1
|
Orleanska J, Bik E, Baranska M, Majzner K. Mechanisms of mitotic inhibition in human aorta endothelial cells: Molecular and morphological in vitro spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124623. [PMID: 39002470 DOI: 10.1016/j.saa.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Ewelina Bik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
3
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
4
|
Brownson-Smith R, Orange ST, Cresti N, Hunt K, Saxton J, Temesi J. Effect of exercise before and/or during taxane-containing chemotherapy treatment on chemotherapy-induced peripheral neuropathy symptoms in women with breast cancer: systematic review and meta-analysis. J Cancer Surviv 2023:10.1007/s11764-023-01450-w. [PMID: 37615928 DOI: 10.1007/s11764-023-01450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To systematically review and meta-analyse the efficacy of exercise interventions delivered before and/or during taxane-containing chemotherapy regimens on chemotherapy-induced peripheral neuropathy (CIPN), fatigue, and health-related quality of life (HR-QoL), in women with breast cancer. METHODS Seven electronic databases were systematically searched for randomised controlled trials (RCTs) reporting on the effects of exercise interventions in women with breast cancer receiving taxane-containing chemotherapeutic treatment. Meta-analyses evaluated the effects of exercise on CIPN symptoms, fatigue, and HR-QoL. RESULTS Ten trials involving exercise interventions ranging between 2 and 12 months were included. The combined results of four RCTs consisting of 171 participants showed a reduction in CIPN symptoms following exercise compared with usual care (standardised mean difference - 0.71, 95% CI - 1.24 to - 0.17, p = 0.012; moderate-quality evidence, I2 = 76.9%). Pooled results from six RCTs with 609 participants showed that exercise interventions before and/or during taxane-containing chemotherapy regimens improved HR-QoL (SMD 0.42, 95% CI 0.07 to 0.76, p = 0.03; moderate-quality evidence, I2 = 49.6%). There was no evidence of an effect of exercise on fatigue (- 0.39, 95% CI - 0.95 to 0.18, p = 0.15; very low-quality evidence, I2 = 90.1%). CONCLUSIONS This systematic review found reduced levels of CIPN symptoms and an improvement in HR-QoL in women with breast cancer who exercised before and/or during taxane-based chemotherapy versus usual care controls. IMPLICATIONS FOR CANCER SURVIVORS This evidence supports the role of exercise as an adjunctive treatment for attenuating the adverse effects of taxane-containing chemotherapy on CIPN symptoms and HR-QoL.
Collapse
Affiliation(s)
- Rosiered Brownson-Smith
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle uponTyne, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Nicola Cresti
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Katherine Hunt
- Northern Centre for Cancer Care, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John Saxton
- School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK
| | - John Temesi
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Overmeyer C, Jorgensen K, Vohra BPS. The Translocase of the Outer Mitochondrial Membrane (TOM40) is required for mitochondrial dynamics and neuronal integrity in Dorsal Root Ganglion Neurons. Mol Cell Neurosci 2023; 125:103853. [PMID: 37100265 DOI: 10.1016/j.mcn.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kylie Jorgensen
- Department of Biology, William Jewell College Liberty, MO 64068
| | | |
Collapse
|
6
|
Takeshita AA, Hammock BD, Wagner KM. Soluble epoxide hydrolase inhibition alleviates chemotherapy induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2023; 3:1100524. [PMID: 36700145 PMCID: PMC9868926 DOI: 10.3389/fpain.2022.1100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is a particularly pernicious form of neuropathy and the associated pain is the primary dose-limiting factor of life-prolonging chemotherapy treatment. The prevalence of CIPN is high and can last long after treatment has been stopped. Currently, late in the COVID-19 pandemic, there are still increased psychological pressures on cancer patients as well as additional challenges in providing analgesia for them. These include the risks of nonsteroidal anti-inflammatory drug (NSAID) analgesics potentially masking early infection symptoms and the immunosuppression of steroidal and opiate based approaches. Even without these concerns, CIPN is often inadequately treated with few therapies that offer significant pain relief. The experiments we report use soluble epoxide hydrolase inhibitors (sEHI) which relieved this intractable pain in preclinical models. Doses of EC5026, an IND candidate intended to treat neuropathic pain, elicited dose dependent analgesic responses in multiple models including platinum-based, taxane, and vinca alkaloid-based CIPN pain in Sprague Dawley rats. At the same time as a class, the sEHI are known to result in fewer debilitating side effects of other analgesics, likely due to their novel mechanism of action. Overall, the observed dose-dependent analgesia in both male and female rats across multiple models of chemotherapy induced neuropathic pain holds promise as a useful tool when translated to the clinic.
Collapse
Affiliation(s)
| | - Bruce D. Hammock
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen M. Wagner
- EicOsis LLC, Davis, CA, United States,Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States,Correspondence: Karen M. Wagner ;
| |
Collapse
|
7
|
Towards a mechanistic understanding of axon transport and endocytic changes underlying paclitaxel-induced peripheral neuropathy. Exp Neurol 2023; 359:114258. [PMID: 36279934 DOI: 10.1016/j.expneurol.2022.114258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.
