1
|
Siekierska I, Burmistrz M, Trylska J. Evaluating delivery of peptide nucleic acids to Gram-negative bacteria using differently linked membrane-active peptides and their stapled analogs. Bioorg Med Chem Lett 2024; 114:129993. [PMID: 39426432 DOI: 10.1016/j.bmcl.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Antisense oligonucleotides have been developed as therapeutic compounds, with peptide nucleic acid (PNA) emerging as a promising nucleic acid mimic for antimicrobial applications. To be effective, PNAs must be internalized into bacterial cells, as they are not naturally absorbed. A strategy to improve PNA membrane penetration and cellular uptake involves covalently conjugating them to cell-penetrating peptides. However, these membrane-active peptides can exhibit cytotoxicity, and their efficiency as PNA carriers needs to be enhanced. Therefore, we explored new peptide-PNA conjugates and their linkers to understand how they affect PNA uptake into bacteria. We conjugated PNA to two peptides, anoplin and (KFF)3K, along with their structurally stabilized hydrocarbon-stapled derivatives, and evaluated their transport into various bacterial strains. The PNA sequence targeted bacterial mRNA encoding the essential acyl carrier protein. As linkages, we used either a non-cleavable 8-amino-2,6-dioxaoctanoyl (ethylene glycol, eg1) linker or a reducible disulfide bridge. We found that the hydrocarbon-stapled peptides did not enhance PNA delivery, despite the strong inner- and outer-membrane-penetrating capabilities of the standalone peptides. Additionally, the disulfide bridge linkage, which is cleavable in the bacterial cytoplasm, decreased the antimicrobial activity of the peptide-PNA conjugates. Notably, we identified anoplin as a new potent PNA carrier peptide, with the anoplin-eg1-PNA conjugate demonstrating antibacterial activity against E. coli and S. Typhimurium strains in the 2-4 µM range.
Collapse
Affiliation(s)
- Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2024:1-20. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Pereira AJ, Xing H, de Campos LJ, Seleem MA, de Oliveira KMP, Obaro SK, Conda-Sheridan M. Structure-Activity Relationship Study to Develop Peptide Amphiphiles as Species-Specific Antimicrobials. Chemistry 2024; 30:e202303986. [PMID: 38221408 PMCID: PMC10939825 DOI: 10.1002/chem.202303986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Antimicrobial peptide amphiphiles (PAs) are a promising class of molecules that can disrupt the bacterial membrane or act as drug nanocarriers. In this study, we prepared 33 PAs to establish supramolecular structure-activity relationships. We studied the morphology and activity of the nanostructures against different Gram-positive and Gram-negative bacterial strains (such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii). Next, we used principal component analysis (PCA) to determine the key contributors to activity. We found that for S. aureus, the zeta potential was the major contributor to the activity while Gram-negative bacteria were more influenced by the partition coefficient (LogP) with the following order P. aeruginosa>E. coli>A. baumannii. We also performed a study of the mechanism of action of selected PAs on the bacterial membrane assessing the membrane permeability and depolarization, changes in zeta potential and overall integrity. We studied the toxicity of the nanostructures against mammalian cells. Finally, we performed an in vivo study using the wax moth larvae to determine the therapeutic efficacy of the active PAs. This study shows cationic PA nanostructures can be an intriguing platform for the development of nanoantibacterials.
Collapse
Affiliation(s)
- Aramis J. Pereira
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Huihua Xing
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Luana J. de Campos
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Mohamed A. Seleem
- Dr. M.A. Seleem, Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Cairo, 4434003 (Egypt)
| | - Kelly M. P. de Oliveira
- Prof. Dr. K. M. P. de Oliveira, Department of Biological and Environmental Science, Federal University of Grande Dourados (UFGD), Dourados, MS 79804-970 (Brazil)
| | - Stephen K. Obaro
- Prof. Dr. S. K. Obaro, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham (UAB), Birmingham, AL 35233 (USA), International Foundation against Infectious Diseases in Nigeria (IFAIN), Abuja, 900108 (Nigeria)
| | - Martin Conda-Sheridan
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| |
Collapse
|
5
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Promising strategies employing nucleic acids as antimicrobial drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102122. [PMID: 38333674 PMCID: PMC10850860 DOI: 10.1016/j.omtn.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Antimicrobial resistance (AMR) is a growing concern because it causes microorganisms to develop resistance to drugs commonly used to treat infections. This results in increased difficulty in treating infections, leading to higher mortality rates and significant economic effects. Investing in new antimicrobial agents is, therefore, necessary to prevent and control AMR. Antimicrobial nucleic acids have arisen as potential key players in novel therapies for AMR infections. They have been designed to serve as antimicrobials and to act as adjuvants to conventional antibiotics or to inhibit virulent mechanisms. This new category of antimicrobial drugs consists of antisense oligonucleotides and oligomers, DNAzymes, and transcription factor decoys, differing in terms of structure, target molecules, and mechanisms of action. They are synthesized using nucleic acid analogs to enhance their resistance to nucleases. Because bacterial envelopes are generally impermeable to oligonucleotides, delivery into the cytoplasm typically requires the assistance of nanocarriers, which can affect their therapeutic potency. Given that numerous factors contribute to the success of these antimicrobial drugs, this review aims to provide a summary of the key advancements in the use of oligonucleotides for treating bacterial infections. Their mechanisms of action and the impact of factors such as nucleic acid design, target sequence, and nanocarriers on the antimicrobial potency are discussed.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Story S, Bhaduri S, Ganguly S, Dakarapu R, Wicks SL, Bhadra J, Kwange S, Arya DP. Understanding Antisense Oligonucleotide Efficiency in Inhibiting Prokaryotic Gene Expression. ACS Infect Dis 2024; 10:971-987. [PMID: 38385613 DOI: 10.1021/acsinfecdis.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of β-galactosidase (β-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of β-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing β-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | | | - Sudakshina Ganguly
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Sarah L Wicks
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Jhuma Bhadra
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Simeon Kwange
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
7
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
8
|
Tsai MJ, Zambrano RA, Susas JL, Silva L, Takahashi MK. Identifying Antisense Oligonucleotides to Disrupt Small RNA Regulated Antibiotic Resistance via a Cell-Free Transcription-Translation Platform. ACS Synth Biol 2023; 12:2245-2251. [PMID: 37540186 PMCID: PMC10443041 DOI: 10.1021/acssynbio.3c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/05/2023]
Abstract
Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells, including antibiotic resistance and virulence genes, through base-pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits the permeability of antibiotics. Here we devised a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF. ASOs were then ordered as peptide nucleic acids conjugated to cell-penetrating peptides (CPP-PNA) to allow for effective delivery into bacteria. Subsequent minimum inhibitory concentration (MIC) assays demonstrated that simultaneously targeting the regions of MicF responsible for sequestering the start codon and the Shine-Dalgarno sequence of ompF with two different CPP-PNAs synergistically reduced the MIC for a set of antibiotics. This investigation offers a TX-TL-based approach to identify novel therapeutic candidates to combat intrinsic sRNA-mediated antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Min Jen Tsai
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Raphael Angelo
I. Zambrano
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
- Department
of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States
| | - Jeremiah Lyn Susas
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Lizette Silva
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| | - Melissa K. Takahashi
- Department
of Biology, California State University
Northridge, Northridge, California 91330, United States
| |
Collapse
|
9
|
Jung J, Popella L, Do PT, Pfau P, Vogel J, Barquist L. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server. RNA (NEW YORK, N.Y.) 2023; 29:570-583. [PMID: 36750372 PMCID: PMC10158992 DOI: 10.1261/rna.079263.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/10/2023] [Indexed: 05/06/2023]
Abstract
Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (make antisense oligomers now), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.
