1
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
2
|
Shetty SV, Mazzucco MR, Winokur P, Haigh SV, Rumah KR, Fischetti VA, Vartanian T, Linden JR. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins (Basel) 2023; 15:423. [PMID: 37505692 PMCID: PMC10467094 DOI: 10.3390/toxins15070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.
Collapse
Affiliation(s)
- Samantha V. Shetty
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Michael R. Mazzucco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Paige Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-Endocrinology Rockefeller University, New York, NY 10065, USA
| | - Sylvia V. Haigh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Kareem Rashid Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Jennifer R. Linden
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| |
Collapse
|
3
|
Zhang L, Tan W, Yang H, Zhang S, Dai Y. Detection of Host Cell Gene/HPV DNA Methylation Markers: A Promising Triage Approach for Cervical Cancer. Front Oncol 2022; 12:831949. [PMID: 35402283 PMCID: PMC8990922 DOI: 10.3389/fonc.2022.831949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer is the most prevalent gynecologic malignancy, especially in women of low- and middle-income countries (LMICs). With a better understanding of the etiology and pathogenesis of cervical cancer, it has been well accepted that this type of cancer can be prevented and treated via early screening. Due to its higher sensitivity than cytology to identify precursor lesions of cervical cancer, detection of high-risk human papillomavirus (HR-HPV) DNA has been implemented as the primary screening approach. However, a high referral rate for colposcopy after HR-HPV DNA detection due to its low specificity in HR-HPV screening often leads to overtreatment and thus increases the healthcare burden. Emerging evidence has demonstrated that detection of host cell gene and/or HPV DNA methylation represents a promising approach for the early triage of cervical cancer in HR-HPV-positive women owing to its convenience and comparable performance to cytology, particularly in LMICs with limited healthcare resources. While numerous potential markers involving DNA methylation of host cell genes and the HPV genome have been identified thus far, it is crucial to define which genes or panels involving host and/or HPV are feasible and appropriate for large-scale screening and triage. An ideal approach for screening and triage of CIN/ICC requires high sensitivity and adequate specificity and is suitable for self-sampling and inexpensive to allow population-based screening, particularly in LMICs. In this review, we summarize the markers of host cell gene/HR-HPV DNA methylation and discuss their triage performance and feasibility for high-grade precancerous cervical intraepithelial neoplasia or worse (CIN2+ and CIN3+) in HR-HPV-positive women.
Collapse
Affiliation(s)
- Lingyi Zhang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Rubio-Ramos A, Labat-de-Hoz L, Correas I, Alonso MA. The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells 2021; 10:1065. [PMID: 33946345 PMCID: PMC8145151 DOI: 10.3390/cells10051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. The MAL protein has two unusual biochemical features. First, it has lipid-like properties that qualify it as a member of the group of proteolipid proteins. Second, it partitions selectively into detergent-insoluble membranes, which are known to be enriched in condensed cell membranes, consistent with MAL being distributed in highly ordered membranes in the cell. Since its original description more than thirty years ago, a large body of evidence has accumulated supporting a role of MAL in specialized membranes in all the cell types in which it is expressed. Here, we review the structure, expression and biochemical characteristics of MAL, and discuss the association of MAL with raft membranes and the function of MAL in polarized epithelial cells, T lymphocytes, and myelin-forming cells. The evidence that MAL is a putative receptor of the epsilon toxin of Clostridium perfringens, the expression of MAL in lymphomas, the hypermethylation of the MAL gene and subsequent loss of MAL expression in carcinomas are also presented. We propose a model of MAL as the organizer of specialized condensed membranes to make them functional, discuss the role of MAL as a tumor suppressor in carcinomas, consider its potential use as a cancer biomarker, and summarize the directions for future research.
Collapse
Affiliation(s)
- Armando Rubio-Ramos
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Leticia Labat-de-Hoz
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| | - Isabel Correas
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel A. Alonso
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.R.-R.); (L.L.-d.-H.); (I.C.)
| |
Collapse
|
6
|
Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020; 12:E623. [PMID: 32521696 PMCID: PMC7354624 DOI: 10.3390/v12060623] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks-to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Occludin protects secretory cells from ER stress by facilitating SNARE-dependent apical protein exocytosis. Proc Natl Acad Sci U S A 2020; 117:4758-4769. [PMID: 32051248 DOI: 10.1073/pnas.1909731117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tight junctions (TJs) are fundamental features of both epithelium and endothelium and are indispensable for vertebrate organ formation and homeostasis. However, mice lacking Occludin (Ocln) develop relatively normally to term. Here we show that Ocln is essential for mammary gland physiology, as mutant mice fail to produce milk. Surprisingly, Ocln null mammary glands showed intact TJ function and normal epithelial morphogenesis, cell differentiation, and tissue polarity, suggesting that Ocln is not required for these processes. Using single-cell transcriptomics, we identified milk-producing cells (MPCs) and found they were progressively more prone to endoplasmic reticulum (ER) stress as protein production increased exponentially during late pregnancy and lactation. Importantly, Ocln loss in MPCs resulted in greatly heightened ER stress; this in turn led to increased apoptosis and acute shutdown of protein expression, ultimately leading to lactation failure in the mutant mice. We show that the increased ER stress was caused by a secretory failure of milk proteins in Ocln null cells. Consistent with an essential role in protein secretion, Occludin was seen to reside on secretory vesicles and to be bound to SNARE proteins. Taken together, our results demonstrate that Ocln protects MPCs from ER stress by facilitating SNARE-dependent protein secretion and raise the possibility that other TJ components may participate in functions similar to Ocln.
Collapse
|
8
|
Herpes Simplex Virus 1 Spread in Oligodendrocytic Cells Is Highly Dependent on MAL Proteolipid. J Virol 2020; 94:JVI.01739-19. [PMID: 31748392 PMCID: PMC6997773 DOI: 10.1128/jvi.01739-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1. Myelin and lymphocyte protein (MAL) is a tetraspan integral membrane protein that resides in detergent-insoluble membrane fractions enriched in condensed membranes. MAL is expressed in oligodendrocytes, in Schwann cells, where it is essential for the stability of myelin, and at the apical membrane of epithelial cells, where it has a critical role in transport. In T lymphocytes, MAL is found at the immunological synapse and plays a crucial role in exosome secretion. However, no involvement of MAL in viral infections has been reported so far. Here, we show that herpes simplex virus 1 (HSV-1) virions travel in association with MAL-positive structures to reach the end of cellular processes, which contact uninfected oligodendrocytes. Importantly, the depletion of MAL led to a significant decrease in infection, with a drastic reduction in the number of lytic plaques in MAL-silenced cells. These results suggest a significant role for MAL in viral spread at cell contacts. The participation of MAL in the cell-to-cell spread of HSV-1 may shed light on the involvement of proteolipids in this process. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1.