Collapse
|
8
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
9
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
10
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Cristiano C, Avagliano C, Cuozzo M, Liguori FM, Calignano A, Russo R. The Beneficial Effects of Ultramicronized Palmitoylethanolamide in the Management of Neuropathic Pain and Associated Mood Disorders Induced by Paclitaxel in Mice. Biomolecules 2022; 12:biom12081155. [PMID: 36009049 PMCID: PMC9406031 DOI: 10.3390/biom12081155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of antineoplastic drugs, particularly paclitaxel (PTX). It can affect the quality of patients’ lives and increase the risk of developing mood disorders. Although several drugs are recommended, they yielded inconclusive results in clinical trials. The aim of the present work is to investigate whether the palmitoylethanolamide (PEA) would reduce PTX-induced CIPN and associated mood disorders. Moreover, the role PPAR-α and the endocannabinoid system will also be investigated. CIPN was induced by intraperitoneally injection of PTX (8 mg/kg) every other day for a week. PEA, 30 mg/kg, was orally administrated in a bioavailable form (i.e., ultramicronized PEA, um-PEA) one hour after the last PTX injection, for 7 days. In the antagonism experiments, AM281 (1 mg/kg) and GW6471 (2 mg/kg) were administrated 30 min before um-PEA. Our results demonstrated that um-PEA reduced the development of hypersensitivity with the effect being associated with the reduction in spinal and hippocampal pro-inflammatory cytokines, as well as antidepressive and anxiolytic effects. Moreover, the PPAR-α and CB1 receptor antagonists blocked the behavioral and antinociceptive effects of um-PEA. Our findings suggest that um-PEA is a promising adjunct in CIPN and associated mood disorders through the activation of PPAR-α, which influences the endocannabinoid system.
Collapse
|
12
|
7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol Neurobiol 2022; 59:6567-6589. [DOI: 10.1007/s12035-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
13
|
Li YJ, Fahrmann JF, Aftabizadeh M, Zhao Q, Tripathi SC, Zhang C, Yuan Y, Ann D, Hanash S, Yu H. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep 2022; 39:110870. [PMID: 35649368 DOI: 10.1016/j.celrep.2022.110870] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Overcoming resistance to chemotherapies remains a major unmet need for cancers, such as triple-negative breast cancer (TNBC). Therefore, mechanistic studies to provide insight for drug development are urgently needed to overcome TNBC therapy resistance. Recently, an important role of fatty acid β-oxidation (FAO) in chemoresistance has been shown. But how FAO might mitigate tumor cell apoptosis by chemotherapy is unclear. Here, we show that elevated FAO activates STAT3 by acetylation via elevated acetyl-coenzyme A (CoA). Acetylated STAT3 upregulates expression of long-chain acyl-CoA synthetase 4 (ACSL4), resulting in increased phospholipid synthesis. Elevating phospholipids in mitochondrial membranes leads to heightened mitochondrial integrity, which in turn overcomes chemotherapy-induced tumor cell apoptosis. Conversely, in both cultured tumor cells and xenograft tumors, enhanced cancer cell apoptosis by inhibiting ASCL4 or specifically targeting acetylated-STAT3 is associated with a reduction in phospholipids within mitochondrial membranes. This study demonstrates a critical mechanism underlying tumor cell chemoresistance.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Johannes Francois Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maryam Aftabizadeh
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yuan Yuan
- Department of PS Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
14
|
Onzi GR, D'Agustini N, Garcia SC, Guterres SS, Pohlmann PR, Rosa DD, Pohlmann AR. Chemobrain in Breast Cancer: Mechanisms, Clinical Manifestations, and Potential Interventions. Drug Saf 2022; 45:601-621. [PMID: 35606623 DOI: 10.1007/s40264-022-01182-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
Among the potential adverse effects of breast cancer treatment, chemotherapy-related cognitive impairment (CRCI) has gained increased attention in the past years. In this review, we provide an overview of the literature regarding CRCI in breast cancer, focusing on three main aspects. The first aspect relates to the molecular mechanisms linking individual drugs commonly used to treat breast cancer and CRCI, which include oxidative stress and inflammation, reduced neurogenesis, reduced levels of specific neurotransmitters, alterations in neuronal dendrites and spines, and impairment in myelin production. The second aspect is related to the clinical characteristics of CRCI in patients with breast cancer treated with different drug combinations. Data suggest the incidence rates of CRCI in breast cancer vary considerably, and may affect more than 50% of treated patients. Both chemotherapy regimens with or without anthracyclines have been associated with CRCI manifestations. While cross-sectional studies suggest the presence of symptoms up to 20 years after treatment, longitudinal studies confirm cognitive impairments lasting for at most 4 years after the end of chemotherapy. The third and final aspect is related to possible therapeutic interventions. Although there is still no standard of care to treat CRCI, several pharmacological and non-pharmacological approaches have shown interesting results. In summary, even if cognitive impairments derived from chemotherapy resolve with time, awareness of CRCI is crucial to provide patients with a better understanding of the syndrome and to offer them the best care directed at improving quality of life.
Collapse
Affiliation(s)
- Giovana R Onzi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| | - Nathalia D'Agustini
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Silvia S Guterres
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela D Rosa
- Programa de Pós-Graduação em Patologia da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Serviço de Oncologia, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Adriana R Pohlmann
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
15
|
Kumbul YÇ, Nazıroğlu M. Paclitaxel Promotes Oxidative Stress-Mediated Human Laryngeal Squamous Tumor Cell Death through the Stimulation of Calcium and Zinc Signaling Pathways: No Synergic Action of Melatonin. Biol Trace Elem Res 2022; 200:2084-2098. [PMID: 35075596 DOI: 10.1007/s12011-022-03125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
The paclitaxel (PAX) and melatonin (MLT)-mediated mitochondria reactive free oxygen radical (miROS) generations via the influx of excessive Ca2+ and Zn2+ induce tumor cell death and apoptosis. However, a presence of resistance was demonstrated against the PAX treatment in the tumor cells. The stimulation of TRPM2 may increase the anticancer action of PAX after the treatment of MLT. We investigated the stimulating role of PAX with/without MLT on the excessive Ca2+ influx and miROS generation-mediated human laryngeal squamous cancer (Hep2) cell death through the stimulation of TRPM2. The Hep2 cells were divided into four groups as control, MLT (1 mM for 2 h), PAX (50 μM for 24 h), and PAX + MLT. In some experiments, we induced additional subgroups such as PAX+ACA and PAX+2APB. The stimulation of TRPM2 induced the increase of TRPM2 current densities, lipid peroxidation, cytosolic ROS, miROS, cytosolic Ca2+, and Zn2+ values in the Hep2 cells after the treatment of PAX, although their values were decreased by the treatment of MLT and TRPM2 antagonists (ACA and 2APB). In addition, the PAX induced apoptosis and cell death via upregulation of caspases and downregulation of antioxidant glutathione peroxidase and glutathione in the cells. The treatment of PAX increased protein band expression values of TRPM2, PARP-1, and caspase 3 and 9 in the Hep2. The increased expression, apoptotic, and cell death values were not affected by the treatment of MLT. In conclusion, PAX induced the increase of Hep2 cell death via upregulations of TRPM2 and Zn2+, although its downregulation via the treatment of MLT did not change the antitumor action of PAX.