Collapse
Affiliation(s)
- Jakob Jung
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Linda Popella
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Phuong Thao Do
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Patrick Pfau
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Tsai MJ, Zambrano RAI, Susas JL, Silva L, Takahashi MK. Identifying antisense oligonucleotides to disrupt small RNA regulated antibiotic resistance via a cell-free transcription-translation platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537543. [PMID: 37131760 PMCID: PMC10153260 DOI: 10.1101/2023.04.19.537543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells including antibiotic resistance and virulence genes through base pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits permeability of antibiotics. Here, we devise a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF. ASOs were then ordered as peptide nucleic acids conjugated to cell-penetrating peptides (CPP-PNA) to allow for effective delivery into bacteria. Subsequent minimum inhibitory concentration (MIC) assays demonstrated that simultaneously targeting the regions of MicF responsible for sequestering the start codon and the Shine-Dalgarno sequence of ompF with two different CPP-PNAs synergistically reduced the MIC for a set of antibiotics. This investigation offers a TX-TL based approach to identify novel therapeutic candidates to combat intrinsic sRNA-mediated antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Min Jen Tsai
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Raphael Angelo I. Zambrano
- Department of Biology, California State University Northridge, Northridge, CA 91330
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Jeremiah Lyn Susas
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Lizette Silva
- Department of Biology, California State University Northridge, Northridge, CA 91330
| | - Melissa K. Takahashi
- Department of Biology, California State University Northridge, Northridge, CA 91330
| |
Collapse
|
11
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
12
|
Buzoglu Kurnaz L, Luo Y, Yang X, Alabresm A, Leighton R, Kumar R, Hwang J, Decho AW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilicity index correlating chemical structures with antimicrobial efficacy. Bioact Mater 2023; 20:519-527. [PMID: 35846842 PMCID: PMC9253162 DOI: 10.1016/j.bioactmat.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides. Established a numerical index to quantify the effect of facial amphiphilicity on antimicrobial efficacy. Evaluated the facial amphiphilicity index of multicyclic compounds possessing various rings and cationic charges. Provided this index a new tool toward more quantitative designs of AMP mimics.
Collapse
Affiliation(s)
- Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Yuanyuan Luo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Rani Kumar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - JiHyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
- Corresponding author.
| |
Collapse
|
13
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
14
|
Popella L, Jung J, Do PT, Hayward RJ, Barquist L, Vogel J. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli. Nucleic Acids Res 2022; 50:6435-6452. [PMID: 35687096 PMCID: PMC9226493 DOI: 10.1093/nar/gkac362] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Antisense peptide nucleic acids (PNAs) that target mRNAs of essential bacterial genes exhibit specific bactericidal effects in several microbial species, but our mechanistic understanding of PNA activity and their target gene spectrum is limited. Here, we present a systematic analysis of PNAs targeting 11 essential genes with varying expression levels in uropathogenic Escherichia coli (UPEC). We demonstrate that UPEC is susceptible to killing by peptide-conjugated PNAs, especially when targeting the widely-used essential gene acpP. Our evaluation yields three additional promising target mRNAs for effective growth inhibition, i.e.dnaB, ftsZ and rpsH. The analysis also shows that transcript abundance does not predict target vulnerability and that PNA-mediated growth inhibition is not universally associated with target mRNA depletion. Global transcriptomic analyses further reveal PNA sequence-dependent but also -independent responses, including the induction of envelope stress response pathways. Importantly, we show that 9mer PNAs are generally as effective in inhibiting bacterial growth as their 10mer counterparts. Overall, our systematic comparison of a range of PNAs targeting mRNAs of different essential genes in UPEC suggests important features for PNA design, reveals a general bacterial response to PNA conjugates and establishes the feasibility of using PNA antibacterials to combat UPEC.
Collapse
Affiliation(s)
- Linda Popella
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080, Würzburg, Germany
| | - Jakob Jung
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080, Würzburg, Germany
| | - Phuong Thao Do
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080, Würzburg, Germany
| | - Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, D-97080, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
15
|
Goltermann L, Zhang M, Ebbensgaard AE, Fiodorovaite M, Yavari N, Løbner-Olesen A, Nielsen PE. Effects of LPS Composition in Escherichia coli on Antibacterial Activity and Bacterial Uptake of Antisense Peptide-PNA Conjugates. Front Microbiol 2022; 13:877377. [PMID: 35794919 PMCID: PMC9251361 DOI: 10.3389/fmicb.2022.877377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The physical and chemical properties of the outer membrane of Gram-negative bacteria including Escherichia coli have a significant impact on the antibacterial activity and uptake of antibiotics, including antimicrobial peptides and antisense peptide-peptide nucleic acid (PNA) conjugates. Using a defined subset of E. coli lipopolysaccharide (LPS) and envelope mutants, components of the LPS-core, which provide differential susceptibility toward a panel of bacterial penetrating peptide (BPP)-PNA conjugates, were identified. Deleting the outer core of the LPS and perturbing the inner core only sensitized the bacteria toward (KFF)3K-PNA conjugates, but not toward conjugates carrying arginine-based BPPs. Interestingly, the chemical composition of the outer LPS core as such, rather than overall hydrophobicity or surface charge, appears to determine the susceptibility to different BPP-PNA conjugates thereby clearly demonstrating the complexity and specificity of the interaction with the LPS/outer membrane. Notably, mutants with outer membrane changes conferring polymyxin resistance did not show resistance toward the BPP-PNA conjugates, thereby eliminating one possible route of resistance for these molecules. Finally, envelope weakening, through deletion of membrane proteins such as OmpA as well as some proteins previously identified as involved in cationic antimicrobial peptide uptake, did not significantly influence BPP-PNA conjugate activity.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Lise Goltermann
| | - Meiqin Zhang
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Marija Fiodorovaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Peter E. Nielsen
| |
Collapse
|
16
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
17
|
Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of Hydrophobicity on Antimicrobial Activity, Selectivity, and Functional Mechanism of Guanidinium-Functionalized Polymers. Adv Healthc Mater 2022; 11:e2100482. [PMID: 33987953 DOI: 10.1002/adhm.202100482] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Indexed: 11/06/2022]
