1
|
Montoya A, Wisniewski M, Goodsell JL, Angerhofer A. Bidentate Substrate Binding Mode in Oxalate Decarboxylase. Molecules 2024; 29:4414. [PMID: 39339409 PMCID: PMC11433825 DOI: 10.3390/molecules29184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO') to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion.
Collapse
Affiliation(s)
| | | | | | - Alexander Angerhofer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Zan X, Yan Y, Chen G, Sun L, Wang L, Wen Y, Xu Y, Zhang Z, Li X, Yang Y, Sun W, Cui F. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10163-10178. [PMID: 38653191 DOI: 10.1021/acs.jafc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gege Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixin Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xinlin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yumeng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
3
|
Gupta S, Kanwar SS. Molecular characterization and in silico analysis of oxalate decarboxylase of Pseudomonas sp. OXDC12. J Biomol Struct Dyn 2023; 41:1495-1509. [PMID: 35007451 DOI: 10.1080/07391102.2021.2024882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxalate decarboxylase (OxDC) is a Mn-dependent hexameric enzyme that is highly important in management of calcium oxalate mediated nephrolithiasis. The present study reported the production and purification of OxDC from Pseudomonas sp. OXDC12 up to 45.3-fold with an overall yield of 7%. The purified OxDC displayed a single band of approximately 40 kDa on SDS-PAGE and 240 kDa on Native-PAGE suggesting it to be a hexameric enzyme. The purified OxDC displayed an optimum activity at 26 °C and pH 4.5 in the presence of substrate sodium oxalate (30 mg/mL) with a Km and Vmax value of 43.9 mM and 8.9 µmol/min, respectively and an activation energy of 52.49 kJ/mol. The enzyme activity was significantly enhanced by adding o-phenylenediamine to the reaction mixture. OxDC exhibited a very low 17 haemolytic activity which suggested a relatively safer therapeutic aspect of the tested OxDC. The structure prediction studies of the OxDC revealed a tertiary structure with α/β chains that formed the β barrel structure, typical of all cupin domains. The Ramachandran plot produced by PROCHECK shows that 90.5% of the residues are in the most favoured region and hence the OxDC model produced was a good one. Docking studies revealed the binding of the metal ions and ligands to cluster of three histidine residues in the N terminal domain that formed the active site pocket of the enzyme. It was suggested that the histidine coordinated Mn2+ ion was critical for substrate recognition and binding and was also directly involved in OxDC catalyses.highlightsOxalate decarboxylase (OxDC) was successfully purified from Pseudomonas sp. OXDC12 up-to 45.3-fold.The Km and Vmax values of the purified OxDC were calculated as 43.9 mM and 8.9 µmol/min, respectively.Genre analysis and structure prediction studies revealed the presence of β barrel structure typical of all cupin domains. The model exhibited a bi-cupin domain that forms the dimer of the homo-hexameric OxDC.Docking experiments revealed that the cluster of three HIS residues in the N terminal domain of the tested enzyme formed the active site pocket for binding of Mn as well as the ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, India
| |
Collapse
|
4
|
Pastore AJ, Montoya A, Kamat M, Basso KB, Italia JS, Chatterjee A, Drosou M, Pantazis DA, Angerhofer A. Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase. Protein Sci 2023; 32:e4537. [PMID: 36482787 PMCID: PMC9801070 DOI: 10.1002/pro.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.