Collapse
Affiliation(s)
- Yusuf Çağdaş Kumbul
- Department of Otorhinolaryngology, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, TR-32260, Isparta, Turkey.
- BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry and Trade Limited Company, Göller Bölgesi Teknokenti, TR-32260, Isparta, Turkey.
| |
Collapse
|
16
|
The PINK1 Activator Niclosamide Mitigates Mitochondrial Dysfunction and Thermal Hypersensitivity in a Paclitaxel-Induced Drosophila Model of Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10040863. [PMID: 35453613 PMCID: PMC9025238 DOI: 10.3390/biomedicines10040863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel is a widely used anticancer drug that induces dose-limiting peripheral neuropathy. Mitochondrial dysfunction has been implicated in paclitaxel-induced neuronal damage and in the onset of peripheral neuropathy. We have previously shown that the expression of PINK1, a key mediator of mitochondrial quality control, ameliorated the paclitaxel-induced thermal hyperalgesia phenotype and restored mitochondrial homeostasis in Drosophila larvae. In this study, we show that the small-molecule PINK1 activator niclosamide exhibits therapeutic potential for paclitaxel-induced peripheral neuropathy. Specifically, niclosamide cotreatment significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae in a PINK1-dependent manner. Paclitaxel-induced alteration of the dendrite structure of class IV dendritic arborization (C4da) neurons was not reduced upon niclosamide treatment. In contrast, paclitaxel treatment-induced increases in both mitochondrial ROS and aberrant mitophagy levels in C4da neurons were significantly suppressed by niclosamide. In addition, niclosamide suppressed paclitaxel-induced mitochondrial dysfunction in human SH-SY5Y cells in a PINK1-dependent manner. These results suggest that niclosamide alleviates thermal hyperalgesia by attenuating paclitaxel-induced mitochondrial dysfunction. Taken together, our results suggest that niclosamide is a potential candidate for the treatment of paclitaxel-induced peripheral neuropathy with low toxicity in neurons and that targeting mitochondrial dysfunction is a promising strategy for the treatment of chemotherapy-induced peripheral neuropathy.
Collapse
|
17
|
The aryl-ureido fatty acid CTU activates endoplasmic reticulum stress and PERK/NOXA-mediated apoptosis in tumor cells by a dual mitochondrial-targeting mechanism. Cancer Lett 2022; 526:131-141. [PMID: 34822928 DOI: 10.1016/j.canlet.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.
Collapse
|
18
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
19
|
Calcium Signaling Regulates Autophagy and Apoptosis. Cells 2021; 10:cells10082125. [PMID: 34440894 PMCID: PMC8394685 DOI: 10.3390/cells10082125] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) functions as a second messenger that is critical in regulating fundamental physiological functions such as cell growth/development, cell survival, neuronal development and/or the maintenance of cellular functions. The coordination among various proteins/pumps/Ca2+ channels and Ca2+ storage in various organelles is critical in maintaining cytosolic Ca2+ levels that provide the spatial resolution needed for cellular homeostasis. An important regulatory aspect of Ca2+ homeostasis is a store operated Ca2+ entry (SOCE) mechanism that is activated by the depletion of Ca2+ from internal ER stores and has gained much attention for influencing functions in both excitable and non-excitable cells. Ca2+ has been shown to regulate opposing functions such as autophagy, that promote cell survival; on the other hand, Ca2+ also regulates programmed cell death processes such as apoptosis. The functional significance of the TRP/Orai channels has been elaborately studied; however, information on how they can modulate opposing functions and modulate function in excitable and non-excitable cells is limited. Importantly, perturbations in SOCE have been implicated in a spectrum of pathological neurodegenerative conditions. The critical role of autophagy machinery in the pathogenesis of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, would presumably unveil avenues for plausible therapeutic interventions for these diseases. We thus review the role of SOCE-regulated Ca2+ signaling in modulating these diverse functions in stem cell, immune regulation and neuromodulation.
Collapse
|
20
|
Jones MR, Urits I, Wolf J, Corrigan D, Colburn L, Peterson E, Williamson A, Viswanath O. Drug-Induced Peripheral Neuropathy: A Narrative Review. ACTA ACUST UNITED AC 2021; 15:38-48. [PMID: 30666914 PMCID: PMC7365998 DOI: 10.2174/1574884714666190121154813] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
Background Peripheral neuropathy is a painful condition deriving from many and varied etiologies. Certain medications have been implicated in the iatrogenic development of Drug Induced Peripheral Neuropathy (DIPN) and include chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, anticonvulsants, among others. This review synthesizes current clinical concepts regarding the mechanism, common inciting medications, and treatment options for drug-induced peripheral neuropathy. Methods The authors undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question and inclusion/exclusion criteria. The most relevant and up to date research was included. Results Drug-induced peripheral neuropathy is a common and painful condition caused by many different and frequently prescribed medications. Most often, DIPN is seen in chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, and anticonvulsant drugs. Certain drugs exhibit more consistent neuropathic side effects, such as the chemotherapeutic compounds, but others are more commonly prescribed by a larger proportion of providers, such as the statins. DIPN is more likely to occur in patients with concomitant risk factors such as preexisting neuropathy, diabetes, and associated genetically predisposing diseases. DIPN is often difficult to treat, however medications including duloxetine, and gabapentin are shown to reduce neuropathic pain. Advanced techniques of neuromodulation offer promise though further randomized and controlled studies are needed to confirm efficacy. Conclusion Awareness of the drugs covered in this review and their potential for adverse neuropathic effect is important for providers caring for patients who report new onset symptoms of pain, paresthesia, or weakness. Prevention of DIPN is especially important because treatment often proves challenging. While many pharmacologic therapies have demonstrated analgesic potential in the pain caused by DIPN, many patients remain refractive to treatment. More studies are needed to elucidate the effectiveness of interventional, neuromodulating therapies.