Abstract
In this study, a series of guanidinium-functionalized polycarbonate random co-polymers is prepared from organocatalytic ring-opening polymerization to investigate the effect of the hydrophobic side chain (ethyl, propyl, isopropyl, benzyl, and hexyl) on their antimicrobial activity and selectivity. Although the polymers exhibit similar minimum inhibitory concentrations, the more hydrophobic polymers exhibit a faster rate of bacteria elimination. At higher percentage content (20 mol%), polymers with more hydrophobic side chains suffer from poor selectivity due to their high hemolytic activity. The highly hydrophobic co-polymer, containing the hydrophobic hexyl-functionalized cyclic carbonate, kills bacteria via a membrane-disruptive mechanism. Micelle formation leads to a lower extent of membrane disruption. This study unravels the effects of hydrophobic side chains on the activities of the polymers and their killing mechanism, providing insights into the design of new antimicrobial polymers.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
18
|
Yang S, Wang Y, Tan J, Teo JY, Tan KH, Yang YY. Antimicrobial Polypeptides Capable of Membrane Translocation for Treatment of MRSA Wound Infection In Vivo. Adv Healthc Mater 2022; 11:e2101770. [PMID: 34846807 DOI: 10.1002/adhm.202101770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistant infections are plaguing the healthcare sector over the past few decades with limited treatment options. To overcome this problem, the authors synthesize a series of novel guanidinium-functionalized polypeptides. Specifically, poly(l-lysine) (PLL) with different lengths is first synthesized by ring-opening polymerization of Nε -benzyloxycarbonyl-l-lysine-N-carboxyanhydride (Lys(Z)-NCA) followed by functionalization with a guanidinium-functional group to obtain guanidinium-functionalized PLL (PLL-Gua). To study the effect of hydrophobicity on antimicrobial activity, relatively more hydrophobic leucine-NCA monomer or hydrophobic vitamin E moiety is introduced to PLL-Gua. These polypeptides are characterized for antimicrobial activity against a panel of microbes including multidrug-resistant bacteria, and hemolytic activity. Among all the polypeptides, PLL22 -Gua is most effective against bacteria and yeast. Particularly, excellent bactericidal activity is observed against Staphylococcus aureus and MRSA. PLL22 -Gua kills bacteria mainly by membrane translocation. In addition, PLL22 -Gua kills MRSA with low resistance frequency (<3.3 × 10-8 ). In an MRSA-caused wound infection mouse model, two-day treatment (twice daily) with 10, 20, or 40 mg per kg of PLL22 -Gua shows up to 99.5% bacterial removal. Moreover, no acute dermal toxicity is observed even at a dose of 200 mg per kg. These promising results show the excellent potential of PLL22 -Gua as an antimicrobial agent against multidrug-resistant infection in vivo.
Collapse
Affiliation(s)
- Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jye Yng Teo
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Ko Hui Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| |
Collapse
|
19
|
Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs. Microbiol Spectr 2022; 10:e0126221. [PMID: 35171048 PMCID: PMC8849056 DOI: 10.1128/spectrum.01262-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The emergence of antimicrobial resistance warrants for the development of improved treatment approaches. In this regard, peptide nucleic acids (PNAs) have shown great promise, exhibiting antibiotic properties through the targeting of cellular nucleic acids. We aimed to study the efficacy of PNA as an anti-tuberculosis agent. Since the efficacy of PNA is limited by its low penetration into the cell, we also investigated combinatorial treatments using permeabilizing drugs to improve PNA efficacy. Various concentrations of anti-inhA PNA, permeabilizing drugs, and their combinations were screened against extracellular and intracellular mycobacteria.0.625 to 5 μM anti-inhA PNA was observed to merely inhibit the growth of extracellular M. smegmatis, while low intracellular bacterial load was reduced by 2 or 2.5 log-fold when treated with 2.5 or 5 μM PNA, respectively. Anti-inhA PNA against M. tuberculosis H37Ra exhibited bactericidal properties at 2.5 and 5 μM and enabled a slight reduction in intracellular M. tuberculosis at concentrations from 2.5 to 20 μM. Of the permeabilizing drugs tested, ethambutol showed the most permeabilizing potential and ultimately potentiated anti-inhA PNA to the greatest extent, reducing its efficacious concentration to 1.25 μM against both M. smegmatis and M. tuberculosis. Furthermore, an enhanced clearance of 1.3 log-fold was observed for ethambutol-anti-inhA PNA combinations against intracellular M. tuberculosis. Thus, permeabilizing drug-PNA combinations indeed exhibit improved efficacies. We therefore propose that anti-inhA PNA could improve therapy even when applied in minute doses as an addition to the current anti-tuberculosis drug regimen. IMPORTANCE Peptide nucleic acids have great potential in therapeutics as anti-gene/anti-sense agents. However, their limited uptake in cells has curtailed their widespread application. Through this study, we explore a PNA-drug combinatorial strategy to improve the efficacy of PNAs and reduce their effective concentrations. This work also focuses on improving tuberculosis treatment, which is hindered by the emergence of antimicrobial-resistant strains of Mycobacterium tuberculosis. It is observed that the antibacterial efficacy of anti-inhA PNA is enhanced when it is combined with permeabilizing drugs, particularly ethambutol. This indicates that the addition of even small concentrations of anti-inhA PNA to the current TB regimen could potentiate their therapeutic efficiency. We hypothesize that this system would also overcome isoniazid resistance, since the resistance mutations lie outside the designed anti-inhA PNA target site.
Collapse
|
20
|
Campion C, Charbon G, Thomsen TT, Nielsen PE, Løbner-Olesen A. Antisense inhibition of the Escherichia coli NrdAB aerobic ribonucleotide reductase is bactericidal due to induction of DNA strand breaks. J Antimicrob Chemother 2021; 76:2802-2814. [PMID: 34450639 PMCID: PMC8521395 DOI: 10.1093/jac/dkab305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) constitute an alternative to traditional antibiotics, by their ability to silence essential genes. OBJECTIVES To evaluate the antibacterial effects of antisense PNA-peptide conjugates that target the gene encoding the alpha subunit (NrdA) of the Escherichia coli ribonucleotide reductase (RNR). METHODS Bacterial susceptibility of a series of NrdA-targeting PNAs was studied by MIC determination and time-kill analysis. Western-blot analysis, gene complementation and synergy with hydroxyurea were employed to determine the efficiency of NrdA-PNA antisense treatment. The effect on chromosome replication was addressed by determining the DNA synthesis rate, by flow cytometry analysis, by quantitative PCR and by fluorescence microscopy. The use of DNA repair mutants provided insight into the bactericidal action of NrdA-PNA. RESULTS Treatment with NrdA-PNA specifically inhibited growth of E. coli, as well as NrdA protein translation at 4 μM. Also, the DNA synthesis rate was reduced, preventing completion of chromosome replication and resulting in formation of double-stranded DNA breaks and cell death. CONCLUSIONS These data present subunits of the NrdAB RNR as a target for future antisense microbial agents and provide insight into the bacterial physiological response to RNR-targeting antimicrobials.