Collapse
Affiliation(s)
| | - Alvaro Montoya
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Manasi Kamat
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Kari B. Basso
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - James S. Italia
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Maria Drosou
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | | |
Collapse
|
5
|
Li P, Liu C, Luo Y, Shi H, Li Q, PinChu C, Li X, Yang J, Fan W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16037-16049. [PMID: 36511327 DOI: 10.1021/acs.jafc.2c04787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlan Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Qi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Cier PinChu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Lai DQ, Doan TNT, Nguyen DH. Influences of adding media additives on synthesis of Gamma‐aminobutyric acid in fermentation of defatted rice bran extract with Lactic acid bacteria. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dat Quoc Lai
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Trinh Ngoc Thuc Doan
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Dung Hoang Nguyen
- Department of Food Technology, Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Yu YY, Si FJ, Wang N, Wang T, Jin Y, Zheng Y, Yang W, Luo YM, Niu DD, Guo JH, Jiang CH. Bacillus-Secreted Oxalic Acid Induces Tomato Resistance Against Gray Mold Disease Caused by Botrytis cinerea by Activating the JA/ET Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:659-671. [PMID: 36043906 DOI: 10.1094/mpmi-11-21-0289-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacillus spp. are known for their ability to control plant diseases; however, the mechanism of disease control by Bacillus spp. is still unclear. Previously, bacterial organic acids have been implicated in the process of disease suppression. We extracted the total organic acid from Bacillus cereus AR156 culture filtrate and identified oxalic acid (OA) as the programmed cell death-inducing factor. OA strongly suppressed the lesion caused by Botrytis cinerea without significant antagonism against the fungus. Low concentration of OA produced by Bacillus spp. inhibited cell death caused by high concentrations of OA in a concentration- and time-dependent manner. Pretreatment with a low concentration of OA led to higher accumulation of active oxygen-scavenging enzymes in tomato leaves and provoked the expression of defense-related genes. The activation of gene expression relied on the jasmonic acid (JA) signaling pathway but not the salicylic acid (SA) pathway. The disease suppression capacity of OA was confirmed on wild-type tomato and its SA accumulation-deficient line, while the control effect was diminished in JA synthesis-deficient mutant, suggesting that the OA-triggered resistance relied on JA and ethylene (ET) signaling transduction. OA secretion ability was widely distributed among the tested Bacillus strains and the final environmental OA concentration was under strict regulation by a pH-sensitive degradation mechanism. This study provides the first systematic analysis on the role of low-concentration OA secreted and maintained by Bacillus spp. in suppression of gray mold disease and determines the dependence of OA-mediated resistance on the JA/ET signaling pathway. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Fang-Jie Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ning Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Yu Jin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Wei Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yu-Ming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an 223300, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Dong-Dong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| |
Collapse
|
8
|
Neupane T, Chambers LR, Godfrey AJ, Monlux MM, Jacobs EJ, Whitworth S, Spawn JE, Clingman SHK, Vergunst KL, Niven FM, Townley JJ, Orion IW, Goodspeed CR, Cooper KA, Cronk JD, Shepherd JN, Langelaan DN. Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone. Commun Chem 2022; 5:89. [PMID: 36697674 PMCID: PMC9814641 DOI: 10.1038/s42004-022-00711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/20/2022] [Indexed: 01/28/2023] Open
Abstract
Rhodoquinone (RQ) is a close analogue of ubiquinone (UQ) that confers diverse bacterial and eukaryotic taxa the ability to utilize fumarate as an electron acceptor in hypoxic conditions. The RquA protein, identified in a Rhodospirillum rubrum RQ-deficient mutant, has been shown to be required for RQ biosynthesis in bacteria. In this report, we demonstrate that RquA, homologous to SAM-dependent methyltransferases, is necessary and sufficient to catalyze RQ biosynthesis from UQ in vitro. Remarkably, we show that RquA uses SAM as the amino group donor in a substitution reaction that converts UQ to RQ. In contrast to known aminotransferases, RquA does not use pyridoxal 5'-phosphate (PLP) as a coenzyme, but requires the presence of Mn2+ as a cofactor. As these findings reveal, RquA provides an example of a non-canonical SAM-dependent enzyme that does not catalyze methyl transfer, instead it uses SAM in an atypical amino transfer mechanism.
Collapse
Affiliation(s)
- Trilok Neupane
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Lydia R. Chambers
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Alexander J. Godfrey
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Melina M. Monlux
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Evan J. Jacobs
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Sophia Whitworth
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jamie E. Spawn
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Seo Hee K. Clingman
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathleen L. Vergunst
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Fair M. Niven
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - James J. Townley
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Iris W. Orion
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Carly R. Goodspeed
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathryn A. Cooper
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jeff D. Cronk
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jennifer N. Shepherd
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - David N. Langelaan
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
9
|
Pastore AJ, Teo RD, Montoya A, Burg MJ, Twahir UT, Bruner SD, Beratan DN, Angerhofer A. Oxalate decarboxylase uses electron hole hopping for catalysis. J Biol Chem 2021; 297:100857. [PMID: 34097877 PMCID: PMC8254039 DOI: 10.1016/j.jbc.2021.100857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023] Open
Abstract
The hexameric low-pH stress response enzyme oxalate decarboxylase catalyzes the decarboxylation of the oxalate mono-anion in the soil bacterium Bacillus subtilis. A single protein subunit contains two Mn-binding cupin domains, and catalysis depends on Mn(III) at the N-terminal site. The present study suggests a mechanistic function for the C-terminal Mn as an electron hole donor for the N-terminal Mn. The resulting spatial separation of the radical intermediates directs the chemistry toward decarboxylation of the substrate. A π-stacked tryptophan pair (W96/W274) links two neighboring protein subunits together, thus reducing the Mn-to-Mn distance from 25.9 Å (intrasubunit) to 21.5 Å (intersubunit). Here, we used theoretical analysis of electron hole-hopping paths through redox-active sites in the enzyme combined with site-directed mutagenesis and X-ray crystallography to demonstrate that this tryptophan pair supports effective electron hole hopping between the C-terminal Mn of one subunit and the N-terminal Mn of the other subunit through two short hops of ∼8.5 Å. Replacement of W96, W274, or both with phenylalanine led to a large reduction in catalytic efficiency, whereas replacement with tyrosine led to recovery of most of this activity. W96F and W96Y mutants share the wildtype tertiary structure. Two additional hole-hopping networks were identified leading from the Mn ions to the protein surface, potentially protecting the enzyme from high Mn oxidation states during turnover. Our findings strongly suggest that multistep hole-hopping transport between the two Mn ions is required for enzymatic function, adding to the growing examples of proteins that employ aromatic residues as hopping stations.