Collapse
Affiliation(s)
- Mark R Jones
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, MA, 02118, United States
| | - Ivan Urits
- Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, MA, 02118, United States
| | - John Wolf
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Devin Corrigan
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Luc Colburn
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Emily Peterson
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Amber Williamson
- Creighton University School of Medicine-Phoenix Regional Campus, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
21
|
Huang JW, Kuo CH, Kuo HC, Shih JY, Tsai TW, Chang LC. Cell metabolomics analyses revealed a role of altered fatty acid oxidation in neurotoxicity pattern difference between nab-paclitaxel and solvent-based paclitaxel. PLoS One 2021; 16:e0248942. [PMID: 33740022 PMCID: PMC7978375 DOI: 10.1371/journal.pone.0248942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Peripheral neuropathy (PN) is a dose-limiting, painful adverse reaction associated with the use of paclitaxel. This common side effect was often partially attributed to the solvent used for solubilization of the highly hydrophobic drug substance. Therefore, the development of alternative formulations thrived, which included that of Abraxane® containing nanoparticle albumin-bound paclitaxel (nab-paclitaxel). However, studies demonstrated inconsistent conclusions regarding the mitigation of PN in comparison with the traditional formulation. The mass spectrometry-based cell metabolomics approach was used in the present study to explore the potentially associated mechanisms. Although no significant difference in the effects on cell viability was observed, fold changes in carnitine, several acylcarnitines and long-chain fatty acid(s) were significantly different between treatment groups in differentiated and undifferentiated SH-SY5Y cells. The most prominent difference observed was the significant increase of octanoylcarnitine in cells treated with solvent-based paclitaxel, which was found to be associated with significant decrease of medium-chain acyl-CoA dehydrogenase (MCAD). The findings suggested the potential role of altered fatty acid oxidation in the different neurotoxicity patterns observed, which may be a possible target for therapeutic interventions worth further investigation.
Collapse
Affiliation(s)
- Jhih-Wei Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Zhongzheng Dist., Taiwan
| | - Teng-Wen Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
| | - Lin-Chau Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei City, Zhongzheng Dist., Taiwan
| |
Collapse
|
22
|
Bonomo R, Cavaletti G. Clinical and biochemical markers in CIPN: A reappraisal. Rev Neurol (Paris) 2021; 177:890-907. [PMID: 33648782 DOI: 10.1016/j.neurol.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The increased survival of cancer patients has raised growing public health concern on associated long-term consequences of antineoplastic treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a primarily sensory polyneuropathy, which may be accompanied by pain, autonomic disturbances, and motor deficit. About 70% of treated cancer patients might develop CIPN during or after the completion of chemotherapy, and in most of them such complication persists after six months from the treatment. The definition of the potential risk of development and resolution of CIPN according to a clinical and biochemical profile would be certainly fundamental to tailor chemotherapy regimen and dosage on individual susceptibility. In recent years, patient-reported and clinician-related tools along with quality of life instruments have been featured as primary outcomes in clinical setting and randomized trials. New studies on metabolomics markers are further pursuing accurate and easily accessible indicators of peripheral nerve damage. The aim of this review is to outline the strengths and pitfalls of current knowledge on CIPN, and to provide a framework for future potential developments of standardized protocols involving clinical and biochemical markers for CIPN assessment and monitoring.
Collapse
Affiliation(s)
- R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
23
|
Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:ijms22041980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients’ quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
|
24
|
Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol 2020; 11:1079. [PMID: 33013462 PMCID: PMC7500167 DOI: 10.3389/fphys.2020.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The kidneys utilize roughly 10% of the body’s oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection “Mitochondria in Renal Health and Disease,” here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.
Collapse
Affiliation(s)
- Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain 2020; 160:2877-2890. [PMID: 31356453 DOI: 10.1097/j.pain.0000000000001667] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of cancer treatment with no Food and Drug Administration-approved medication for its prevention or management. Using RNA sequencing analysis of dorsal root ganglia (DRG), we identify critical contributions of histone deacetylase 6 (HDAC6) and mitochondrial damage to the establishment of CIPN in a mouse model of cisplatin-induced neuropathy. We show that pharmacological inhibition of HDAC6 using ACY-1215 or global deletion of HDAC6 is sufficient to prevent cisplatin-induced mechanical allodynia, loss of intraepidermal nerve fibers (IENFs), and mitochondrial bioenergetic deficits in DRG neurons and peripheral nerves in male and female mice. The bioenergetic deficits in the neuronal cell bodies in the DRG are characterized by reduced oxidative phosphorylation, whereas the mitochondrial deficits in the nerves are due to a reduction in axonal mitochondrial content. Notably, deleting HDAC6 in sensory neurons protects against the cisplatin-induced loss of IENFs and the reduction in mitochondrial bioenergetics and content in the peripheral nerve. By contrast, deletion of HDAC6 in sensory neurons only partially and transiently prevents cisplatin-induced mechanical allodynia and does not protect against impairment of mitochondrial function in DRG neurons. We further reveal a critical role of T cells in the protective effects of HDAC6 inhibition on these signs of CIPN. In summary, we show that cisplatin-induced mechanical allodynia is associated with mitochondrial damage in DRG neurons, whereas the loss of IENFs is related to bioenergetic deficits in peripheral nerves. Moreover, our findings identify cell-specific contributions of HDAC6 to mechanical allodynia and loss of IENFs that characterize cisplatin-induced peripheral neuropathy.