Collapse
Affiliation(s)
- Christopher Campion
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark.,Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Godefroid Charbon
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Thomas T Thomsen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestreng Vej 4A, 2100 Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Sun Y, Meng L, Zhang Y, Zhao D, Lin Y. The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Curr Stem Cell Res Ther 2021; 16:66-73. [PMID: 32436832 DOI: 10.2174/1574888x15666200521084417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021; 175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides hold promise to supplement small molecules antibiotics and combat the multidrug resistant microbes. There are however technical hurdles towards the clinical applications, largely due to the inherent limitations of peptides including stability, cytotoxicity and bioavailability. Here we review recent studies concerning the delivery and formulation of antimicrobial peptides, by categorizing the different strategies as driven by physical interactions or chemical conjugation reactions, and carriers ranging from inorganic based ones (including gold, silver and silica based solid nanoparticles) to organic ones (including micelle, liposome and hydrogel) are covered. Besides, targeted delivery of antimicrobial peptides or using antimicrobial peptides as the targeting moiety, and responsive release of the peptides after delivery are also reviewed. Lastly, strategies towards the increase of oral bioavailability, from both physical or chemical methods, are highlighted. Altogether, this article provides a comprehensive review of the recent progress of the delivery and formulation of antimicrobial peptides towards clinical application.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
23
|
Leong J, Yang C, Tan J, Tan BQ, Hor S, Hedrick JL, Yang YY. Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect. Biomater Sci 2021; 8:6920-6929. [PMID: 32959808 DOI: 10.1039/d0bm00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%-99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore.
| | | | | | | | | | | | | |
Collapse
|
24
|
Qiao J, Liu Z, Cui S, Nagy T, Xiong MP. Synthesis and evaluation of an amphiphilic deferoxamine:gallium-conjugated cationic random copolymer against a murine wound healing infection model of Pseudomonas aeruginosa. Acta Biomater 2021; 126:384-393. [PMID: 33705987 DOI: 10.1016/j.actbio.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
Multidrug resistant (MDR) Gram-negative bacteria are an urgent global health threat. We report on the design and evaluation of a xenosiderophore-conjugated cationic random copolymer (pGQ-DG) which exhibits selective antibacterial activity against Pseudomonas aeruginosa (P. aeruginosa) by targeting select outer membrane (OM) receptors for scavenging xenosiderophores such as deferoxamine (DFO), while possessing favorable cytocompatibility and exhibiting low hemolysis, to enhance and safely damage the bacterial OM. pGQ-DG demonstrated synergistic properties in combination with vancomycin (VAN) when evaluated in vitro against P. aeruginosa. In addition, pGQ-DG plus VAN cleared the P. aeruginosa infection and efficiently accelerated healing in a murine wound healing model as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against MDR bacteria. STATEMENT OF SIGNIFICANCE: P. aeruginosa exhibits intrinsic antibiotic resistance due to limited permeability of its outer membrane (OM). A triple combination antipseudomonal approach was investigated by 1) selectively targeting P. aeruginosa through the complex DFO:gallium, 2) disrupting the OM through a cationic random copolymer, and 3) enhancing bacteria sensitivity to VAN as a result of the OM disruption. Synthesis and characterization of the lead polymer pGQ-DG, mechanism of action, antimicrobial activity, and biocompatibility were investigated in vitro and in vivo. Overall pGQ-DG plus VAN cleared the P. aeruginosa infection and accelerated wound healing in mice as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against multidrug resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Zhi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Shuolin Cui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2352, United States
| | - May P Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States.
| |
Collapse
|
25
|
Eller KA, Aunins TR, Courtney CM, Campos JK, Otoupal PB, Erickson KE, Madinger NE, Chatterjee A. Facile accelerated specific therapeutic (FAST) platform develops antisense therapies to counter multidrug-resistant bacteria. Commun Biol 2021; 4:331. [PMID: 33712689 PMCID: PMC7955031 DOI: 10.1038/s42003-021-01856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.
Collapse
Affiliation(s)
- Kristen A Eller
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Thomas R Aunins
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Colleen M Courtney
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA
| | - Jocelyn K Campos
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter B Otoupal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Keesha E Erickson
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nancy E Madinger
- Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA.
- Biomedical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Antimicrobial Regeneration Consortium, Boulder, CO, 80301, USA.
| |
Collapse
|
26
|
Barkowsky G, Kreikemeyer B, Patenge N. Validation of Suitable Carrier Molecules and Target Genes for Antisense Therapy Using Peptide-Coupled Peptide Nucleic Acids (PNAs) in Streptococci. Methods Mol Biol 2021; 2136:339-345. [PMID: 32430835 DOI: 10.1007/978-1-0716-0467-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antisense peptide nucleic acids (PNAs) targeting genes involved in metabolism or virulence are a possible means to treat infections or to investigate pathogenic bacteria. Potential targets include essential genes, virulence factor genes, or antibiotic resistance genes. For efficient cellular uptake, PNAs can be coupled to cell-penetrating peptides (CPPs). CPPs are peptides that serve as molecular transporters and are characterized by a comparably low cytotoxicity. So far, there is only limited information about CPPs that mediate PNA uptake by Gram-positive bacteria. Here, we describe two methods to identify suitable CPP-antisense PNA conjugates, novel carrier molecules, and efficient target genes for streptococcal species and to evaluate their antimicrobial efficiency.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
27
|
Ghosh S, Cotta KB, Hande AA, Fernandes M, Mehra S. PNA-mediated efflux inhibition as a therapeutic strategy towards overcoming drug resistance in Mycobacterium smegmatis. Microb Pathog 2021; 151:104737. [PMID: 33453316 DOI: 10.1016/j.micpath.2021.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/27/2022]
Abstract
The emergence of antibiotic-resistant strains of Mycobacterium tuberculosis and the decelerating development of new and effective antibiotics has impaired the treatment of tuberculosis (TB). Efflux pump inhibitors (EPIs) have the potential to improve the efficacy of existing anti-TB drugs although with toxicity limitations. Peptide nucleic acids (PNAs), oligonucleotide mimics, by virtue of their high nucleic acid binding specificity have the capability to overcome this drawback. We, therefore, investigated the efflux pump inhibitory properties of a PNA designed against an efflux pump of Mycobacterium smegmatis. LfrA, an efflux pump found in M. smegmatis, is majorly involved in conferring innate drug resistance to this strain and, therefore, was selected as a target for gene silencing via PNA. qRT-PCR and EtBr assays confirmed the EPI activity of the anti-lfrA PNA. On testing the effect of the anti-lfrA PNA on the bactericidal activity of a fluoroquinolone, norfloxacin, we observed that 5 μM of anti-lfrA PNA in combination with norfloxacin led to an enhanced killing of up to 2.5 log-fold against wild-type and a lab-generated multidrug resistant strain, exemplifying its potential in countering resistance. Improved efficacy was also observed against intra-macrophage mycobacteria, where the drug-PNA combination enhanced bacterial clearance by 1.3 log-fold. Further, no toxicity was observed with PNA concentrations up to 4 times higher than the efficacious anti-lfrA PNA concentration. Thus, PNA, as an adjuvant, presents a novel and viable approach to rejuvenate anti-TB therapeutics.