Collapse
Affiliation(s)
- Anthony J Pastore
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Ruijie D Teo
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Matthew J Burg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Umar T Twahir
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
10
|
Glasmacher S, Gertsch J. Characterization of pepcan-23 as pro-peptide of RVD-hemopressin (pepcan-12) and stability of hemopressins in mice. Adv Biol Regul 2021; 80:100808. [PMID: 33799079 DOI: 10.1016/j.jbior.2021.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Hemopressins ((x)-PVNFKLLSH) or peptide endocannabinoids (pepcans) can bind to cannabinoid receptors. RVD-hemopressin (pepcan-12) was shown to act as endogenous allosteric modulator of cannabinoid receptors, with opposite effects on CB1 and CB2, respectively. Moreover, the N-terminally elongated pepcan-23 was detected in different tissues and was postulated to be the pro-peptide of RVD-hemopressin. Currently, data about the pharmacokinetics, tissue distribution and stability of hemopressin-type peptides are lacking. Here we investigated the secondary structure and physiological role of pepcan-23 as precursor of RVD-hemopressin. We assessed the metabolic stability of these peptides, including hemopressin. Using LC-ESI-MS/MS, pepcan-23 was measured in mouse tissues and human whole blood (~50 pmol/mL) and in plasma was the most stable endogenous peptide containing the hemopressin sequence. Using peptide spiked human whole blood, mouse adrenal gland and liver homogenates demonstrate that pepcan-23 acts as endogenous pro-peptide of RVD-hemopressin. Furthermore, administered pepcan-23 converted to RVD-hemopressin in mice. In circular dichroism spectroscopy, pepcan-23 showed a helix-unordered-helix structure and efficiently formed complexes with divalent metal ions, in particular Cu(II) and Ni(II). Hemopressin and RVD-hemopressin were not bioavailable to the brain and showed poor stability in plasma, in agreement with their overall poor biodistribution. Acute hemopressin administration (100 mg/kg) did not modulate endogenous RVD-hemopressin/pepcan-23 levels or influence the endocannabinoid lipidome but increased 1-stearoyl-2-arachidonoyl-sn-glycerol. Overall, we show that pepcan-23 is a biological pro-peptide of RVD-hemopressin and divalent metal ions may regulate this process. Given the lack of metabolic stability of hemopressins, administration of pepcan-23 as pro-peptide may be suitable in pharmacological experiments as it is converted to RVD-hemopressin in vivo.
Collapse
Affiliation(s)
- Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
11
|
Liu M, Devlin JC, Hu J, Volkova A, Battaglia TW, Ho M, Asplin JR, Byrd A, Loke P, Li H, Ruggles KV, Tsirigos A, Blaser MJ, Nazzal L. Microbial genetic and transcriptional contributions to oxalate degradation by the gut microbiota in health and disease. eLife 2021; 10:e63642. [PMID: 33769280 PMCID: PMC8062136 DOI: 10.7554/elife.63642] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Over-accumulation of oxalate in humans may lead to nephrolithiasis and nephrocalcinosis. Humans lack endogenous oxalate degradation pathways (ODP), but intestinal microbes can degrade oxalate using multiple ODPs and protect against its absorption. The exact oxalate-degrading taxa in the human microbiota and their ODP have not been described. We leverage multi-omics data (>3000 samples from >1000 subjects) to show that the human microbiota primarily uses the type II ODP, rather than type I. Furthermore, among the diverse ODP-encoding microbes, an oxalate autotroph, Oxalobacter formigenes, dominates this function transcriptionally. Patients with inflammatory bowel disease (IBD) frequently suffer from disrupted oxalate homeostasis and calcium oxalate nephrolithiasis. We show that the enteric oxalate level is elevated in IBD patients, with highest levels in Crohn's disease (CD) patients with both ileal and colonic involvement consistent with known nephrolithiasis risk. We show that the microbiota ODP expression is reduced in IBD patients, which may contribute to the disrupted oxalate homeostasis. The specific changes in ODP expression by several important taxa suggest that they play distinct roles in IBD-induced nephrolithiasis risk. Lastly, we colonize mice that are maintained in the gnotobiotic facility with O. formigenes, using either a laboratory isolate or an isolate we cultured from human stools, and observed a significant reduction in host fecal and urine oxalate levels, supporting our in silico prediction of the importance of the microbiome, particularly O. formigenes in host oxalate homeostasis.