Collapse
|
9
|
Linden JR, Flores C, Schmidt EF, Uzal FA, Michel AO, Valenzuela M, Dobrow S, Vartanian T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog 2019; 15:e1008014. [PMID: 31703116 PMCID: PMC6867657 DOI: 10.1371/journal.ppat.1008014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/20/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma. Clostridium perfringens epsilon toxin (ETX) is an extremely lethal bacterial toxin known to cause a devastating disease in livestock animals and may be a possible cause of multiple sclerosis in humans. ETX is well known to cause disruption of the blood-brain barrier (BBB), a critical structure necessary for proper brain function. Deterioration of this barrier allows entry of toxic blood-borne material to enter the brain. Although ETX-induced BBB dysfunction is well accepted, how this happens is unknown. Here, we demonstrate that ETX causes BBB permeability by inducing formation of cell-surface invaginations called caveolae in endothelial cells, the cells that line blood vessels. Importantly, only endothelial cells from the brain and other central nervous system organs appear to be a target of ETX, as the toxin only binds to blood vessels in these organs and not blood vessels from other organs. These ETX-induced caveolae fuse with other caveolae and specialized intracellular vesicles called endosomes. We predict that these endosomes engulf blood-borne material during their internalization, allowing material to travel from the blood, through the cell, and into brain tissue. We also show that expression of the protein MAL and caveolin-1 is necessary for ETX-induced BBB permeability.
Collapse
Affiliation(s)
- Jennifer R. Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Claudia Flores
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, San Bernardino, California, United States of America
| | - Adam O. Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - Marissa Valenzuela
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sebastian Dobrow
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Vartanian
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lara-Lemus R. On The Role of Myelin and Lymphocyte Protein (MAL) In Cancer: A Puzzle With Two Faces. J Cancer 2019; 10:2312-2318. [PMID: 31258734 PMCID: PMC6584422 DOI: 10.7150/jca.30376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Myelin and lymphocyte protein (MAL) is an integral membrane protein constituent of lipid rafts, and it is implicated in apical transport of proteins in polarized epithelial cells. However, beyond the involvement of MAL in apical sorting and as its function as a raft stabilizer, it is still not totally clear how MAL participates in cell proliferating processes. More controversial and interesting is the fact that MAL has been implicated in carcinogenesis in two opposite ways. First, this protein is overexpressed in ovarian cancer and some kinds of lymphomas where it seems to favor cancer progression. Conversely, it has been reported that downregulation of the MAL gene by promoter hypermethylation is a hallmark of several adenocarcinomas. So far, there is not enough experimental evidence to help us understand this phenomenon, and no MAL mutations or MAL isoforms have been associated with these opposite functions. This review provides an updated summary of the structure and functions of MAL, and we will discuss the possible mechanisms underlying its roles as a tumor suppressor and a tumor progression factor.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Department of Research in Biochemistry, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, 14080. Mexico
| |
Collapse
|
11
|
Meršaková S, Holubeková V, Grendár M, Višňovský J, Ňachajová M, Kalman M, Kúdela E, Žúbor P, Bielik T, Lasabová Z, Danko J. Methylation of CADM1 and MAL together with HPV status in cytological cervical specimens serves an important role in the progression of cervical intraepithelial neoplasia. Oncol Lett 2018; 16:7166-7174. [PMID: 30546453 PMCID: PMC6256340 DOI: 10.3892/ol.2018.9505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer (CC) is the second most common type of cancer affecting the female population. The development of CC takes several years, and involves a precancerous stage known as cervical intraepithelial neoplasia (CIN). A key factor in the development of disease is the human papillomavirus (HPV) infection, which initiates carcinogenesis. Furthermore, CC is also impacted by epigenetic changes such as DNA methylation, which causes activation or exclusion of certain genes, and the hypermethylation of cytosines in promoters, thereby switching off previously active genes. The majority of DNA methylation events occur at cytosine-guanine nucleotides, which in the human genome are known as CpG islands. The aim of the present study was to investigate the methylation levels in intronic sequences of the two tumor suppressor genes cell adhesion molecule 1 (CADM1) and T-lymphocyte maturation associated protein (MAL) using cytological samples and to identify potential biomarkers involved in CIN by pyrosequencing. DNA was isolated from cervical smears from patients with CINs, with healthy patients serving as a control group. Samples were converted by treatment with sodium bisulfite and subsequent pyrosequencing to detect the methylation status of the selected genes. The presence of HPV DNA infection analyzed by the polymerase chain reaction, was detected in each sample. Of the total number of samples (n=91), the present study confirmed the presence of one or two high-risk subtypes of HPV in 39 cases (42.85%) and HPV infection was significantly associated with CIN2+ lesions. For the two genes (MAL and CADM1) the present study confirmed that the median methylation was significantly higher in HPV positive patients [P=0.0097, 95% confidence interval (CI): (−0.030, −0.003)/P=0.0024, 95% CI: (−0.06, −0.01)] when compared with patients negative for HPV DNA infection, and the average methylation was demonstrated to be increased with the degree of cervical lesion. The present study used logistical regression to model the dependence between the case/control statuses (control group vs. Dg. 1–4). The area under the curve values for MAL were: 84% for cervical inflammation, 71% for CIN1, 73.4% for CIN2+ and 77% for squamous cell carcinoma (SCC); and for CADM1 were: 88.6% for cervical inflammation, 68% for CIN1, 80% for CIN2+ and 89% for SCC. The present study confirmed that there were statistically significant differences between the methylation levels of individual CpGs and significantly higher median methylation in patients positive for HPV16/18. CADM1 exhibited higher levels of methylation in almost every study group when compared with MAL during the transition of CIN and appeared to be a promising biomarker for future study.
Collapse
Affiliation(s)
- Sandra Meršaková
- Division of Oncology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, SK-03601 Martin, Slovakia
| | - Veronika Holubeková
- Division of Oncology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, SK-03601 Martin, Slovakia
| | - Marián Grendár
- Bioinformatic Unit, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, SK-03601 Martin, Slovakia
| | - Jozef Višňovský
- Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Marcela Ňachajová
- Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Erik Kúdela
- Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Pavol Žúbor
- Division of Oncology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, SK-03601 Martin, Slovakia.,Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Tibor Bielik
- Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Zora Lasabová
- Division of Oncology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, SK-03601 Martin, Slovakia.,Department of Molecular Biology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| | - Ján Danko
- Department of Obstetrics and Gynecology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, SK-03601 Martin, Slovakia
| |
Collapse
|
12
|
Dorca-Arévalo J, Blanch M, Pradas M, Blasi J. Epsilon toxin from Clostridium perfringens induces cytotoxicity in FRT thyroid epithelial cells. Anaerobe 2018; 53:43-49. [PMID: 29895394 DOI: 10.1016/j.anaerobe.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
Abstract
Epsilon toxin (Etx) is produced by Clostridium perfringens and induces enterotoxemia in ruminants. Etx crosses the blood-brain barrier, binds to myelin structures, and kills oligodendrocytes, inducing central nervous system demyelination. In addition, Etx has a cytotoxic effect on distal and collecting kidney tubules. There are few cell lines sensitive to Etx. At present, the most sensitive in vitro model for Etx is the Madin-Darby canine kidney (MDCK) cell line, where Etx oligomerizes and forms a pore with consequent ion efflux and cell death. Although the Etx receptor has not yet been fully clarified, it is known that caveolin 1 and 2 potentiate Etx cytotoxicity and oligomerization, and more recently, the myelin and lymphocyte (MAL) protein has been implicated in Etx binding and activity. Here, we studied the effect of Etx on Fischer rat thyroid cells (FRT) and observed similar effects as those seen in MDCK cells. Etx incubated with FRT cells showed binding to the plasma membrane, and western blotting assays revealed oligomeric complex formation. Moreover, cytotoxic assays on FRT cells after Etx incubation indicated cell death at a similar level as in MDCK cells. In addition, a luminescent ATP detection assay revealed ATP depletion in FRT cells after Etx exposure. Previous studies have reported that FRT cells do not express caveolins and do not form caveolae but express MAL protein in glycolipid-enriched membrane microdomains. Our results indicate that caveolins are not directly implicated in Etx cytotoxicity, supporting the notion that the MAL protein is involved in Etx action. In addition, a cell line of thyroid origin is described for the first time as a good model to study Etx action.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain
| | - Marta Blanch
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain
| | - Marina Pradas
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, 08907, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, 08907, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona 08035, Spain.