Collapse
Affiliation(s)
| | - Karishma Berta Cotta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Powai, Mumbai, India
| | - Aniket A Hande
- Université de Pau et des Pays de l'Adour E2S UPPA, CNRS, IPREM, Pau, France
| | - Moneesha Fernandes
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Sarika Mehra
- WRCB, IIT Bombay, Powai, Mumbai, Maharashtra, India; Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
28
|
Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat Biomed Eng 2021; 5:467-480. [PMID: 33390588 PMCID: PMC8131206 DOI: 10.1038/s41551-020-00665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.
Collapse
|
29
|
Pifer R, Greenberg DE. Antisense antibacterial compounds. Transl Res 2020; 223:89-106. [PMID: 32522669 DOI: 10.1016/j.trsl.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
Collapse
Affiliation(s)
- Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
30
|
Han H, Wang Z, Li T, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides. FEBS J 2020; 288:1091-1106. [PMID: 32681661 DOI: 10.1111/febs.15489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Laroque S, Reifarth M, Sperling M, Kersting S, Klöpzig S, Budach P, Storsberg J, Hartlieb M. Impact of Multivalence and Self-Assembly in the Design of Polymeric Antimicrobial Peptide Mimics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30052-30065. [PMID: 32517467 DOI: 10.1021/acsami.0c05944] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems.
Collapse
Affiliation(s)
- Sophie Laroque
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Martin Reifarth
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Marcel Sperling
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Sebastian Kersting
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefanie Klöpzig
- Department of Healthcare, Biomaterials & Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Patrick Budach
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Joachim Storsberg
- Department of Healthcare, Biomaterials & Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| |
Collapse
|
32
|
Adebowale OO, Goh S, Good L. The development of species-specific antisense peptide nucleic acid method for the treatment and detection of viable Salmonella. Heliyon 2020; 6:e04110. [PMID: 32566778 PMCID: PMC7298406 DOI: 10.1016/j.heliyon.2020.e04110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Genotypic based detection methods using specific target sites in the pathogen genome can complement phenotypic identification. We report the development of species-specific antisense peptide nucleic acid (PNA) combined with selective and differential enrichment growth conditions for Salmonella treatment and detection. An antisense PNA oligomer targeting the Salmonella ftsZ gene and conjugated with a cell-penetrating peptide ((KFF)3K) was exploited to probe bacteria cultured in three different growth media (Muller Hinton broth (MHB), Rappaport-Vassiliadis Soya Peptone Broth (RVS, Oxoid), and in-house modified Rappaport-Vassiliadis Soya Peptone Broths (mRVSs). Also, water and milk artificially contaminated with bacteria were probed. Antisense PNA provided detectable changes in Salmonella growth and morphology in all media and artificially contaminated matrices except RVS. Salmonella was detected as elongated cells. On the contrary, treated Escherichia coli did not elongate, providing evidence of differentiation and selectivity for Salmonella. Similarly, Salmonella probed with mismatched PNAs did not elongate. Antisense oligomers targeted ftsZ mRNA in combination with selective growth conditions can provide a detection strategy for viable Salmonella in a single reaction, and act as a potential tool for bacteria detection in real food and environmental samples.
Collapse
|
33
|
A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00682-19. [PMID: 31871033 DOI: 10.1128/jb.00682-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.
Collapse
|
34
|
Tavakoli M, Hashemi A, Vaezjalali M, Mohammadzadeh M, Goudarzi H. Inhibition of growth and gene expression in Staphylococcus aureus by anti- gyrA peptide nucleic acid. Future Microbiol 2020; 14:1123-1132. [PMID: 31512520 DOI: 10.2217/fmb-2019-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Multidrug-resistant Staphylococcus aureus isolates have become a serious concern in clinical microbiology. Antisense strategy, which specifically targets essential genes, could be helpful. Materials & methods: S. aureus cultures were treated with peptide conjugate-peptide nucleic acid (PPNA) specific for the gyrA gene. In addition, antimicrobial synergy with ciprofloxacin was tested. Results: The results indicated anti-gyrA-PPNA dramatically inhibited the growth of S. aureus isolates in Mueller Hinton Broth with complete elimination of bacteria observed on cell cultures. Specifically, PPNA reduced the gyrA transcripts up to 50%. With antisense interference, growth inhibition was augmented through combination with ciprofloxacin. Conclusion: This study suggested that anti-gyrA-PPNAs could be introduced as a novel candidate for developing antisense antibiotic to treat all S. aureus infections.
Collapse
Affiliation(s)
- Mahnaz Tavakoli
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadzadeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Goltermann L, Nielsen PE. PNA Antisense Targeting in Bacteria: Determination of Antibacterial Activity (MIC) of PNA-Peptide Conjugates. Methods Mol Biol 2020; 2105:231-239. [PMID: 32088874 DOI: 10.1007/978-1-0716-0243-0_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antisense PNA-peptide conjugates targeting essential bacterial genes have shown interesting potential for discovery of novel precision antibiotics. In this context, the minimal inhibitory concentration (MIC) assay is used to assess and compare the antimicrobial activity of natural as well as synthetic antimicrobial compounds. Here, we describe the determination of the minimal inhibitory concentration of peptide-PNA conjugates against Escherichia coli. This method can be expanded to include minimal bactericidal concentration (MBC) determination and kill-curve kinetics.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Toyohara D, Yokoi Y, Inoue G, Muraoka T, Mori T. Abiotic Factors Promote Cell Penetrating Peptide Permeability in Enterobacteriaceae Models. Front Microbiol 2019; 10:2534. [PMID: 31849846 PMCID: PMC6902036 DOI: 10.3389/fmicb.2019.02534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Conventionally, the delivery of biomolecules into bacteria for the generation of characterized or functional mutants has relied greatly on horizontal gene transfer techniques. However, the low compatibility of these techniques with novel or hard-to-transform bacteria currently serves as a challenge to the bioengineering field. Here, we explored the use of cell penetrating peptides (CPPs) as an alternative biomolecule delivery approach by investigating the effects of the abiotic factors during CPP permeation. Using the (KFF)3K-FAM conjugate and Escherichia coli as models, we evaluated four abiotic factors where two of these factors, temperature and solution tonicity, promoted (KFF)3K-FAM permeation efficiency. Our data show that optimal (KFF)3K-FAM permeation efficiency was achieved for E. coli at approximately 98.1% under conditions of 37°C (growth optimal temperature) and 50% PBS concentration. Based on these conditions, we subsequently tested the applicability of CPP permeation in various bacterial strains by treating 10 bacterial strains from the Enterobacteriaceae family among which seven strains have no CPP permeation records with (KFF)3K-FAM. Interestingly, when compared with non-optimized conditions, all 10 strains showed a marked increase in CPP permeation ranging between 20 and 90% efficiency. Although using strains within Enterobacteriaceae that are phylogenetically close, our results hinted on the possibility that with proper optimization of the abiotic factors, CPPs could be compatible with a broad range of bacterial strains. Our efforts suggest that CPP could serve as an effective alternative approach for mutant generation and for biomolecule delivery into novel or hard-to-transform bacteria.