Collapse
|
26
|
Varela FA, Foust VL, Hyland TE, Sala-Hamrick KE, Mackinder JR, Martin CE, Murray AS, Todi SV, List K. TMPRSS13 promotes cell survival, invasion, and resistance to drug-induced apoptosis in colorectal cancer. Sci Rep 2020; 10:13896. [PMID: 32807808 PMCID: PMC7431588 DOI: 10.1038/s41598-020-70636-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression is often accompanied by increased levels of extracellular proteases capable of remodeling the extracellular matrix and promoting pro-cancerous signaling pathways by activating growth factors and receptors. The type II transmembrane serine protease (TTSP) family encompasses several proteases that play critical roles in cancer progression; however, the expression or function of the TTSP TMPRSS13 in carcinogenesis has not been examined. In the present study, we found TMPRSS13 to be differentially expressed at both the transcript and protein levels in human colorectal cancer (CRC). Immunohistochemical analyses revealed consistent high expression of TMPRSS13 protein on the cancer cell surface in CRC patient samples; in contrast, the majority of normal colon samples displayed no detectable expression. On a functional level, TMPRSS13 silencing in CRC cell lines increased apoptosis and impaired invasive potential. Importantly, transgenic overexpression of TMPRSS13 in CRC cell lines increased tolerance to apoptosis-inducing agents, including paclitaxel and HA14-1. Conversely, TMPRSS13 silencing rendered CRC cells more sensitive to these agents. Together, our findings suggest that TMPRSS13 plays an important role in CRC cell survival and in promoting resistance to drug-induced apoptosis; we also identify TMPRSS13 as a potential new target for monotherapy or combination therapy with established chemotherapeutics to improve treatment outcomes in CRC patients.
Collapse
Affiliation(s)
- Fausto A Varela
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Victoria L Foust
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Thomas E Hyland
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Carly E Martin
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Andrew S Murray
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Karin List
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, 48201, MI, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, 48201, MI, USA.
| |
Collapse
|
27
|
Hyeraci M, Colalillo M, Labella L, Marchetti F, Samaritani S, Scalcon V, Rigobello MP, Dalla Via L. Platinum(II) Complexes Bearing Triphenylphosphine and Chelating Oximes: Antiproliferative Effect and Biological Profile in Resistant Cells. ChemMedChem 2020; 15:1464-1472. [DOI: 10.1002/cmdc.202000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological SciencesUniversità di Padova Via F. Marzolo, 5 35131 Padova Italy
| | - Marialuigia Colalillo
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Valeria Scalcon
- Department of Biomedical SciencesUniversità di Padova Via U. Bassi 58/b 35131 Padova Italy
| | - Maria Pia Rigobello
- Department of Biomedical SciencesUniversità di Padova Via U. Bassi 58/b 35131 Padova Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological SciencesUniversità di Padova Via F. Marzolo, 5 35131 Padova Italy
| |
Collapse
|
28
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
29
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
30
|
Sterea AM, El Hiani Y. The Role of Mitochondrial Calcium Signaling in the Pathophysiology of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:747-770. [PMID: 31646533 DOI: 10.1007/978-3-030-12457-1_30] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pioneering work of Richard Altman on the presence of mitochondria in cells set in motion a field of research dedicated to uncovering the secrets of the mitochondria. Despite limitations in studying the structure and function of the mitochondria, advances in our understanding of this organelle prompted the development of potential treatments for various diseases, from neurodegenerative conditions to muscular dystrophy and cancer. As the powerhouses of the cell, the mitochondria represent the essence of cellular life and as such, a selective advantage for cancer cells. Much of the function of the mitochondria relies on Ca2+ homeostasis and the presence of effective Ca2+ signaling to maintain the balance between mitochondrial function and dysfunction and subsequently, cell survival. Ca2+ regulates the mitochondrial respiration rate which in turn increases ATP synthesis, but too much Ca2+ can also trigger the mitochondrial apoptosis pathway; however, cancer cells have evolved mechanisms to modulate mitochondrial Ca2+ influx and efflux in order to sustain their metabolic demand and ensure their survival. Therefore, targeting the mitochondrial Ca2+ signaling involved in the bioenergetic and apoptotic pathways could serve as potential approaches to treat cancer patients. This chapter will review the role of Ca2+ signaling in mediating the function of the mitochondria and its involvement in health and disease with special focus on the pathophysiology of cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
32
|
Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
34
|
Chine VB, Au NPB, Ma CHE. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol Dis 2019; 130:104492. [DOI: 10.1016/j.nbd.2019.104492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 01/24/2023] Open
|
35
|
Molecular Mechanisms of Antitumor Activity of PAMAM Dendrimer Conjugates with Anticancer Drugs and a Monoclonal Antibody. Polymers (Basel) 2019; 11:polym11091422. [PMID: 31470686 PMCID: PMC6780640 DOI: 10.3390/polym11091422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Taxanes are considered fundamental drugs in the treatment of breast cancer, but despite the similarities, docetaxel (doc) and paclitaxel (ptx) work differently. For this reason, it is interesting to identify mechanisms of antitumor activity of PAMAM dendrimer conjugates that carry docetaxel or paclitaxel and monoclonal antibody trastuzumab, specifically targeted to cells which overexpressed HER-2. For this purpose, the impact on the level of reactive oxygen species, the mitochondrial membrane potential, cell cycle distribution and the activity of caspases-3/7, -8 and -9 of PAMAM-doc-trastuzumab and PAMAM-ptx-trastuzumab conjugates was determined and compared with free docetaxel and paclitaxel toward HER-2-positive (SKBR-3) and negative (MCF-7) human breast cancer cell lines. Moreover, apoptosis and necrosis were studied using flow cytometry and confocal microscopy, respectively. Our studies show the complexity of the potential mechanism of cytotoxic action of PAMAM-drug-trastuzumab conjugates that should be sought as a resultant of oxidative stress, mitochondrial activation of the caspase cascade and the HER-2 receptor blockade.