| |
Collapse
|
13
|
Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2862187. [PMID: 29854739 PMCID: PMC5964496 DOI: 10.1155/2018/2862187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023]
Abstract
Exosomes are nanosized vesicles and have recently been recognized as important players in cell-to-cell communication. Exosomes contain different mediators such as proteins, nucleic acids (DNA, mRNA, miRNAs, and other ncRNAs), and lipid mediators and can shuttle their exosomal content to both neighboring and distal cells. Exosomes are very effective in orchestrating immune responses in the airways and all cell types can contribute to the systemic exosome pool. Intracellular communication between the broad range of cell types within the lung is crucial in disease emphasizing the importance of exosomes. In asthma, exosomes affect the inflammatory microenvironment which ultimately determines the development or alleviation of the pathological symptoms. Recent studies in this area have provided insight into the underlying mechanisms of disease and led to interest in using exosomes as potential novel therapeutic agents.
Collapse
|
14
|
Yamamoto H, Sato A, Kikuchi A. Apical secretion of Wnt1 in polarized epithelial cells is regulated by exocyst-mediated trafficking. J Biochem 2017; 162:317-326. [DOI: 10.1093/jb/mvx035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
|
15
|
Rumah KR, Ma Y, Linden JR, Oo ML, Anrather J, Schaeren-Wiemers N, Alonso MA, Fischetti VA, McClain MS, Vartanian T. The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens ε-Toxin. PLoS Pathog 2015; 11:e1004896. [PMID: 25993478 PMCID: PMC4439126 DOI: 10.1371/journal.ppat.1004896] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/19/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium perfringens ε-toxin (ETX) is a potent pore-forming toxin responsible for a central nervous system (CNS) disease in ruminant animals with characteristics of blood-brain barrier (BBB) dysfunction and white matter injury. ETX has been proposed as a potential causative agent for Multiple Sclerosis (MS), a human disease that begins with BBB breakdown and injury to myelin forming cells of the CNS. The receptor for ETX is unknown. Here we show that both binding of ETX to mammalian cells and cytotoxicity requires the tetraspan proteolipid Myelin and Lymphocyte protein (MAL). While native Chinese Hamster Ovary (CHO) cells are resistant to ETX, exogenous expression of MAL in CHO cells confers both ETX binding and susceptibility to ETX-mediated cell death. Cells expressing rat MAL are ~100 times more sensitive to ETX than cells expressing similar levels of human MAL. Insertion of the FLAG sequence into the second extracellular loop of MAL abolishes ETX binding and cytotoxicity. ETX is known to bind specifically and with high affinity to intestinal epithelium, renal tubules, brain endothelial cells and myelin. We identify specific binding of ETX to these structures and additionally show binding to retinal microvasculature and the squamous epithelial cells of the sclera in wild-type mice. In contrast, there is a complete absence of ETX binding to tissues from MAL knockout (MAL-/-) mice. Furthermore, MAL-/- mice exhibit complete resistance to ETX at doses in excess of 1000 times the symptomatic dose for wild-type mice. We conclude that MAL is required for both ETX binding and cytotoxicity.
Collapse
Affiliation(s)
- Kareem Rashid Rumah
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York City, New York, United States of America
| | - Yinghua Ma
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Jennifer R. Linden
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Myat Lin Oo
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York City, New York, United States of America
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy Vartanian
- Brain and Mind Research Institute, Weill Cornell Medical College, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
17
|
MAL hypermethylation is a tissue-specific event that correlates with MAL mRNA expression in esophageal carcinoma. Sci Rep 2013; 3:2838. [PMID: 24088706 PMCID: PMC3789153 DOI: 10.1038/srep02838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/16/2013] [Indexed: 01/10/2023] Open
Abstract
MAL promoter hypermethylation was examined in 260 human esophageal specimens using real-time quantitative methylation-specific PCR (qMSP). MAL hypermethylation showed highly discriminative ROC curve profiles which clearly distinguished esophageal adenocarcinomas (EAC) from both esophageal squamous cell carcinomas (ESCC) and normal esophagus (NE). Both MAL methylation frequency and normalized methylation value (NMV) were significantly higher in Barrett's esophagus (BE), dysplastic BE, and EAC than in ESCC or in NE. Among matched NE and EAC samples, MAL NMVs in EAC were significantly higher than in corresponding NE. There was a significant correlation between MAL hypermethylation and BE segment length. Treatment with 5-aza-2′-deoxycytidine reversed MAL methylation and reactivated MAL mRNA expression in OE33 EAC cells. MAL mRNA levels in EACs with unmethylated MAL were significantly higher than in EACs with methylated MAL. MAL hypermethylation is a common, tissue-specific event in human EAC and correlates with clinical neoplastic progression risk factors.
Collapse
|
18
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
19
|
Zhou G, Liang FX, Romih R, Wang Z, Liao Y, Ghiso J, Luque-Garcia JL, Neubert TA, Kreibich G, Alonso MA, Schaeren-Wiemers N, Sun TT. MAL facilitates the incorporation of exocytic uroplakin-delivering vesicles into the apical membrane of urothelial umbrella cells. Mol Biol Cell 2012; 23:1354-66. [PMID: 22323295 PMCID: PMC3315800 DOI: 10.1091/mbc.e11-09-0823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAL, suggested to play a key role in the apical sorting of membrane proteins, is not involved in the apical sorting of uroplakins. Instead, it plays an important role in facilitating the incorporation of the uroplakin-delivering exocytic vesicles into the apical surface of terminally differentiated urothelial umbrella cells. The apical surface of mammalian bladder urothelium is covered by large (500–1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin–Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Cell Biology, NYU Cancer Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cao W, Zhang ZY, Xu Q, Sun Q, Yan M, Zhang J, Zhang P, Han ZG, Chen WT. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma. Mol Cancer 2010; 9:296. [PMID: 21092172 PMCID: PMC3002926 DOI: 10.1186/1476-4598-9-296] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/22/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC), we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL) was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. RESULTS MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004). Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2) located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%), and only one CpG island (that is, M1) was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%). A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose) polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. CONCLUSION Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC.