Collapse
Affiliation(s)
- Daichi Toyohara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yasuhito Yokoi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Go Inoue
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Takahiro Muraoka
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
37
|
Barkowsky G, Lemster AL, Pappesch R, Jacob A, Krüger S, Schröder A, Kreikemeyer B, Patenge N. Influence of Different Cell-Penetrating Peptides on the Antimicrobial Efficiency of PNAs in Streptococcus pyogenes. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:444-454. [PMID: 31655262 PMCID: PMC6831891 DOI: 10.1016/j.omtn.2019.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 09/08/2019] [Indexed: 01/31/2023]
Abstract
Streptococcus pyogenes is an exclusively human pathogen causing a wide range of clinical manifestations from mild superficial infections to severe, life-threatening, invasive diseases. S. pyogenes is consistently susceptible toward penicillin, but therapeutic failure of penicillin treatment has been reported frequently. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, is common. To reduce the application of antibiotics for treatment of S. pyogenes infections, it is mandatory to develop novel therapeutic strategies. Antisense peptide nucleic acids (PNAs) are synthetic DNA derivatives widely applied for hybridization-based microbial diagnostics. They have a high potential as therapeutic agents, because PNA antisense targeting of essential genes was shown to reduce growth of several pathogenic bacterial species. Spontaneous cellular uptake of PNAs is restricted in eukaryotes and in bacteria. To overcome this problem, PNAs can be coupled to cell-penetrating peptides (CPPs) that support PNA translocation over the cell membrane. In bacteria, the efficiency of CPP-mediated PNA uptake is species specific. Previously, HIV-1 transactivator of transcription (HIV-1 TAT) peptide-coupled anti-gyrA PNA was shown to inhibit growth of S. pyogenes. Here, we investigate the effect of 18 CPP-coupled anti-gyrA PNAs on S. pyogenes growth and virulence. HIV-1 TAT, oligolysine (K8), and (RXR)4XB peptide-coupled anti-gyrA PNAs efficiently abolished bacterial growth in vitro. Consistently, treatment with these three CPP-PNAs increased survival of larvae in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anna-Lena Lemster
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Roberto Pappesch
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anette Jacob
- Peps4LS GmbH, INF 583, 69120 Heidelberg, Germany; Functional Genome Analysis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Selina Krüger
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anne Schröder
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany.
| |
Collapse
|
38
|
Lee HT, Kim SK, Lee JB, Yoon JW. A Novel Peptide Nucleic Acid against the Cytidine Monophosphate Kinase of S. aureus Inhibits Staphylococcal Infection In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:245-252. [PMID: 31581048 PMCID: PMC6796767 DOI: 10.1016/j.omtn.2019.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/01/2019] [Accepted: 08/21/2019] [Indexed: 01/15/2023]
Abstract
Here, we report a novel bactericidal peptide nucleic acid (PNA) that can induce the antisense effect on the cytidine monophosphate kinase (Cmk) of Staphylococcus aureus, a putative essential component for bacterial species. Based on the genome sequence of S. aureus N315, a set of PNA conjugates with a bacterial penetration peptide, (KFF)3K, were synthesized to target the seven potentially essential genes (cmk, deoD, ligA, smpB, glmU, pyrH, and ftsA) and further evaluated for their antibacterial properties in vitro as well as in vivo. The results demonstrated that two peptide-conjugated PNAs (P-PNAs), antisense P-PNA (ASP)-cmk1 and ASP-deoD1, targeting either the cmk or the deoD genes, had the strongest inhibitory effects on the growth of S. aureus ATCC 29740 (a bovine mastitic milk isolate) in a dose-dependent manner. In vivo application of ASP-cmk1 resulted in a significant reduction of bacterial loads in mice intraperitoneally infected with a sublethal dose of S. aureus. Moreover, ASP-cmk1 significantly increased the survival rate of the breast-fed infant mice after intramammary infection of the lactating CD-1 mice. Taken together, our characterization of ASP-cmk1 demonstrated its bactericidal activity against S. aureus as well as its effectiveness in vivo.
Collapse
Affiliation(s)
- Hyung Tae Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
39
|
Sturge CR, Felder-Scott CF, Pifer R, Pybus C, Jain R, Geller BL, Greenberg DE. AcrAB-TolC Inhibition by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Restores Antibiotic Activity in Vitro and in Vivo. ACS Infect Dis 2019; 5:1446-1455. [PMID: 31119935 DOI: 10.1021/acsinfecdis.9b00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of bacterial efflux pumps is a driver of increasing antibiotic resistance in Gram-negative pathogens. The AcrAB-TolC efflux pump has been implicated in resistance to a number of important antibiotic classes including fluoroquinolones, macrolides, and β-lactams. Antisense technology, such as peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), can be utilized to inhibit expression of efflux pumps and restore susceptibility to antibiotics. Targeting of the AcrAB-TolC components with PPMOs revealed a sequence for acrA, which was the most effective at reducing antibiotic efflux. This acrA-PPMO enhances the antimicrobial effects of the levofloxacin and azithromycin in a panel of clinical Enterobacteriaceae strains. Additionally, acrA-PPMO enhanced azithromycin in vivo in a K. pneumoniae septicemia model. PPMOs targeting the homologous resistance-nodulation-division (RND)-efflux system in P. aeruginosa, MexAB-OprM, also enhanced potency to several classes of antibiotics in a panel of strains and in a cell culture infection model. These data suggest that PPMOs can be used as an adjuvant in antibiotic therapy to increase the efficacy or extend the spectrum of useful antibiotics against a variety of Gram-negative infections.
Collapse
Affiliation(s)
- Carolyn R. Sturge
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christina F. Felder-Scott
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christine Pybus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States
| | - David E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
40
|
Sim JY, Kim S, Lee J, Lim H, Kim HH, Park ZY, Kim JI. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Biochem Biophys Res Commun 2019; 514:497-502. [PMID: 31056261 DOI: 10.1016/j.bbrc.2019.04.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) are important antibiotics because they possess a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including those resistant to traditional antibiotics. The cyclic peptide bactenecin is a 12-amino acid CAMP that contains one intramolecular disulfide bond. To improve the antibacterial activity of bactenecin, we designed and synthesized several bactenecin analogs by applying multiple approaches, including amino acid substitution, use of the d-enantiomeric form, and lipidation. Among the synthetic analogs, d-enantiomeric bactenecin conjugated to capric acid, which we named dBacK-(cap), exhibited a significantly enhanced antibacterial spectrum with MIC values ranging from 1 to 8 μM against both Gram-positive and Gram-negative bacteria, including some drug-resistant bacteria. Upon exposure to dBacK-(cap), S. aureus cells were killed within 1 h at the MIC value, but full inactivation of E. coli required over 2 h. These results indicate that covalent addition of a d-amino acid and a fatty acid to bactenecin is the most effective approach for enhancing its antibacterial activity.