Collapse
|
36
|
Jyoti S, Tandon S. Disruption of mitochondrial membrane potential coupled with alterations in cardiac biomarker expression as early cardiotoxic signatures in human ES cell-derived cardiac cells. Hum Exp Toxicol 2019; 38:1111-1124. [PMID: 31179749 DOI: 10.1177/0960327119855132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiotoxicity is one of the most significant reasons of attrition in drug development. The present study assessed the sensitivity of various endpoints for early monitoring of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiac cells, including precursors as well as mature cardiomyocytes, by correlating changes in cardiac biomarker expression. Directed differentiation was induced and cardiac progenitor cell (CPC) population were treated with cardiotoxic drugs, namely, doxorubicin (Dox) and paclitaxel (Pac), and with noncardiotoxic drug, namely penicillin G. To assess cardiac-specific toxicity, the changes in the expression of key markers of cardiac lineage, such as Nkx2.5, Tbx5, α-myosin heavy chain α-MHC, and cardiac troponin T, were studied using quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry (FC). The half-maximal inhibition in the expression of these cardiac markers was analyzed from the dose-response curves. We also assessed the half-maximal inhibition (IC50) in cardiac cells using propidium iodide dye (IC50 PI) and by measuring disruption in the mitochondrial membrane potential (IC50 MMP). We observed that the most sensitive marker was α-MHC in the case of both Dox and Pac, and the order of sensitivity of the various prediction assays was MMP > protein expression by FC > gene expression by qRT-PCR > cell viability by PI staining. The results could enrich the screening of drug-induced cardiotoxicity in vitro and propose disruption in MMP along with downregulation of α-MHC protein as a potential biomarker of predicting cardiotoxicity earlier during drug safety evaluation.
Collapse
Affiliation(s)
- Saras Jyoti
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
37
|
N B, Chandrashekar KR, Prabhu A, Rekha PD. Tetrandrine isolated from Cyclea peltata induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell Dev Biol Anim 2019; 55:331-340. [PMID: 30945115 DOI: 10.1007/s11626-019-00332-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/03/2019] [Indexed: 01/27/2023]
Abstract
Tetrandrine is a bisbenzylisoquinoline alkaloid known to exhibit anticancer activity against different cancers. In the present study, the cytotoxic effect of tetrandrine isolated from Cyclea peltata on pancreatic (PANC-1) and breast (MDA-MB-231) cancer cells was evaluated in vitro with an attempt to understand the role of tetrandrine on the generation of reactive oxygen species (ROS) and caspase activation. Results demonstrate the dose- and time-dependant cytotoxic effect of tetradrine on both MDA-MB-231 and PANC-1 cells with IC50 values ranging between 51 and 54 μM and 22 and 27 μM for 24 h and 48 h of incubation respectively. In addition, treatment of MDA-MB-231 and PANC-1 cells with tetrandrine showed the shrunken cytoplasm and damaged cell membrane in a dose- and time-dependant manner under the microscope. Also, tetrandrine treatment revealed an elevated levels of reactive oxygen species and increased activities of caspase-8, -9 and -3 confirming the apoptosis of cells through both extrinsic death receptor and intrinsic caspase activation. Therefore, the present study suggests the apoptosis of cells with the activation of caspase pathways mainly intrinsic pathway as a downstream event of tetrandrine-induced ROS generation. Hence, reactive oxygen species-mediated caspase activation pathway may be potentially targeted with the use of tetrandrine to treat breast and pancreatic cancers.
Collapse
Affiliation(s)
- Bhagya N
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore, Karnataka, 574199, India
| | - K R Chandrashekar
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore, Karnataka, 574199, India.
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
38
|
Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-α upregulation. Biochem Pharmacol 2019; 162:154-168. [DOI: 10.1016/j.bcp.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
|
39
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|
40
|
Wu P, Chen Y. Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. Hum Cell 2019; 32:251-259. [PMID: 30701373 DOI: 10.1007/s13577-019-00238-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common and debilitating side effect of cancer treatment. Evodiamine, a major effective compound isolated from Evodia rutaecarpa, has been associated with anti-inflammatory and anti-nociceptive effects, an important therapeutic strategy for the treatment of neuropathic pain. However, the effects of evodiamine on CINP remain unknown. Thus, this study aims to investigate the pharmacological potential of evodiamine in attenuating paclitaxel-induced peripheral neuropathy. The results showed that evodiamine enhanced but not reduced the sensitivity of cancer cells to paclitaxel treatment. In a rat model of paclitaxel-induced peripheral neuropathy, evodiamine significantly ameliorated the development of mechanical and thermal hypersensitivity. Moreover, paclitaxel-induced the loss of intraepidermal nerve fibers was markedly inhibited by evodiamine administration. This inhibitory effect was accompanied with the decrease in inflammatory and chemoattractant cytokines level in dorsal root ganglia (DRG), such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1. In addition, evodiamine administration limited paclitaxel-induced elevation of oxidative stress in DRG tissues. The mitochondrial dysfunction evoked by paclitaxel was also remarkably improved in evodiamine-treated rats, evidenced by restoration of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), uncoupling protein 2 (UCP2), and superoxide dismutase 2 (SOD2) expression. In in vitro studies, we found that evodiamine prevented paclitaxel-induced the loss of mitochondrial membrane potential and PGC-1α, UCP2 and SOD2 expression in DRG cells. In conclusion, our study demonstrates that evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammatory response and maintaining mitochondrial anti-oxidant functions, indicating that evodiamine may be a promising therapeutic agent for CINP treatment.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, NO. 29 Xinglong Road, Changzhou, 213000, Jiangsu, China
| | - Yong Chen
- Department of Anesthesiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, NO. 29 Xinglong Road, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
41
|
Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 2018; 21:190-202. [PMID: 30598531 DOI: 10.1038/s41556-018-0256-3] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/20/2018] [Indexed: 11/08/2022]
Abstract
Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the pro-metastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy.