Collapse
MESH Headings
- Apoptosis/genetics
- Apoptosis/physiology
- Blotting, Western
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma, Squamous Cell
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cell Line, Tumor
- Cell Proliferation
- DNA Methylation/genetics
- Epigenesis, Genetic/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Humans
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Microscopy, Confocal
- Myelin Proteins/genetics
- Myelin Proteins/metabolism
- Myelin and Lymphocyte-Associated Proteolipid Proteins
- Neoplasms, Squamous Cell/genetics
- Neoplasms, Squamous Cell/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Proteolipids/genetics
- Proteolipids/metabolism
- RNA, Messenger/genetics
- Squamous Cell Carcinoma of Head and Neck
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhi-yuan Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qin Xu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ze-guang Han
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Chinese National Human Genome Center at Shanghai, 201203, China
| | - Wan-tao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
21
|
Carmosino M, Rizzo F, Procino G, Basco D, Valenti G, Forbush B, Schaeren-Wiemers N, Caplan MJ, Svelto M. MAL/VIP17, a new player in the regulation of NKCC2 in the kidney. Mol Biol Cell 2010; 21:3985-97. [PMID: 20861303 PMCID: PMC2982131 DOI: 10.1091/mbc.e10-05-0456] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The renal-specific Na+-K+-2Cl- cotransporter (NKCC2) is the major salt transport pathway of the apical membrane of the mammalian thick ascending limb of Henle's loop. Here, we analyze the role of the tetraspan protein myelin and lymphocytes-associated protein (MAL)/VIP17 in the regulation of NKCC2. We demonstrated that 1) NKCC2 and MAL/VIP17 colocalize and coimmunoprecipitate in Lilly Laboratories cell porcine kidney cells (LLC-PK1) as well as in rat kidney medullae, 2) a 150-amino acid stretch of NKCC2 C-terminal tail is involved in the interaction with MAL/VIP17, 3) MAL/VIP17 increases the cell surface retention of NKCC2 by attenuating its internalization, and 4) this coincides with an increase in cotransporter phosphorylation. Interestingly, overexpression of MAL/VIP17 in the kidney of transgenic mice results in cysts formation in distal nephron structures consistent with the hypothesis that MAL/VIP17 plays an important role in apical sorting or in maintaining the stability of the apical membrane. The NKCC2 expressed in these mice was highly glycosylated and phosphorylated, suggesting that MAL/VIP17 also is involved in the stabilization of NKCC2 at the apical membrane in vivo. Thus, the involvement of MAL/VIP17 in the activation and surface expression of NKCC2 could play an important role in the regulated absorption of Na+ and Cl- in the kidney.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Suzuki Y, Kobayashi M, Miyashita H, Ohta H, Sonoda H, Sato Y. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. J Cell Sci 2010; 123:3094-101. [PMID: 20736312 DOI: 10.1242/jcs.067538] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon stimulation with angiogenic factors, vascular endothelial cells (ECs) secrete a negative-feedback regulator of angiogenesis, vasohibin-1 (VASH1). Because VASH1 lacks a classical signal sequence, it is not clear how ECs secrete VASH1. We isolated a small vasohibin-binding protein (SVBP) composed of 66 amino acids. The level of Svbp mRNA was relatively high in the bone marrow, spleen and testes of mice. In cultured ECs, Vash1 mRNA was induced by VEGF, and Svbp mRNA was expressed constitutively. The interaction between VASH1 and SVBP was confirmed using the BIAcore system and immunoprecipitation analysis. Immunocytochemical analysis revealed that SVBP colocalized with VASH1 in ECs. In polarized epithelial cells, SVBP accumulated on the apical side, whereas VASH1 was present throughout the cells and partially colocalized with SVBP. Transfection of SVBP enhanced VASH1 secretion, whereas knockdown of endogenous SVBP markedly reduced VASH1 secretion. SVBP increased the solubility of VASH1 protein in detergent solution and inhibited the ubiquitylation of VASH1 protein. Moreover, co-transfection of SVBP significantly augmented the inhibitory effect of VASH1 on EC migration. These results indicate that SVBP acts as a secretory chaperone for VASH1 and contributes to the anti-angiogenic activity of VASH1.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
23
|
In JG, Tuma PL. MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF-B cells. Traffic 2010; 11:1056-66. [PMID: 20444237 DOI: 10.1111/j.1600-0854.2010.01074.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myelin and lymphocyte protein 2 (MAL2) has been identified as a hepatic transcytotic regulator that mediates delivery from basolateral endosomes to the subapical compartment (SAC). However, overexpression of polymeric immunoglobulin A-receptor (pIgA-R) in polarized, hepatic WIF-B cells led to the dramatic redistribution of MAL2 into the Golgi and all the transcytotic intermediates occupied by the receptor. Although overexpressed hemagglutinin and dipeptidylpeptidase IV (DPPIV) distributed to the same compartments, MAL2 distributions did not change indicating the effect is selective. Cycloheximide treatment led to decreased pIgA-R and MAL2 intracellular staining, first in the Golgi then the SAC, suggesting they were apically delivered and that MAL2 was mediating the process. This was tested in Clone 9 cells (that lack endogenous MAL2). When expressed alone, pIgA-R was restricted to the Golgi whereas when coexpressed with MAL2, it distributed to the surface, was internalized and delivered to MAL2-positive puncta. In contrast, DPPIV distributions were independent of MAL2. Surface delivery of newly synthesized pIgA-R, but not DPPIV, was enhanced greater than ninefold by MAL2 coexpression. In WIF-B cells where MAL2 expression was knocked down, pIgA-R, but not DPPIV, was retained in the Golgi and its basolateral delivery was impaired. Thus, in addition to its role in transcytosis, MAL2 also regulates pIgA-R delivery from the Golgi to the plasma membrane.
Collapse
Affiliation(s)
- Julie G In
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | |
Collapse
|
24
|
Overmeer RM, Henken FE, Bierkens M, Wilting SM, Timmerman I, Meijer CJLM, Snijders PJF, Steenbergen RDM. Repression of MAL tumour suppressor activity by promoter methylation during cervical carcinogenesis. J Pathol 2009; 219:327-36. [DOI: 10.1002/path.2598] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Horne HN, Lee PS, Murphy SK, Alonso MA, Olson JA, Marks JR. Inactivation of the MAL gene in breast cancer is a common event that predicts benefit from adjuvant chemotherapy. Mol Cancer Res 2009; 7:199-209. [PMID: 19208741 DOI: 10.1158/1541-7786.mcr-08-0314] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of MAL (myelin and lymphocyte protein) has been implicated in several malignancies including esophageal, ovarian, and cervical cancers. The MAL protein functions in apical transport in polarized epithelial cells; therefore, its disruption may lead to loss of organized polarity characteristic of most solid malignancies. Bisulfite sequencing of the MAL promoter CpG island revealed hypermethylation in breast cancer cell lines and 69% of primary tumors analyzed compared with normal breast epithelial cells. Differential methylation between normal and cancer DNA was confined to the proximal promoter region. In a subset of breast cancer cell lines including T47D and MCF7 cells, promoter methylation correlated with transcriptional silencing that was reversible with the methylation inhibitor 5-aza-2'-deoxycytidine. In addition, expression of MAL reduced motility and resulted in a redistribution of lipid raft components in MCF10A cells. MAL protein expression measured by immunohistochemistry revealed no significant correlation with clinicopathologic features. However, in patients who did not receive adjuvant chemotherapy, reduced MAL expression was a significant predictive factor for disease-free survival. These data implicate MAL as a commonly altered gene in breast cancer with implications for response to chemotherapy.