Collapse
Affiliation(s)
- Ji-Yeong Sim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Shanghyeon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jaeho Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyunjung Lim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
41
|
Saporito P, Biljana M, Løbner Olesen A, Jenssen H. Antibacterial mechanisms of GN-2 derived peptides and peptoids against Escherichia coli. Biopolymers 2019; 110:e23275. [PMID: 30951211 DOI: 10.1002/bip.23275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Escherichia coli is the main etiological agent of urinary trait infections, able to form biofilms in indwelling devices, resulting in chronic infections which are refractory to antibiotics treatment. In this study, we investigated the antimicrobial and anti-biofilm properties exerted against E. coli ATCC 25922, by a set of peptoids and peptides modeled upon the peptide GN-2, previously reported as a valid antimicrobial agent. The putative antimicrobials were designed to evaluate the effect of cationicity, hydrophobicity and their partitioning on the overall properties against planktonic cells and biofilms as well as on LPS binding, permeabilization of Gram-negative bacteria membranes and hemolysis. The data demonstrated that peptides are stronger antimicrobials than the analogue peptoids which in return have superior anti-biofilm properties. In this study, we present evidence that peptides antimicrobial activity correlates with enhanced LPS binding and hydrophobicity but is not affected by partitioning. The data demonstrated that the enhanced anti-biofilm properties of the peptoids are associated with decreased hydrophobicity and increased penetration of the inner membrane, compared to that of their peptide counterpart, suggesting that the characteristic flexibility of peptoids or their lack of H-bonding donors in their backbone, would play a role in their ability to penetrate bacterial membranes.
Collapse
Affiliation(s)
- Paola Saporito
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mojsoska Biljana
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Løbner Olesen
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
42
|
A Combination of Linalool, Vitamin C, and Copper Synergistically Triggers Reactive Oxygen Species and DNA Damage and Inhibits Salmonella enterica subsp. enterica Serovar Typhi and Vibrio fluvialis. Appl Environ Microbiol 2019; 85:AEM.02487-18. [PMID: 30552187 DOI: 10.1128/aem.02487-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Inappropriate and disproportionate use of antibiotics is contributing immensely to the development of antibiotic resistance in bacterial species associated with food contamination. The use of natural products in combination can be a potent alternative hurdle strategy to inactivate foodborne pathogens. Here, we explored the pro-oxidant properties of essential oil linalool and vitamin C in combination with copper (LVC) in combating the foodborne pathogens Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi using a three-dimensional (3D) checkerboard microdilution assay. Antibacterial activity in terms of the MIC revealed that the triple combination exerted a synergistic effect compared to the effects of the individual constituents. The bactericidal effect of the triple combination was confirmed by a live/dead staining assay. Reactive oxygen species (ROS) measurements with the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay and scanning electron microscopy imaging strongly suggested that the increase in ROS production is the underlying mechanism of the enhanced antibacterial potency of the LVC combination (linalool [1.298 mM], vitamin C [8 mM], copper [16.3 μM]). In addition, the hypersensitivity of oxidative stress regulator mutants (oxyR, katG, ahpC, and sodA mutants) toward LVC corroborated the involvement of ROS in cell death. Live/dead staining and changes in cellular morphology revealed that oxidative stress did not transform the cells into the viable but nonculturable (VBNC) state; rather, killing was associated with intracellular and extracellular oxidative burst. Furthermore, the LVC combination did not display toxicity to human cells, while it effectively reduced the pathogen levels in acidic fruit juices by 3 to 4 log CFU/ml without adversely altering the organoleptic properties. This study opens a new outlook for combinatorial antimicrobial therapy.IMPORTANCE There is a need to develop effective antibacterial therapies for mitigating bacterial pathogens in food systems. We used a 3D checkerboard assay to ascertain a safe synergistic combination of food-grade components: vitamin C, copper, and the essential oil linalool. Individually, these constituents have to be added in large amounts to exert their antibacterial effect, which leads to unwanted organoleptic properties. The triple combination could exceptionally inhibit foodborne Gram-negative pathogens like Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi at low concentrations (linalool, 1.298 mM; vitamin C, 8 mM; copper, 16.3 μM) and displayed potent microbial inhibition in acidic beverages. We found increased susceptibility in deletion mutants of oxidative stress regulators (oxyR, katG, ahpC, and sodA mutants) due to ROS generation by Fenton's chemistry. The results of this study show that it may be possible to use plant-based antimicrobials in synergistic combinations to control microbial contaminants.