Collapse
Affiliation(s)
- Menghan Liu
- NYU Langone HealthNew YorkUnited States
- Vilcek Institute of Graduate Biomedical SciencesNew YorkUnited States
| | - Joseph C Devlin
- NYU Langone HealthNew YorkUnited States
- Vilcek Institute of Graduate Biomedical SciencesNew YorkUnited States
| | - Jiyuan Hu
- NYU Langone HealthNew YorkUnited States
| | - Angelina Volkova
- NYU Langone HealthNew YorkUnited States
- Vilcek Institute of Graduate Biomedical SciencesNew YorkUnited States
| | | | - Melody Ho
- NYU Langone HealthNew YorkUnited States
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America HoldingsChicagoUnited States
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech IncSouth San FranciscoUnited States
| | - P'ng Loke
- NYU Langone HealthNew YorkUnited States
| | - Huilin Li
- NYU Langone HealthNew YorkUnited States
| | | | | | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityNew YorkUnited States
| | | |
Collapse
|
12
|
Copeland RA, Davis KM, Shoda TKC, Blaesi EJ, Boal AK, Krebs C, Bollinger JM. An Iron(IV)-Oxo Intermediate Initiating l-Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme. J Am Chem Soc 2021; 143:2293-2303. [PMID: 33522811 DOI: 10.1021/jacs.0c10923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ethylene-forming enzyme (EFE) is an ambifunctional iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase. In its major (EF) reaction, it converts carbons 1, 2, and 5 of 2OG to CO2 and carbons 3 and 4 to ethylene, a four-electron oxidation drastically different from the simpler decarboxylation of 2OG to succinate mediated by all other Fe/2OG enzymes. EFE also catalyzes a minor reaction, in which the normal decarboxylation is coupled to oxidation of l-arginine (a required activator for the EF pathway), resulting in its conversion to l-glutamate semialdehyde and guanidine. Here we show that, consistent with precedent, the l-Arg-oxidation (RO) pathway proceeds via an iron(IV)-oxo (ferryl) intermediate. Use of 5,5-[2H2]-l-Arg slows decay of the ferryl complex by >16-fold, implying that RO is initiated by hydrogen-atom transfer (HAT) from C5. That this large substrate deuterium kinetic isotope effect has no impact on the EF:RO partition ratio implies that the same ferryl intermediate cannot be on the EF pathway; the pathways must diverge earlier. Consistent with this conclusion, the variant enzyme bearing the Asp191Glu ligand substitution accumulates ∼4 times as much of the ferryl complex as the wild-type enzyme and exhibits a ∼40-fold diminished EF:RO partition ratio. The selective detriment of this nearly conservative substitution to the EF pathway implies that it has unusually stringent stereoelectronic requirements. An active-site, like-charge guanidinium pair, which involves the l-Arg substrate/activator and is unique to EFE among four crystallographically characterized l-Arg-modifying Fe/2OG oxygenases, may serve to selectively stabilize the transition state leading to the unique EF branch.