Collapse
Affiliation(s)
- Hisani N Horne
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Fanayan S, Shehata M, Agterof AP, McGuckin MA, Alonso MA, Byrne JA. Mucin 1 (MUC1) is a novel partner for MAL2 in breast carcinoma cells. BMC Cell Biol 2009; 10:7. [PMID: 19175940 PMCID: PMC2644682 DOI: 10.1186/1471-2121-10-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/28/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The MAL2 gene, encoding a four-transmembrane protein of the MAL family, is amplified and overexpressed in breast and other cancers, yet the significance of this is unknown. MAL-like proteins have trafficking functions, but their molecular roles are largely obscure, partly due to a lack of known binding partners. METHODS Yeast two-hybrid screening of a breast carcinoma cDNA expression library was performed using a full-length MAL2 bait, and subsequent deletion mapping experiments were performed. MAL2 interactions were confirmed by co-immunoprecipitation analyses and confocal microscopy was employed to compare protein sub-cellular distributions. Sucrose density gradient centrifugation of membranes extracted in cold Triton X-100 was employed to compare protein distributions between Triton X-100-soluble and -insoluble fractions. RESULTS The tumor-associated protein mucin 1 (MUC1) was identified as a potential MAL2 partner, with MAL2/MUC1 interactions being confirmed in myc-tagged MAL2-expressing MCF-10A cells using co-immunoprecipitation assays. Deletion mapping experiments demonstrated a requirement for the first MAL2 transmembrane domain for MUC1 binding, whereas the MAL2 N-terminal domain was required to bind D52-like proteins. Confocal microscopy identified cytoplasmic co-localisation of MUC1 and MAL2 in breast cell lines, and centrifugation of cell lysates to equilibrium in sucrose density gradients demonstrated that MAL2 and MUC1 proteins were co-distributed between Triton X-100-soluble and -insoluble fractions. However co-immunoprecipitation analyses detected MAL2/MUC1 interactions in Triton X-100-soluble fractions only. Myc-MAL2 expression in MCF-10A cells was associated with both increased MUC1 detection within Triton X-100-soluble and -insoluble fractions, and increased MUC1 detection at the cell surface. CONCLUSION These results identify MUC1 as a novel MAL2 partner, and suggest a role for MAL2 in regulating MUC1 expression and/or localisation.
Collapse
Affiliation(s)
- Susan Fanayan
- Molecular Oncology Laboratory, Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, 2145 NSW, Australia
| | - Mona Shehata
- Molecular Oncology Laboratory, Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, 2145 NSW, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
| | - Annelies P Agterof
- Molecular Oncology Laboratory, Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, 2145 NSW, Australia
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Michael A McGuckin
- Epithelial Cancer and Mucosal Biology Laboratory, Mater Medical Research Institute, Mater Health Services, South Brisbane 4101 Qld, Australia
| | - Miguel A Alonso
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049-Madrid, Spain
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, 2145 NSW, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, NSW, Australia
| |
Collapse
|
27
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Antón O, Batista A, Millán J, Andrés-Delgado L, Puertollano R, Correas I, Alonso MA. An essential role for the MAL protein in targeting Lck to the plasma membrane of human T lymphocytes. ACTA ACUST UNITED AC 2008; 205:3201-13. [PMID: 19064697 PMCID: PMC2605221 DOI: 10.1084/jem.20080552] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The MAL protein is an essential component of the specialized machinery for apical targeting in epithelial cells. The src family kinase Lck plays a pivotal role in T cell signaling. We show that MAL is required in T cells for efficient expression of Lck at the plasma membrane and activation of IL-2 transcription. To investigate the mechanism by which MAL regulates Lck targeting, we analyzed the dynamics of Lck and found that it travels to the plasma membrane in specific transport carriers containing MAL. Coimmunoprecipitation experiments indicated an association of MAL with Lck. Both carrier formation and partitioning of Lck into detergent-insoluble membranes were ablated in the absence of MAL. Polarization of T cell receptor for antigen (TCR) and microtubule-organizing center to immunological synapse (IS) were also defective. Although partial correction of the latter defects was possible by forced expression of Lck at the plasma membrane, their complete correction, formation of transport vesicles, partitioning of Lck, and restoration of signaling pathways, which are required for IL-2 transcription up-regulation, were achieved by exogenous expression of MAL. We concluded that MAL is required for recruitment of Lck to specialized membranes and formation of specific transport carriers for Lck targeting. This novel transport pathway is crucial for TCR-mediated signaling and IS assembly.
Collapse
Affiliation(s)
- Olga Antón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Maier O, Hoekstra D, Baron W. Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components. J Mol Neurosci 2008; 35:35-53. [DOI: 10.1007/s12031-007-9024-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 11/13/2007] [Indexed: 12/15/2022]
|
30
|
Fasciotto BH, Kühn U, Cohn DV, Gorr SU. Secretory cargo composition affects polarized secretion in MDCK epithelial cells. Mol Cell Biochem 2007; 310:67-75. [PMID: 18049865 DOI: 10.1007/s11010-007-9666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a "sorting escort" (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as "sorting escorts" to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells.
Collapse
|
31
|
MAL decreases the internalization of the aquaporin-2 water channel. Proc Natl Acad Sci U S A 2007; 104:16696-701. [PMID: 17940053 DOI: 10.1073/pnas.0708023104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Body water homeostasis depends critically on the hormonally regulated trafficking of aquaporin-2 (AQP2) water channels in renal collecting duct epithelial cells. Several types of posttranslational modifications are clearly involved in controlling the distribution of AQP2 between intracellular vesicles and the apical plasma membrane. Little is known, however, about the protein interactions that govern the trafficking of AQP2 between these organelles. MAL is a detergent-resistant membrane-associated protein implicated in apical sorting events. We wondered, therefore, whether MAL plays a role in the regulated trafficking of AQP2 between intracellular vesicles and the apical surface. We find that AQP2 and MAL are coexpressed in epithelial cells of the kidney collecting duct. These two proteins interact, both in the native kidney and when expressed by transfection in cultured cells. The S256-phosphorylated form of AQP2 appears to interact more extensively with MAL than does the water channel protein not phosphorylated at this serine. We find that MAL is not involved in detergent-resistant membrane association or apical delivery of AQP2 in LLC-PK(1) renal epithelial cells. Instead, MAL increases the S256 phosphorylation and apical surface expression of AQP2. Furthermore, internalization experiments show that MAL induces surface expression of AQP2 by attenuating its internalization. Thus, the involvement of MAL in the cell surface retention of apical membrane proteins could play an important role in regulated absorption and secretion in transporting epithelia.
Collapse
|
32
|
Ramnarayanan SP, Cheng CA, Bastaki M, Tuma PL. Exogenous MAL reroutes selected hepatic apical proteins into the direct pathway in WIF-B cells. Mol Biol Cell 2007; 18:2707-15. [PMID: 17494867 PMCID: PMC1924826 DOI: 10.1091/mbc.e07-02-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.
