMID: 14729341 DOI: 10.1016/j.jmb.2003.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg2+ and the aspartate analogue, hadacidin at 2 A resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species. Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme.
Collapse
Affiliation(s)
- K Eaazhisai
- Molecular Biophysics Unit, UGC Centre of Advanced Study, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Borza T, Iancu CV, Pike E, Honzatko RB, Fromm HJ. Variations in the response of mouse isozymes of adenylosuccinate synthetase to inhibitors of physiological relevance. J Biol Chem 2003; 278:6673-9. [PMID: 12482871 DOI: 10.1074/jbc.m210838200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrates have acidic and basic isozymes of adenylosuccinate synthetase, which participate in the first committed step of de novo AMP biosynthesis and/or the purine nucleotide cycle. These isozymes differ in their kinetic properties and N-leader sequences, and their regulation may vary with tissue type. Recombinant acidic and basic synthetases from mouse, in the presence of active site ligands, behave in analytical ultracentrifugation as dimers. Active site ligands enhance thermal stability of both isozymes. Truncated forms of both isozymes retain the kinetic parameters and the oligomerization status of the full-length proteins. AMP potently inhibits the acidic isozyme competitively with respect to IMP. In contrast, AMP weakly inhibits the basic isozyme noncompetitively with respect to all substrates. IMP inhibition of the acidic isozyme is competitive, and that of the basic isozyme noncompetitive, with respect to GTP. Fructose 1,6-bisphosphate potently inhibits both isozymes competitively with respect to IMP but becomes noncompetitive at saturating substrate concentrations. The above, coupled with structural information, suggests antagonistic interactions between the active sites of the basic isozyme, whereas active sites of the acidic isozyme seem functionally independent. Fructose 1,6-bisphosphate and IMP together may be dynamic regulators of the basic isozyme in muscle, causing potent inhibition of the synthetase under conditions of high AMP deaminase activity.
Collapse
Affiliation(s)
- Tudor Borza
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 5011, USA
| | | | | | | | | |
Collapse
|
17
|
Iancu CV, Borza T, Fromm HJ, Honzatko RB. Feedback inhibition and product complexes of recombinant mouse muscle adenylosuccinate synthetase. J Biol Chem 2002; 277:40536-43. [PMID: 12186864 DOI: 10.1074/jbc.m204952200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylosuccinate synthetase governs the committed step of AMP biosynthesis, the generation of 6-phosphoryl-IMP from GTP and IMP followed by the formation of adenylosuccinate from 6-phosphoryl-IMP and l-aspartate. The enzyme is subject to feedback inhibition by AMP and adenylosuccinate, but crystallographic complexes of the mouse muscle synthetase presented here infer mechanisms of inhibition that involve potentially synergistic ligand combinations. AMP alone adopts the productive binding mode of IMP and yet stabilizes the active site in a conformation that favors the binding of Mg(2+)-IMP to the GTP pocket. On the other hand, AMP, in the presence of GDP, orthophosphate, and Mg(2+), adopts the binding mode of adenylosuccinate. Depending on circumstances then, AMP behaves as an analogue of IMP or as an analogue of adenylosuccinate. The complex of adenylosuccinate.GDP.Mg(2+).sulfate, the first structure of an adenylosuccinate-bound synthetase, reveals significant geometric distortions and tight nonbonded contacts relevant to the proposed catalytic mechanism. Adenylosuccinate forms from 6-phosphoryl-IMP and l-aspartate by the movement of the purine ring into the alpha-amino group of l-aspartate.
Collapse
Affiliation(s)
- Cristina V Iancu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
18
|
Iancu CV, Borza T, Fromm HJ, Honzatko RB. IMP, GTP, and 6-phosphoryl-IMP complexes of recombinant mouse muscle adenylosuccinate synthetase. J Biol Chem 2002; 277:26779-87. [PMID: 12004071 DOI: 10.1074/jbc.m203730200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prokaryotes have a single form of adenylosuccinate synthetase that controls the committed step of AMP biosynthesis, but vertebrates have two isozymes of the synthetase. The basic isozyme, which predominates in muscle, participates in the purine nucleotide cycle, has an active site conformation different from that of the Escherichia coli enzyme, and exhibits significant differences in ligand recognition. Crystalline complexes presented here of the recombinant basic isozyme from mouse show the following. GTP alone binds to the active site without inducing a conformational change. IMP in combination with an acetate anion induces major conformational changes and organizes the active site for catalysis. IMP, in the absence of GTP, binds to the GTP pocket of the synthetase. The combination of GTP and IMP results in the formation of a stable complex of 6-phosphoryl-IMP and GDP in the presence or absence of hadacidin. The response of the basic isozyme to GTP alone differs from that of synthetases from plants, and yet the conformation of the mouse basic and E. coli synthetases in their complexes with GDP, 6-phosphoryl-IMP, and hadacidin are nearly identical. Hence, reported differences in ligand recognition among synthetases probably arise from conformational variations observed in partially ligated enzymes.
Collapse
Affiliation(s)
- Cristina V Iancu
- Department of Biochemistry, Biophysics, and Molecular Biology, Molecular Biology Building, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
19
|
Wen HY, Xia Y, Young ME, Taegtmeyer H, Kellems RE. The adenylosuccinate synthetase-1 gene is activated in the hypertrophied heart. J Cell Mol Med 2002; 6:235-43. [PMID: 12169208 PMCID: PMC6740216 DOI: 10.1111/j.1582-4934.2002.tb00190.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adenylosuccinate synthetase 1 (ADSS1) functions as an important component in adenine nucleotide biosynthesis and is abundant in the heart. Here we report that the Adss1 gene is up-regulated in two in vivo rodent models of surgically induced cardiac hypertrophy. In addition, we examined an in vitro hypertrophy system of rat neonatal cardiomyocytes treated with angiotensin II to study Adss1 gene regulation. We show that this stimulus triggers a signaling cascade that results in the activation of the Adss1 gene. The induction of Adss1 gene expression was blocked by cyclosporin A in vitro, suggesting that calcineurin, a calmodulin activated phosphatase, is involved in this signaling pathway. Consistent with this view we provide evidence that the induction of Adss1 by angiotension II requires the presence of an NFAT binding site located 556 base pairs upstream of the Adss1 transcription start site. We propose that ADSS1 plays a role in the development of cardiac hypertrophy through its function in adenine nucleotide biosynthesis.
Collapse
Affiliation(s)
- H Y Wen
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School at Houston, Suite 6.200, 6431 Fannin Street, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Metabolism of Aromatic Compounds and Nucleic Acid Bases. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|