Collapse
|
13
|
Silva UC, Cuadros-Orellana S, Silva DRC, Freitas-Júnior LF, Fernandes AC, Leite LR, Oliveira CA, Dos Santos VL. Genomic and Phenotypic Insights Into the Potential of Rock Phosphate Solubilizing Bacteria to Promote Millet Growth in vivo. Front Microbiol 2021; 11:574550. [PMID: 33488531 PMCID: PMC7817697 DOI: 10.3389/fmicb.2020.574550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Rock phosphate (RP) is a natural source of phosphorus for agriculture, with the advantage of lower cost and less impact on the environment when compared to synthetic fertilizers. However, the release of phosphorus (P) from RP occurs slowly, which may limit its short-term availability to crops. Hence, the use of P-solubilizing microorganisms to improve the availability of P from this P source is an interesting approach, as microorganisms often perform other functions that assist plant growth, besides solubilizing P. Here, we describe the characterization of 101 bacterial isolates obtained from the rhizosphere and endosphere of maize plants for their P solubilizing activity in vitro, their growth-promoting activity on millet plants cultivated in soil amended with RP, and their gene content especially associated with phosphate solubilization. For the in vitro solubilization assays, two mineral P sources were used: rock phosphate from Araxá (Brazil) mine (AP) and iron phosphate (Fe-P). The amounts of P released from Fe-P in the solubilization assays were lower than those released from AP, and the endophytic bacteria outperformed the rhizospheric ones in the solubilization of both P sources. Six selected strains were evaluated for their ability to promote the growth of millet in soil fertilized with a commercial rock phosphate (cRP). Two of them, namely Bacillus megaterium UFMG50 and Ochrobactrum pseudogrignonense CNPMS2088, performed better than the others in the cRP assays, improving at least six physiological traits of millet or P content in the soil. Genomic analysis of these bacteria revealed the presence of genes related to P uptake and metabolism, and to organic acid synthesis. Using this approach, we identified six potential candidates as bioinoculants, which are promising for use under field conditions, as they have both the genetic potential and the experimentally demonstrated in vivo ability to improve rock phosphate solubilization and promote plant growth.
Collapse
Affiliation(s)
- Ubiana C Silva
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Cuadros-Orellana
- Centro de Biotecnología de los Recursos Naturales, Universidad Católica del Maule, Talca, Chile
| | - Daliane R C Silva
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz F Freitas-Júnior
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Fernandes
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura R Leite
- Grupo de Genômica e Informática de Biossistemas, Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | | | - Vera L Dos Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
15
|
Parham JD, Wijeratne GB, Mayfield JR, Jackson TA. Steric control of dioxygen activation pathways for Mn II complexes supported by pentadentate, amide-containing ligands. Dalton Trans 2019; 48:13034-13045. [PMID: 31406966 PMCID: PMC6733413 DOI: 10.1039/c9dt02682g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dioxygen activation at manganese centers is well known in nature, but synthetic manganese systems capable of utilizing O2 as an oxidant are relatively uncommon. These present investigations probe the dioxygen activation pathways of two mononuclear MnII complexes supported by pentacoordinate amide-containing ligands, [MnII(dpaq)](OTf) and the sterically modified [MnII(dpaq2Me)](OTf). Dioxygen titration experiments demonstrate that [MnII(dpaq)](OTf) reacts with O2 to form [MnIII(OH)(dpaq)](OTf) according to a 4 : 1 Mn : O2 stoichiometry. This stoichiometry is consistent with a pathway involving comproportionation between a MnIV-oxo species and residual MnII complex to form a (μ-oxo)dimanganese(iii,iii) species that is hydrolyzed by water to give the MnIII-hydroxo product. In contrast, the sterically modified [MnII(dpaq2Me)](OTf) complex was found to react with O2 according to a 2 : 1 Mn : O2 stoichiometry. This stoichiometry is indicative of a pathway in which a MnIV-oxo intermediate abstracts a hydrogen atom from solvent instead of undergoing comproportionation with the MnII starting complex. Isotopic labeling experiments, in which the oxygenation of the MnII complexes was carried out in deuterated solvent, supported this change in pathway. The oxygenation of [MnII(dpaq)](OTf) did not result in any deuterium incorporation in the MnIII-hydroxo product, while the oxygenation of [MnII(dpaq2Me)](OTf) in d3-MeCN showed [MnIII(OD)(dpaq2Me)]+ formation. Taken together, these observations highlight the use of steric effects as a means to select which intermediates form along dioxygen activation pathways.
Collapse
Affiliation(s)
- Joshua D Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Gayan B Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
16
|
Walsh CT. Biologically generated carbon dioxide: nature's versatile chemical strategies for carboxy lyases. Nat Prod Rep 2019; 37:100-135. [PMID: 31074473 DOI: 10.1039/c9np00015a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to 2019Metabolic production of CO2 is natural product chemistry on a mammoth scale. Just counting humans, among all other respiring organisms, the seven billion people on the planet exhale about 3 billion tons of CO2 per year. Essentially all of the biogenic CO2 arises by action of discrete families of decarboxylases. The mechanistic routes to CO2 release from carboxylic acid metabolites vary with the electronic demands and structures of specific substrates and illustrate the breadth of chemistry employed for C-COO (C-C bond) disconnections. Most commonly decarboxylated are α-keto acid and β-keto acid substrates, the former requiring thiamin-PP as cofactor, the latter typically cofactor-free. The extensive decarboxylation of amino acids, e.g. to neurotransmitter amines, is synonymous with the coenzyme form of vitamin B6, pyridoxal-phosphate, although covalent N-terminal pyruvamide residues serve in some amino acid decarboxylases. All told, five B vitamins (B1, B2, B3, B6, B7), ATP, S-adenosylmethionine, manganese and zinc ions are pressed into service for specific decarboxylase catalyses. There are additional cofactor-independent decarboxylases that operate by distinct chemical routes. Finally, while most decarboxylases use heterolytic ionic mechanisms, a small number of decarboxylases carry out radical pathways.