Collapse
Affiliation(s)
| | - Christina A. Cheng
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| | - Maria Bastaki
- Graduate Environmental Studies Unit, The Evergreen State College, Olympia, WA 98505
| | - Pamela L. Tuma
- *Department of Biology, The Catholic University of America, Washington, DC 20064; and
| |
Collapse
|
33
|
Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, lyengar P, Arvan P. Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 2006; 119:1833-42. [PMID: 16608874 PMCID: PMC2547412 DOI: 10.1242/jcs.02905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized secretory granule content proteins are delivered via the Golgi complex for storage within mature granules, whereas constitutive secretory proteins are not stored. Most soluble proteins traveling anterograde through the trans-Golgi network are not excluded from entering immature secretory granules, whether or not they have granule-targeting signals. However, the ;sorting-for-entry' hypothesis suggests that soluble lumenal proteins lacking signals enter transport intermediates for the constitutive secretory pathway. We aimed to investigate how these constitutive secretory proteins are sorted. In a pancreatic beta-cell line, we stably expressed two lumenal proteins whose normal sorting information has been deleted: alkaline phosphatase, truncated to eliminate its glycosylphosphatidylinositol membrane anchor (SEAP); and Cab45361, a Golgi lumenal resident, truncated to eliminate its intracellular retention (Cab308Myc). Both truncated proteins are efficiently secreted, but whereas SEAP enters secretory granules, Cab308Myc behaves as a true constitutive marker excluded from granules. Interestingly, upon permeabilization of organelle membranes with saponin, SEAP is extracted as a soluble protein whereas Cab308Myc remains associated with the membrane. These are among the first data to support a model in which association with the lumenal aspect of Golgi and/or post-Golgi membranes can serve as a means for selective sorting of constitutive secretory proteins.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Mark D. Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London, E1 1BB, UK
| | - Philipp Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gudrun Stenbeck
- Bone and Mineral Centre, University College London, London, WC1E 6JJ, UK
| | - Puneeth lyengar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| |
Collapse
|
34
|
Potter BA, Hughey RP, Weisz OA. Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 2006; 290:C1-C10. [PMID: 16338974 DOI: 10.1152/ajpcell.00333.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The maintenance of proper epithelial function requires efficient sorting of newly synthesized and recycling proteins to the apical and basolateral surfaces of differentiated cells. Whereas basolateral protein sorting signals are generally confined to their cytoplasmic regions, apical targeting signals have been identified that localize to luminal, transmembrane, and cytoplasmic aspects of proteins. In the past few years, both N- and O-linked glycans have been identified as apical sorting determinants. Glycan structures are extraordinarily diverse and have tremendous information potential. Moreover, because the oligosaccharides added to a given protein can change depending on cell type and developmental stage, the potential exists for altering sorting pathways by modulation of the expression pattern of enzymes involved in glycan synthesis. In this review, we discuss the evidence for glycan-mediated apical sorting along the biosynthetic pathway and present possible mechanisms by which these common and heterogeneous posttranslational modifications might function as specific sorting signals.
Collapse
Affiliation(s)
- Beth A Potter
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Univ. of Pittsburgh School of Medicine, 978 Scaife Hall, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
35
|
Fewou SN, Büssow H, Schaeren-Wiemers N, Vanier MT, Macklin WB, Gieselmann V, Eckhardt M. Reversal of non-hydroxy : α-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose : ceramide galactosyltransferase. J Neurochem 2005; 94:469-81. [PMID: 15998297 DOI: 10.1111/j.1471-4159.2005.03221.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/physiology
- Blotting, Northern/methods
- Blotting, Western/methods
- Brain/anatomy & histology
- Brain/metabolism
- Chromatography, Thin Layer/methods
- Fatty Acids/metabolism
- Galactosylceramides/metabolism
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Ganglioside Galactosyltransferase
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization/methods
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Motor Activity/genetics
- Myelin Sheath/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Optic Nerve/ultrastructure
- Psychosine/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rotarod Performance Test/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Simon N Fewou
- Institut für Physiologische Chemie, University of Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Hoekstra D, Tyteca D, van IJzendoorn SCD. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 2005; 117:2183-92. [PMID: 15126620 DOI: 10.1242/jcs.01217] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions.
Collapse
Affiliation(s)
- Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
37
|
Nagata N, Yoshida NL, Sugita Y, Arai T, Seki YI, Kubo M, Tsujimoto G, Akasawa A, Saito H, Oshida T. Mite-antigen Stimulates MAL Expression in Peripheral Blood T Cells of Mite-sensitive Subjects. Allergol Int 2005. [DOI: 10.2332/allergolint.54.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Tall RD, Alonso MA, Roth MG. Features of influenza HA required for apical sorting differ from those required for association with DRMs or MAL. Traffic 2004; 4:838-49. [PMID: 14617347 DOI: 10.1046/j.1398-9219.2003.0138.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influenza virus hemagglutinin (HA) is sorted to the apical membrane in polarized epithelial cells and associates with detergent-resistant membranes (DRMs). By systematic mutagenesis of the transmembrane residues, we show that hemagglutinin requires 10 contiguous transmembrane amino acids to enter detergent-resistant membranes and that the surface of the trimeric hemagglutinin transmembrane domain facing the lipid environment as well as that facing the interior of the trimer is important for stable association with detergent-resistant membranes. However, association with detergent-resistant membranes was not required for apical sorting. MAL/VIP17 is a protein that is required for apical transport and a small fraction of hemagglutinin co-precipitates with MAL. Mutations that prevented HA from being isolated in detergent-resistant membranes decreased co-precipitation with MAL. The hemagglutinin and MAL that co-precipitated were contained in a detergent-resistant vesicle. However, most of the co-precipitation of newly synthesized hemagglutinin with MAL occurred only after the majority of hemagglutinin reached the cell surface. Both the timing and the limited extent of co-precipitation suggest that the majority of vesicles containing hemagglutinin and MAL are not the detergent-resistant membrane transport intermediates carrying hemagglutinin from the TGN to the apical surface.