Collapse
|
42
|
McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth 2018; 117:659-666. [PMID: 27799181 DOI: 10.1093/bja/aew309] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Neuropathic pain is a common side-effect of chemotherapy. Although precise mechanisms are unclear, oxidative stress and mitochondrial damage are involved. We investigated whether the mitochondria targeted antioxidant, MitoVitE, provided better protection against paclitaxel-induced mitochondrial damage in rat dorsal root ganglion (DRG) cells, than a non-targeted form of vitamin E, Trolox. We also determined whether MitoVitE, compared with duloxetine, could limit paclitaxel-induced mechanical hypersensitivity in rats. METHODS Mitochondrial function was measured in DRG cells exposed to paclitaxel with and without MitoVitE or Trolox. The effect of MitoVitE or Trolox on paclitaxel-induced cell killing in cancer cell lines was also determined. Rats received a cumulative dose of 8 mg kg-1 paclitaxel plus either MitoVitE (2 mg-1 kg day-1), duloxetine (10 mg kg-1 day-1) or vehicle control daily. Mechanical hind paw withdrawal thresholds were measured every two days. RESULTS Paclitaxel caused loss of membrane potential in DRG cells. At 100 µM paclitaxel median [range] change was 61[44-78]%, P < 0.0001, which was ameliorated by MitoVitE (86[62-104]%) but not Trolox (46[46-57]%). Similarly, loss of metabolic activity and glutathione induced by paclitaxel (both P < 0.0001) were reduced by MitoVitE but not Trolox. Cytotoxicity of paclitaxel was not affected by co-exposure of ovarian cancer cells to either MitoVitE or Trolox, but was slightly reduced against breast cancer cells, in the presence of Trolox. Mean (SD) areas under the curve of withdrawal thresholds at 6 h after injection in rats given paclitaxel + control, or + MitoVitE (P < 0.0001) or + duloxetine (P < 0.0001) were 110 (5), 145 (10) and 156 (13) respectively. CONCLUSIONS Paclitaxel affected mitochondrial function and glutathione in DRG cells, which was abrogated by MitoVitE but not Trolox, without decreasing cancer cell cytotoxicity. In rats, paclitaxel-induced mechanical hypersensitivity was ameliorated by MitoVitE treatment to an extent similar to duloxetine. These data confirm mitochondria as a mechanistic target for paclitaxel-induced damage and suggest mitochondria targeted antioxidants as future therapeutic strategies.
Collapse
Affiliation(s)
- B McCormick
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK.,Centre for Integrative Physiology University of Edinburgh
| | - D A Lowes
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK
| | - L Colvin
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Edinburgh UK
| | - C Torsney
- Centre for Integrative Physiology University of Edinburgh
| | - H F Galley
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition University of Aberdeen, Aberdeen UK
| |
Collapse
|
43
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
44
|
Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124:2289-2298. [PMID: 29461625 DOI: 10.1002/cncr.31248] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of many chemotherapeutic agents, affecting >60% of patients with cancer. Moreover, CIPN persists long into survivorship in approximately 20% to 30% of these patients. To the authors' knowledge, no drugs have been approved to date by the US Food and Drug Administration to effectively manage chemotherapy-induced neuropathic pain. The majority of the drugs tested for the management of CIPN aim at symptom relief, including pain and paresthesia, yet are not very efficacious. The authors propose that there is a need to acquire a more thorough understanding of the etiology of CIPN so that effective, mechanism-based, disease-modifying interventions can be developed. It is important to note that such interventions should not interfere with the antitumor effects of chemotherapy. Mitochondria are rod-shaped cellular organelles that represent the powerhouses of the cell, in that they convert oxygen and nutrients into the cellular energy "currency" adenosine triphosphate. In addition, mitochondria regulate cell death. Neuronal mitochondrial dysfunction and the associated nitro-oxidative stress represent crucial final common pathways of CIPN. Herein, the authors discuss the potential to prevent or reverse CIPN by protecting mitochondria and/or inhibiting nitro-oxidative stress with novel potential drugs, including the mitochondrial protectant pifithrin-μ, histone deacetylase 6 inhibitors, metformin, antioxidants, peroxynitrite decomposition catalysts, and anti-inflammatory mediators including interleukin 10. This review hopefully will contribute toward bridging the gap between preclinical research and the development of realistic novel therapeutic strategies to prevent or reverse the devastating neurotoxic effects of chemotherapy on the (peripheral) nervous system. Cancer 2018;124:2289-98. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jiacheng Ma
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Dolai S, Liang T, Orabi AI, Xie L, Holmyard D, Javed TA, Fernandez NA, Xie H, Cattral MS, Thurmond DC, Thorn P, Gaisano HY. Depletion of the membrane-fusion regulator Munc18c attenuates caerulein hyperstimulation-induced pancreatitis. J Biol Chem 2017; 293:2510-2522. [PMID: 29284677 DOI: 10.1074/jbc.ra117.000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.