Collapse
|
17
|
Conter C, Oppici E, Dindo M, Rossi L, Magnani M, Cellini B. Biochemical properties and oxalate-degrading activity of oxalate decarboxylase from bacillus subtilis at neutral pH. IUBMB Life 2019; 71:917-927. [PMID: 30806021 PMCID: PMC6850040 DOI: 10.1002/iub.2027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 11/05/2022]
Abstract
Oxalate decarboxylase (OxDC) from Bacillus subtilis is a Mn-dependent hexameric enzyme that converts oxalate to carbon dioxide and formate. OxDC has greatly attracted the interest of the scientific community, mainly due to its biotechnological and medical applications in particular for the treatment of hyperoxaluria, a group of pathologic conditions caused by oxalate accumulation. The enzyme has an acidic optimum pH, but most of its applications involve processes occurring at neutral pH. Nevertheless, a detailed biochemical characterization of the enzyme at neutral pH is lacking. Here, we compared the structural-functional properties at acidic and neutral pH of wild-type OxDC and of a mutant form, called OxDC-DSSN, bearing four amino acid substitutions in the lid (Ser161-to-Asp, Glu162-to-Ser, Asn163-toSer, and Ser164-to-Asn) that improve the oxalate oxidase activity and almost abolish the decarboxylase activity. We found that both enzymatic forms do not undergo major structural changes as a function of pH, although OxDC-DSSN displays an increased tendency to aggregation, which is counteracted by the presence of an active-site ligand. Notably, OxDC and OxDC-DSSN at pH 7.2 retain 7 and 15% activity, respectively, which is sufficient to degrade oxalate in a cellular model of primary hyperoxaluria type I, a rare inherited disease caused by excessive endogenous oxalate production. The significance of the data in the light of the possible use of OxDC as biological drug is discussed. © 2019 IUBMB Life, 1-11, 2019.
Collapse
Affiliation(s)
- Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Mirco Dindo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Kumar V, Irfan M, Datta A. Manipulation of oxalate metabolism in plants for improving food quality and productivity. PHYTOCHEMISTRY 2019; 158:103-109. [PMID: 30500595 DOI: 10.1016/j.phytochem.2018.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/25/2023]
Abstract
Oxalic acid is a naturally occurring metabolite in plants and a common constituent of all plant-derived human diets. Oxalic acid has diverse unrelated roles in plant metabolism, including pH regulation in association with nitrogen metabolism, metal ion homeostasis and calcium storage. In plants, oxalic acid is also a pathogenesis factor and is secreted by various fungi during host infection. Unlike those of plants, fungi and bacteria, the human genome does not contain any oxalate-degrading genes, and therefore, the consumption of large amounts of plant-derived oxalate is considered detrimental to human health. In this review, we discuss recent biotechnological approaches that have been used to reduce the oxalate content of plant tissues.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
19
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
20
|
Li B, Bridwell-Rabb J. Aerobic Enzymes and Their Radical SAM Enzyme Counterparts in Tetrapyrrole Pathways. Biochemistry 2018; 58:85-93. [PMID: 30365306 DOI: 10.1021/acs.biochem.8b00906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microorganisms have lifestyles and metabolism adapted to environmental niches, which can be very broad or highly restricted. Molecular oxygen (O2) is currently variably present in microenvironments and has driven adaptation and microbial differentiation over the course of evolution on Earth. Obligate anaerobes use enzymes and cofactors susceptible to low levels of O2 and are restricted to O2-free environments, whereas aerobes typically take advantage of O2 as a reactant in many biochemical pathways and may require O2 for essential biochemical reactions. In this Perspective, we focus on analogous enzymes found in tetrapyrrole biosynthesis, modification, and degradation that are catalyzed by O2-sensitive radical S-adenosylmethionine (SAM) enzymes and by O2-dependent metalloenzymes. We showcase four transformations for which aerobic organisms use O2 as a cosubstrate but anaerobic organisms do not. These reactions include oxidative decarboxylation, methyl and methylene oxidation, ring formation, and ring cleavage. Furthermore, we highlight biochemically uncharacterized enzymes implicated in reactions that resemble those catalyzed by the parallel aerobic and anaerobic enzymes. Intriguingly, several of these reactions require insertion of an oxygen atom into the substrate, which in aerobic enzymes is facilitated by activation of O2 but in anaerobic organisms requires an alternative mechanism.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