Collapse
Affiliation(s)
- Renee D Tall
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | | | | |
Collapse
|
39
|
Lee MS, Hanspers K, Barker CS, Korn AP, McCune JM. Gene expression profiles during human CD4+ T cell differentiation. Int Immunol 2004; 16:1109-24. [PMID: 15210650 DOI: 10.1093/intimm/dxh112] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop a comprehensive catalogue of phenotypic and functional parameters of human CD4(+) T cell differentiation stages, we have performed microarray gene expression profiling on subpopulations of human thymocytes and circulating naive CD4(+) T cells, including CD3(-)CD4(+)CD8(-) intrathymic T progenitor cells, CD3(int)CD4(+)CD8(+) 'double positive' thymocytes, CD3(high)CD4(+)CD8(-) 'single positive' thymocytes, CD3(+)CD4(+)CD8(-) CD45RA(+)CD62L(+) naive T cells from cord blood and CD3(+)CD4(+)CD8(-) CD45RA(+)CD62L(+) naive T cells from adult blood. These subpopulations were sort-purified to >98% purity and their expressed RNAs were analyzed on Affymetrix Human Genome U133 arrays. Comparison of gene expression signals between these subpopulations and with early passage fetal thymic stromal cultures identify: (i) transcripts that are preferentially expressed in human CD4(+) T cell subpopulations and not in thymic stromal cells; (ii) major shifts in gene expression as progenitor T cells mature into progeny; (iii) preferential expression of transcripts at the progenitor cell stage with plausible relevance to the regulation of expansion and differentiation of these cells; and (iv) preferential expression of potential markers of recent thymic emigrants in naive-phenotype CD4(+) T cells from cord blood. Further evaluation of these findings may lead to a better definition of human thymopoiesis as well as to improved approaches to monitor and to augment the function of this important organ of T cell production.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Gladstone Institute of Virology and Immunology, University of California at San Francisco, San Francisco, CA 94141, USA
| | | | | | | | | |
Collapse
|
40
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Marazuela M, Acevedo A, García-López MA, Adrados M, de Marco MC, Alonso MA. Expression of MAL2, an integral protein component of the machinery for basolateral-to-apical transcytosis, in human epithelia. J Histochem Cytochem 2004; 52:243-52. [PMID: 14729876 DOI: 10.1177/002215540405200212] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MAL2, an integral membrane protein of the MAL family, is an essential component of the machinery necessary for the indirect transcytotic route of apical transport in human hepatoma HepG2 cells. To characterize the range of human epithelia that use MAL2-mediated pathways of transport, we carried out an immunohistochemical survey of normal tissues using a monoclonal antibody specific to the MAL2 protein. MAL2 expression was detected in specific types of normal epithelial cells throughout the respiratory system, the gastrointestinal and genitourinary tracts, in exocrine and endocrine glands, and in hepatocytes. Many different types of specialized secretory cells, either organized in discrete clusters (e.g., endocrine cells in the pancreas) or in endocrine glands (e.g., prostate), were also positive for MAL2. In addition to epithelial cells, peripheral neurons, mast cells, and dendritic cells were found to express MAL2. For comparison with normal epithelial tissue, different types of renal carcinoma were also analyzed, revealing alterations in MAL2 expression/distribution dependent on the particular histological type of the tumor. Our results allow the prediction of the existence of MAL2-based trafficking pathways in specific cell types and suggest applications of the anti-MAL2 antibody for the characterization of neoplastic tissue.
Collapse
Affiliation(s)
- Mónica Marazuela
- Departmento de Endocrinología, Hospital de la Princesa, and Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Hatta M, Nagai H, Okino K, Onda M, Yoneyama K, Ohta Y, Nakayama H, Araki T, Emi M. Down-regulation of members of glycolipid-enriched membrane raft gene family, MAL and BENE, in cervical squamous cell cancers. J Obstet Gynaecol Res 2004; 30:53-8. [PMID: 14718022 DOI: 10.1111/j.1341-8076.2004.00156.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Persistent human papillomavirus infections cause infected epithelial cells to lose cellular polarity leading to cell transformation. Glycolipid-enriched membrane (GEM) rafts are implicated in polarized sorting of apical membrane proteins in epithelial cells and even in signal transduction. The MAL and BENE are essential component of the GEM raft's machinery for apical sorting of membrane proteins. In this study we demonstrated down-regulation of MAL and BENE mRNA in over two-thirds of primary cervical squamous cell cancers (14 and 15 of 20 cases, for MAL and BENE, respectively) when compared to corresponding non-cancerous uterine squamous cells. Allelic loss or hyper-methylation was not accompanied by MAL or BENE mRNA down-expression in human primary cervical cancers in microsatellite allelic analysis and HpaII-PCR-based methylation analysis of the MAL and BENE genomic region. In addition, we note down-regulation of these genes in established cervical cancer cell lines. These results suggest that down-regulation of MAL and BENE genes, which are essential components of the cellular polarized sorting system, play an important role in human cervical squamous cell cancer development.
Collapse
Affiliation(s)
- Mitsuko Hatta
- Department of Molecular Biology, Institute of Gerontology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marazuela M, Martín-Belmonte F, García-López MA, Aranda JF, de Marco MC, Alonso MA. Expression and distribution of MAL2, an essential element of the machinery for basolateral-to-apical transcytosis, in human thyroid epithelial cells. Endocrinology 2004; 145:1011-6. [PMID: 14576188 DOI: 10.1210/en.2003-0652] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polarized transport of newly synthesized proteins to the apical surface of epithelial cells takes place by a direct pathway from the Golgi or by an indirect route involving the delivery of the protein to the basolateral surface, followed by its endocytosis and transport across the cell. The indirect pathway, named transcytosis, is also used to translocate external material across the cell. MAL, a raft-associated integral membrane protein required for the direct apical route, is known to be expressed in the thyroid epithelium. MAL2, a member of the MAL protein family, has been recently identified as an essential component of the machinery for the transcytotic route in human hepatoma cells. Herein, we have investigated the expression and distribution of MAL2 in the human thyroid. MAL2 mRNA species were detected in the thyroid. Immunohistochemical analysis of thyroid follicles indicated that, in contrast to MAL, which predominantly distributed to the Golgi region, MAL2 distributed to the apical membrane. Biochemical analysis in primary thyrocyte cultures indicated that MAL2 exclusively resides in raft membranes. Confocal immunofluorescence analysis of thyrocyte cultures revealed that MAL2 predominantly localized in a subapical endosome compartment that was positive for Rab11a. Alterations in MAL2 expression, distribution, and appearance were found in specific types of follicular cell-derived carcinomas. Although the role of MAL2 has not been directly addressed in this study, the simultaneous expression of MAL and MAL2 suggests that traffic to the apical membrane in thyrocytes may rely on MAL for the direct route and on MAL2 for the transcytotic pathway.
Collapse
Affiliation(s)
- Mónica Marazuela
- Departamento de Endocrinología, Hospital de la Princesa, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Morris R, Cox H, Mombelli E, Quinn PJ. Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem 2004; 37:35-118. [PMID: 15376618 DOI: 10.1007/978-1-4757-5806-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This chapter reviews how diverse lipid microdomains form in the membrane and partition proteins into different functional units that regulate cell trafficking, signalling and movement. We will concentrate upon five major issues: 1. the diversity of lipid structure that produces diverse microenvironments into which different subsets of proteins partition; 2. why ordered lipid domains exclude proteins, and the conditions required for select subsets of proteins to enter these domains; 3. the coupling of the inner and outer leaflets within ordered microdomains; 4. the effect of ordered lipid domains upon membrane properties including curvature and hydrophobicity that affect membrane fission, fusion and extension of filopodia; 5. the biological effects of these structural constraints; in particular how the properties of these domains combine to provide a very different signalling, trafficking and membrane fusion environment to that found in disordered (fluid mosaic) membrane. In addressing these problems, the review draws upon studies ranging from molecular dynamic modelling of lipid interactions, through physical studies of model membrane systems to structural and biological studies of whole cells, examining in the process problems inherent in visualising and purifying these microdomains. While the diversity of structure and function of ordered lipid microdomains is emphasised, some general roles emerge. In particular, the basis for having quite different, non-interacting ordered lipid domains on the same membrane is evident in the diversity of lipid structure and plays a key role in sorting signalling systems. The exclusion of ordered membrane from coated pits, and hence rapid endocytosis, is suggested to underlie the ability of highly ordered domains to establish stable secondary signalling systems required, for instance, in T cell receptor, insulin and neurotrophin signalling.