Collapse
Affiliation(s)
- Subhankar Dolai
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Liang
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abrahim I Orabi
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Li Xie
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2N2, Canada
| | - Debbie C Thurmond
- Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Peter Thorn
- School of Biomedical Sciences,University of Sydney, Sydney, New South Wales 2050, Australia
| | - Herbert Y Gaisano
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
46
|
Zhou W, Yu H, Zhang LJ, Wu B, Wang CX, Wang Q, Deng K, Zhuo RX, Huang SW. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. NANOSCALE 2017; 9:17044-17053. [PMID: 29083424 DOI: 10.1039/c7nr06130g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of mitochondrial delivery of an anticancer drug to cancer cells has been recognized to improve therapeutic efficacy. The introduction of lipophilic cations, such as triphenylphosphonium (TPP), onto the surface of nanocarriers was utilized to target mitochondria via strong electrostatic interactions between positively charged TPP and the negatively charged mitochondrial membrane. However, the highly positive charge nature of TPP leads to rapid clearance from the blood, decrease of circulation lifetime, and nonspecific targeting of mitochondria of cells. Here, we report a strategy for improving the anticancer efficacy of paclitaxel via redox triggered intracellular activation of mitochondria-targeting. The lipid-polymer hybrid nanoparticles (LPNPs) are composed of poly(d,l-lactide-co-glycolide) (PLGA), a TPP-containing amphiphilic polymer (C18-PEG2000-TPP) and a reduction-responsive amphiphilic polymer (DLPE-S-S-mPEG4000). The charges of TPP in LPNPs were almost completely shielded by surface coating of a PEG4000 layer, ensuring high tumor accumulation. After uptake by cancer cells, the surface charges of LPNPs were recovered due to the detachment of PEG4000 under intracellular reductive conditions, resulting in rapid and precise localization in mitochondria. This kind of simple, easy and practicable mitochondria-targeting nanoplatform showed high anticancer activity, and the activatable strategy is valuable for developing a variety of nanocarriers for application in the delivery of other drugs.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res 2017; 63:e12444. [PMID: 28833461 PMCID: PMC5656911 DOI: 10.1111/jpi.12444] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 12/29/2022]
Abstract
Chemotherapy-induced neuropathic pain is a debilitating and common side effect of cancer treatment. Mitochondrial dysfunction associated with oxidative stress in peripheral nerves has been implicated in the underlying mechanism. We investigated the potential of melatonin, a potent antioxidant that preferentially acts within mitochondria, to reduce mitochondrial damage and neuropathic pain resulting from the chemotherapeutic drug paclitaxel. In vitro, paclitaxel caused a 50% reduction in mitochondrial membrane potential and metabolic rate, independent of concentration (20-100 μmol/L). Mitochondrial volume was increased dose-dependently by paclitaxel (200% increase at 100 μmol/L). These effects were prevented by co-treatment with 1 μmol/L melatonin. Paclitaxel cytotoxicity against cancer cells was not affected by co-exposure to 1 μmol/L melatonin of either the breast cancer cell line MCF-7 or the ovarian carcinoma cell line A2780. In a rat model of paclitaxel-induced painful peripheral neuropathy, pretreatment with oral melatonin (5/10/50 mg/kg), given as a daily bolus dose, was protective, dose-dependently limiting development of mechanical hypersensitivity (19/43/47% difference from paclitaxel control, respectively). Melatonin (10 mg/kg/day) was similarly effective when administered continuously in drinking water (39% difference). Melatonin also reduced paclitaxel-induced elevated 8-isoprostane F2 α levels in peripheral nerves (by 22% in sciatic; 41% in saphenous) and limited paclitaxel-induced reduction in C-fibre activity-dependent slowing (by 64%). Notably, melatonin limited the development of mechanical hypersensitivity in both male and female animals (by 50/41%, respectively), and an additive effect was found when melatonin was given with the current treatment, duloxetine (75/62% difference, respectively). Melatonin is therefore a potential treatment to limit the development of painful neuropathy resulting from chemotherapy treatment.
Collapse
Affiliation(s)
- Helen F. Galley
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Barry McCormick
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Kirsten L. Wilson
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Damon A. Lowes
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Lesley Colvin
- Department of Anaesthesia, Critical Care and Pain MedicineUniversity of EdinburghEdinburghUK
| | - Carole Torsney
- Centre for Integrative PhysiologyEdinburgh Medical School: Biomedical SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
48
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|
49
|
Huehnchen P, Boehmerle W, Springer A, Freyer D, Endres M. A novel preventive therapy for paclitaxel-induced cognitive deficits: preclinical evidence from C57BL/6 mice. Transl Psychiatry 2017; 7:e1185. [PMID: 28763058 PMCID: PMC5611721 DOI: 10.1038/tp.2017.149] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced central nervous system (CNS) neurotoxicity presents an unmet medical need. Patients often report a cognitive decline in temporal correlation to chemotherapy, particularly for hippocampus-dependent verbal and visuo-spatial abilities. We treated adult C57Bl/6 mice with 12 × 20 mg kg-1 paclitaxel (PTX), mimicking clinical conditions of dose-dense chemotherapy, followed by a pulse of bromodesoxyuridine (BrdU) to label dividing cells. In this model, mice developed visuo-spatial memory impairments, and we measured peak PTX concentrations in the hippocampus of 230 nm l-1, which was sevenfold higher compared with the neocortex. Histologic analysis revealed a reduced hippocampal cell proliferation. In vitro, we observed severe toxicity in slowly proliferating neural stem cells (NSC) as well as human neuronal progenitor cells after 2 h exposure to low nanomolar concentrations of PTX. In comparison, mature post-mitotic hippocampal neurons and cell lines of malignant cells were less vulnerable. In PTX-treated NSC, we observed an increase of intracellular calcium levels, as well as an increased activity of calpain- and caspase 3/7, suggesting a calcium-dependent mechanism. This cell death pathway could be specifically inhibited with lithium, but not glycogen synthase kinase 3 inhibitors, which protected NSC in vitro. In vivo, preemptive treatment of mice with lithium prevented PTX-induced memory deficits and abnormal adult hippocampal neurogenesis. In summary, we identified a molecular pathomechanism, which invokes PTX-induced cytotoxicity in NSC independent of cell cycle status. This pathway could be pharmacologically inhibited with lithium without impairing paclitaxel's tubulin-dependent cytostatic mode of action, enabling a potential translational clinical approach.
Collapse
Affiliation(s)
- P Huehnchen
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany,Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - W Boehmerle
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany,Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,Klinik und Hochschulambulanz für Neurologie, Charité Universitätsmedizin Berlin, Chariteplatz 1, Berlin 10117, Germany. E-mail:
| | - A Springer
- Großgerätezentrum BioSupraMol, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - D Freyer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany,Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany
| | - M Endres
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany,Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany,German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
50
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|