21
|
Denler MC, Wijeratne GB, Rice DB, Colmer HE, Day VW, Jackson TA. Mn III-Peroxo adduct supported by a new tetradentate ligand shows acid-sensitive aldehyde deformylation reactivity. Dalton Trans 2018; 47:13442-13458. [PMID: 30183042 PMCID: PMC6176719 DOI: 10.1039/c8dt02300j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new tetradentate L7BQ ligand (L7BQ = 1,4-di(quinoline-8-yl)-1,4-diazepane) has been synthesized and shown to support MnII and MnIII-peroxo complexes. X-ray crystallography of the [MnII(L7BQ)(OTf)2] complex shows a monomeric MnII center with the L7BQ ligand providing four donor nitrogen atoms in the equatorial field, with two triflate ions bound in the axial positions. When this species is treated with H2O2 and Et3N at -40 °C, a MnIII-peroxo adduct, [MnIII(O2)(L7BQ)]+ is formed. The formation of this new intermediate is supported by a variety of spectroscopic techniques, including electronic absorption, Mn K-edge X-ray absorption and electron paramagnetic resonance methods. Evaluation of extended X-ray absorption fine structure data for [MnIII(O2)(L7BQ)]+ resolved Mn-O bond distances of 1.85 Å, which are on the short end of those previously reported for crystallographically characterized MnIII-peroxo adducts. An analysis of the X-ray pre-edge region of [MnIII(O2)(L7BQ)]+ revealed a large pre-edge area of 20.8 units. Time-dependent density functional theory computations indicate that the pre-edge intensity is due to Mn 4p-3d mixing caused by geometric distortions from centrosymmetry induced by both the peroxo and L7BQ ligands. The reactivity of [MnIII(O2)(L7BQ)]+ towards aldehydes was assessed through reaction with cyclohexanecarboxaldehyde and 2-phenylpropionaldehyde. From these experiments, it was determined that [MnIII(O2)(L7BQ)]+ only reacts with aldehydes in the presence of acid. Specifically, the addition of cyclohexanecarboxylic acid to [MnIII(O2)(L7BQ)]+ converts the MnIII-peroxo adduct to a new intermediate that could be responsible for the observed aldehyde deformylation activity. These observations underscore the challenges in identifying the reactive metal species in aldehyde deformylation reactions.
Collapse
Affiliation(s)
- Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Syiemlieh I, Kumar A, Kurbah SD, Lal RA. Synthesis, characterization and structure assessment of mononuclear and binuclear low-spin manganese(II) complexes derived from oxaloyldihydrazones, 1,10-phenanthroline and 2,2′-bipyridine. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Haq IU, Zwahlen RD, Yang P, van Elsas JD. The Response of Paraburkholderia terrae Strains to Two Soil Fungi and the Potential Role of Oxalate. Front Microbiol 2018; 9:989. [PMID: 29896162 PMCID: PMC5986945 DOI: 10.3389/fmicb.2018.00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
Fungal-associated Paraburkholderia terrae strains in soil have been extensively studied, but their sensing strategies to locate fungi in soil have remained largely elusive. In this study, we investigated the behavior of five mycosphere-isolated P. terrae strains [including the type-3 secretion system negative mutant BS001-ΔsctD and the type strain DSM 17804T] with respect to their fungal-sensing strategies. The putative role of oxalic acid as a signaling molecule in the chemotaxis toward soil fungi, as well as a potential carbon source, was assessed. First, all P. terrae strains, including the type strain, were found to sense, and show a chemotactic response toward, the different levels of oxalic acid (0.1, 0.5, and 0.8%) applied at a distance. The chemotactic responses were faster and stronger at lower concentrations (0.1%) than at higher ones. We then tested the chemotactic responses of all strains toward exudates of the soil fungi Lyophyllum sp. strain Karsten and Trichoderma asperellum 302 used in different dilutions (undiluted, 1:10, 1:100 diluted) versus the control. All P. terrae strains showed significant directed chemotactic behavior toward the exudate source, with full-strength exudates inciting the strongest responses. In a separate experiment, strain BS001 was shown to be able to grow on oxalate-amended (0.1 and 0.5%) mineral medium M9. Chemical analyses of the fungal secretomes using proton nuclear magnetic resonance (1H NMR), next to high-performance liquid chromatography (HPLC), indeed revealed the presence of oxalic acid (next to glycerol, acetic acid, formic acid, and fumaric acid) in the supernatants of both fungi. In addition, citric acid was found in the Lyophyllum sp. strain Karsten exudates. Given the fact that, next to oxalic acid, the other compounds can also serve as C and energy sources for P. terrae, the two fungi clearly offer ecological benefits to this bacterium. The oxalic acid released by the two fungi may have primarily acted as a signaling molecule, and, as a "second option," a carbon source for P. terrae strains like BS001.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Reto Daniel Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Zhu W, Reinhardt LA, Richards NGJ. Second-Shell Hydrogen Bond Impacts Transition-State Structure in Bacillus subtilis Oxalate Decarboxylase. Biochemistry 2018; 57:3425-3432. [DOI: 10.1021/acs.biochem.8b00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Zhu