Collapse
Affiliation(s)
- Roger Morris
- Molecular Neurobiology Group, MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | |
Collapse
|
45
|
Martín-Belmonte F, Martínez-Menárguez JA, Aranda JF, Ballesta J, de Marco MC, Alonso MA. MAL regulates clathrin-mediated endocytosis at the apical surface of Madin-Darby canine kidney cells. ACTA ACUST UNITED AC 2003; 163:155-64. [PMID: 14530381 PMCID: PMC2173443 DOI: 10.1083/jcb.200304053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MAL is an integral protein component of the machinery for apical transport in epithelial Madin-Darby canine kidney (MDCK) cells. To maintain its distribution, MAL cycles continuously between the plasma membrane and the Golgi complex. The clathrin-mediated route for apical internalization is known to differ from that at the basolateral surface. Herein, we report that MAL depends on the clathrin pathway for apical internalization. Apically internalized polymeric Ig receptor (pIgR), which uses clathrin for endocytosis, colocalized with internalized MAL in the same apical vesicles. Time-lapse confocal microscopic analysis revealed cotransport of pIgR and MAL in the same endocytic structures. Immunoelectron microscopic analysis evidenced colabeling of MAL with apically labeled pIgR in pits and clathrin-coated vesicles. Apical internalization of pIgR was abrogated in cells with reduced levels of MAL, whereas this did not occur either with its basolateral entry or the apical internalization of glycosylphosphatidylinositol-anchored proteins, which does not involve clathrin. Therefore, MAL is critical for efficient clathrin-mediated endocytosis at the apical surface in MDCK cells.
Collapse
Affiliation(s)
- Fernando Martín-Belmonte
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, 28049 Spain
| | | | | | | | | | | |
Collapse
|
46
|
Mimori K, Shiraishi T, Mashino K, Sonoda H, Yamashita K, Yoshinaga K, Masuda T, Utsunomiya T, Alonso MA, Inoue H, Mori M. MAL gene expression in esophageal cancer suppresses motility, invasion and tumorigenicity and enhances apoptosis through the Fas pathway. Oncogene 2003; 22:3463-71. [PMID: 12776198 DOI: 10.1038/sj.onc.1206378] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We isolated the MAL (T-lymphocyte maturation associated protein) gene from differentially expressed products of esophageal epithelium relative to esophageal carcinoma tissues. The Mal protein has been demonstrated as being a component of the protein machinery for apical transport in epithelial polarized cells. In this study, we describe the reduced expression of MAL in all 39 cases of esophageal carcinoma tested and 60 other human carcinomas. MAL gene transcription was induced in three out of 13 esophageal carcinoma cell lines by treatment with the demethylating agent 5-aza-2'-deoxycytidine (DAC), and in nine additional cell lines by simultaneous treatment with trichostatin A, an inhibitor of deacetylation, and DAC. We established a stable MAL gene transfectant whose expression was regulated by subcutaneous doxycycline injection in nude mice. Tumor growth was suppressed in cells expressing TE3-MAL compared with TE3 parent cells or cells not expressing TE3-MAL with doxycycline injection (20 microg/body) (P<0.01). Additionally, the TE3-MAL transfectant cells exhibited decreased cellular motility, a G1/S transition block and increased levels of apoptosis, concomitant with increased expression of Fas receptor in vitro. The apoptotic staining in MAL-expressing tumors was confirmed by TUNEL assay. Therefore, we conclude that expression of MAL was frequently decreased or diminished in gastrointestinal tract cancers, and that Mal expression confers reduced tumorigenicity in vivo to tumor TE3 cells through the induction of apoptosis via the Fas signaling pathway.
Collapse
Affiliation(s)
- Koshi Mimori
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marazuela M, Acevedo A, Adrados M, García-López MA, Alonso MA. Expression of MAL, an integral protein component of the machinery for raft-mediated pical transport, in human epithelia. J Histochem Cytochem 2003; 51:665-74. [PMID: 12704214 DOI: 10.1177/002215540305100512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The MAL protein is the only integral membrane protein identified as being an essential component of the machinery necessary for apical transport in the canine MDCK cell line, a paradigm of polarized epithelial cells. To characterize the range of human epithelia that use MAL-mediated pathways of transport, we performed an immunohistochemical survey of normal tissues using a monoclonal antibody (MAb) specific for the MAL protein. For comparison, different types of carcinoma were also analyzed. MAL, with a characteristic strong supranuclear granular distribution, was detected in specific types of normal epithelial cells throughout the respiratory system, the gastrointestinal and genitourinary tracts, and in exocrine and endocrine glands. Absorptive cells (e.g., enterocytes), and many different types of specialized secretory cells, either organized in discrete clusters (e.g., endocrine cells in the pancreas), gathered together in an endocrine gland (e.g., thyroid), interspersed with other cells in glands (e.g., parietal cells), or dispersed singly among other cells (e.g., type 2 pneumocytes) were positive for MAL. We also analyzed a series of epithelial renal and thyroid tumors and found alterations dependent on the particular histological type of tumor. These results open potential applications of the anti-MAL antibody for the characterization of neoplastic tissue.
Collapse
|
48
|
Sánchez-Pulido L, Martín-Belmonte F, Valencia A, Alonso MA. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 2002; 27:599-601. [PMID: 12468223 DOI: 10.1016/s0968-0004(02)02229-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Luis Sánchez-Pulido
- Protein Design Group, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
49
|
Larsen JE, Sjöström H, Norén O, Vogel LK. Serpins are apically secreted from MDCK cells independently of their raft association. Biochem Biophys Res Commun 2002; 299:35-41. [PMID: 12435386 DOI: 10.1016/s0006-291x(02)02577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been suggested that detergent-resistant membranes (DRMs), also known as lipid rafts, are involved in vectorial transport of proteins to the apical surface. In this report we use Madin-Darby canine kidney (MDCK) cells expressing the apically secreted C1-esterase inhibitor, the non-sorted antithrombin or chimeras of serpins to study the possible connection between DRM association and apical targeting of secretory proteins. We found newly synthesised C1-esterase inhibitor associated with DRMs in MDCK cells, whereas antithrombin was not. However, two chimeric proteins, secreted mainly from the apical membrane, do not associate with DRMs. Based on these observations we suggest that apical targeting and association with DRMs are two independent events for secretory serpins.
Collapse
Affiliation(s)
- Jakob E Larsen
- Biochemistry Laboratory C, Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
50
|
Arvan P, Zhao X, Ramos-Castaneda J, Chang A. Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 2002; 3:771-80. [PMID: 12383343 DOI: 10.1034/j.1600-0854.2002.31102.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Endocrinology/Diabetes Center and Department of Developmental/Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY 10461, USA.
| | | | | | | |
Collapse
|