Collapse
|
43
|
Uzoechi SC, Abu-Lail NI. The Effects of β-Lactam Antibiotics on Surface Modifications of Multidrug-Resistant Escherichia coli: A Multiscale Approach. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:135-150. [PMID: 30869575 PMCID: PMC6599534 DOI: 10.1017/s1431927618015696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Possible multidrug-resistant (MDR) mechanisms of four resistant strains of Escherichia coli to a model β-lactam, ampicillin, were investigated using contact angle measurements of wettability, crystal violet assays of permeability, biofilm formation, fluorescence imaging, and nanoscale analyses of dimensions, adherence, and roughness. Upon exposure to ampicillin, one of the resistant strains, E. coli A5, changed its phenotype from elliptical to spherical, maintained its roughness and biofilm formation abilities, decreased its length and surface area, maintained its cell wall integrity, increased its hydrophobicity, and decreased its nanoscale adhesion to a model surface of silicon nitride. Such modifications are suggested to allow these cells to conserve energy during metabolic dormancy. In comparison, resistant strains E. coli D4, A9, and H5 elongated their cells, increased their roughness, increased their nanoscale adhesion forces, became more hydrophilic, and increased their biofilm formation upon exposure to ampicillin. These results suggest that these strains resisted ampicillin through biofilm formation that possibly introduces diffusion limitations to antibiotics. Investigations of how MDR bacterial cells modify their surfaces in response to antibiotics can guide research efforts aimed at designing more effective antibiotics and new treatment strategies for MDR bacterial infections.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Nehal I. Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
44
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
46
|
Qiao J, Liu Z, Purro M, Xiong MP. Antibacterial and Potentiation Properties of Charge-Optimized Polyrotaxanes for Combating Opportunistic Bacteria. J Mater Chem B 2018; 6:5353-5361. [PMID: 30386619 PMCID: PMC6205756 DOI: 10.1039/c8tb01610k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteria are now becoming more resistant to most conventional antibiotics. Approaches for the treatment of multidrug-resistant bacterial infections are urgently required. Cationic polymers have broad-spectrum antibacterial activity but can also induce non-specific damage to mammalian cells. Herein, we report on the design of cationic polyrotaxanes (cPRs) with variable charge densities. cPRs were prepared by conjugating neutral ethanolamine and cationic ethylenediamine at various ratios onto threaded alpha-cyclodextrins and their antimicrobial and cytocompatible properties were investigated in vitro. In contact with Gram-negative bacteria, cPRs can disrupt the bacterial outer membrane integrity via electrostatic interactions and penetrate into the cytosol. The ability of cPRs to serve as potentiators at sub-MIC concentrations, to enhance the permeability and activity of poorly permeable antibiotics such as vancomycin, erythromycin and rifampicin, was also investigated against Gram-negative P. aeruginosa PAO1 and E. coli ATCC 25922.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Zhi Liu
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| | - Max Purro
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705-2222, USA
| | - May P. Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, USA
| |
Collapse
|
47
|
Otoupal PB, Cordell WT, Bachu V, Sitton MJ, Chatterjee A. Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis. Commun Biol 2018; 1:129. [PMID: 30272008 PMCID: PMC6123780 DOI: 10.1038/s42003-018-0135-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
The ever-increasing threat of multi-drug resistant bacteria, a shrinking antibiotic pipeline, and the innate ability of microorganisms to adapt necessitates long-term strategies to slow the evolution of antibiotic resistance. Here we develop an approach, dubbed Controlled Hindrance of Adaptation of OrganismS or CHAOS, involving induction of epistasis between gene perturbations to deter adaption. We construct a combinatorial library of multiplexed, deactivated CRISPR-Cas9 devices to systematically perturb gene expression in Escherichia coli. While individual perturbations improved fitness during antibiotic exposure, multiplexed perturbations caused large fitness loss in a significant epistatic fashion. Strains exhibiting epistasis adapted significantly more slowly over three to fourteen days, and loss in adaptive potential was shown to be sustainable. Finally, we show that multiplexed peptide nucleic acids increase the antibiotic susceptibility of clinically isolated Carbapenem-resistant E. coli in an epistatic fashion. Together, these results suggest a new therapeutic strategy for restricting the evolution of antibiotic resistance. Peter Otoupal et al. present CHAOS, an approach for preventing the development of antibiotic resistance in E. coli through CRISPR-Cas9-based perturbation of gene expression. They show that multiplexed perturbations decrease fitness of clinically-isolated Carbapenem-resistant E. coli upon antibiotic exposure.
Collapse
Affiliation(s)
- Peter B Otoupal
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80303, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80303, USA
| | - Vismaya Bachu
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80303, USA
| | - Madeleine J Sitton
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80303, USA
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80303, USA. .,BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
48
|
Silva Nigenda E, Postma TM, Hezwani M, Pirvan A, Gannon S, Smith CA, Riehle M, Liskamp RMJ. Synthesis and cellular penetration properties of new phosphonium based cationic amphiphilic peptides. MEDCHEMCOMM 2018; 9:982-987. [PMID: 30108987 PMCID: PMC6071932 DOI: 10.1039/c8md00113h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 11/21/2022]
Abstract
A new category of phosphonium based cationic amphiphilic peptides has been developed and evaluated as potential antimicrobial peptides and cell penetrating peptides. The required building blocks were conveniently accessible from cysteine and could be applied in a solid phase peptide synthesis protocol for incorporation into peptide sequences. Evaluation of the antimicrobial properties and cellular toxicity of these phosphonium based peptides showed that these "soft" cationic side-chain containing peptides have poor antimicrobial properties and most of them were virtually non toxic (on HEK cells tested at 256 and 512 μM) and non-haemolytic (on horse erythrocytes tested at 512 μM), hinting at an interesting potential application as cell penetrating peptides. This possibility was evaluated using fluorescent peptide derivatives and showed that these phosphonium based peptide derivatives were capable of entering HEK cells and depending on the sequence confined to specific cellular areas.
Collapse
Affiliation(s)
- Ezequiel Silva Nigenda
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| | - Tobias M Postma
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| | - Mohammed Hezwani
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| | - Alin Pirvan
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| | - Susan Gannon
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| | - Carol-Anne Smith
- Centre for Cell Engineering , Institute of Molecular, Cell and Systems Biology , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK
| | - Mathis Riehle
- Centre for Cell Engineering , Institute of Molecular, Cell and Systems Biology , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK
| | - Rob M J Liskamp
- School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , UK .
| |
Collapse
|
49
|
Kim S, Yoon H, Ryu S. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii. Sci Rep 2018; 8:835. [PMID: 29339761 PMCID: PMC5770445 DOI: 10.1038/s41598-018-19306-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that can cause meningitis and necrotizing enterocolitis in premature infants, but its virulence determinants remain largely unknown. In this study, a transposon-mediated random-mutant library of C. sakazakii was used to identify new virulence factors. Compared to wild-type bacteria, a mutant lacking CSK29544_02616 (referred to as labp) was defective in invasion into intestinal epithelial cells (by at least 1000-fold) and showed less phagocytosis by macrophages (by at least 50-fold). The lack of labp in C. sakazakii changed the profile of outer membrane proteins, decreased the production of lipopolysaccharides, and increased the production of membrane phospholipids. Bacterial physiological characteristics including surface hydrophobicity and motility were also altered in the absence of labp, presumably because of changes in the bacterial-envelope structure. To systematically determine the role of labp, ligand fishing was conducted using Labp as a bait, which revealed LpxA as a binding partner of Labp. LpxA is UDP-N-acetylglucosamine (GlcNAc) acyltransferase, the first enzyme in the pathway of lipid A biosynthesis. Labp increased the enzymatic activity of LpxA without influencing lpxA expression. Considering multifaceted roles of lipopolysaccharides in virulence regulation, Labp is a novel virulence factor that promotes the production of lipid A by LpxA in Cronobacter.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
50
|
Muheim C, Götzke H, Eriksson AU, Lindberg S, Lauritsen I, Nørholm MHH, Daley DO. Increasing the permeability of Escherichia coli using MAC13243. Sci Rep 2017; 7:17629. [PMID: 29247166 PMCID: PMC5732295 DOI: 10.1038/s41598-017-17772-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
The outer membrane of gram-negative bacteria is a permeability barrier that prevents the efficient uptake of molecules with large scaffolds. As a consequence, a number of antibiotic classes are ineffective against gram-negative strains. Herein we carried out a high throughput screen for small molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N-phenylnapthylamine, and (2) more susceptible to large-scaffold antibiotics when sub-inhibitory concentrations of MAC13243 were used. To exclude the possibility that the permeability was caused by an off-target effect, we genetically reconstructed the MAC13243-phenotype by depleting LolA levels using the CRISPRi system.
Collapse
Affiliation(s)
- Claudio Muheim
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Hansjörg Götzke
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Anna U Eriksson
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Stina Lindberg
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Daniel O Daley
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden.
| |
Collapse
|