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Laurie A. Reinhardt
- Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
25
|
Takahashi K, Miyake K, Hishiyama S, Kamimura N, Masai E. Two novel decarboxylase genes play a key role in the stereospecific catabolism of dehydrodiconiferyl alcohol in Sphingobium sp. strain SYK-6. Environ Microbiol 2018. [PMID: 29528542 DOI: 10.1111/1462-2920.14099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sphingobium sp. strain SYK-6 is able to use a phenylcoumaran-type biaryl, dehydrodiconiferyl alcohol (DCA), as a sole source of carbon and energy. In SYK-6 cells, the alcohol group of the B-ring side chain of DCA was first oxidized to the carboxyl group, and then the alcohol group of the A-ring side chain was oxidized to generate 5-(2-carboxyvinyl)-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylate (DCA-CC). We identified phcF, phcG and phcH, which conferred the ability to convert DCA-CC into 3-(4-hydroxy-3-(4-hydroxy-3-methoxystyryl)-5-methoxyphenyl)acrylate (DCA-S) in a host strain. These genes exhibited no significant sequence similarity with known enzyme genes, whereas phcF and phcG, which contain a DUF3237 domain of unknown function, showed 32% amino acid sequence identity with each other. The DCA-CC conversion activities were markedly decreased by disruption of phcF and phcG, indicating that phcF and phcG play dominant roles in the conversion of DCA-CC. Purified PhcF and PhcG catalysed the decarboxylation of the A-ring side chain of DCA-CC, producing DCA-S, and showed enantiospecificity towards (+)- and (-)-DCA-CC respectively. PhcF and PhcG formed homotrimers, and their Km for DCA-CC were determined to be 84 μM and 103 μM, and Vmax were 307 μmol⋅min-1 ⋅mg-1 and 137 μmol⋅min-1 ⋅mg-1 respectively. In conclusion, PhcF and PhcG are enantiospecific decarboxylases involved in phenylcoumaran catabolism.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Kyohei Miyake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shojiro Hishiyama
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
26
|
Garcia‐Ramon DC, Berry C, Tse C, Fernández‐Fernández A, Osuna A, Vílchez S. The parasporal crystals of Bacillus pumilus strain 15.1: a potential virulence factor? Microb Biotechnol 2018; 11:302-316. [PMID: 29027367 PMCID: PMC5812249 DOI: 10.1111/1751-7915.12771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Bacillus pumilus strain 15.1 was previously found to cause larval mortality in the Med-fly Ceratitis capitata and was shown to produce crystals in association with the spore. As parasporal crystals are well-known as invertebrate-active toxins in entomopathogenic bacteria such as Bacillus thuringiensis (Cry and Cyt toxins) and Lysinibacillus sphaericus (Bin and Cry toxins), the B. pumilus crystals were characterized. The crystals were composed of a 45 kDa protein that was identified as an oxalate decarboxylase by peptide mass fingerprinting, N-terminal sequencing and by comparison with the genome sequence of strain 15.1. Synthesis of crystals by a plasmid-cured derivative of strain 15.1 (produced using a novel curing strategy), demonstrated that the oxalate decarboxylase was encoded chromosomally. Crystals spontaneously solubilized when kept at low temperatures, and the protein produced was resistant to trypsin treatment. The insoluble crystals produced by B. pumilus 15.1 did not show significant toxicity when bioassayed against C. capitata larvae, but once the OxdD protein was solubilized, an increase of toxicity was observed. We also demonstrate that the OxdD present in the crystals has oxalate decarboxylate activity as the formation of formate was detected, which suggests a possible mechanism for B. pumilus 15.1 activity. To our knowledge, the characterization of the B. pumilus crystals as oxalate decarboxylase is the first report of the natural production of parasporal inclusions of an enzyme.
Collapse
Affiliation(s)
- Diana C. Garcia‐Ramon
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Present address:
Medical SchoolFaculty of Life, Health and Medical SciencesUniversidad Internacional del EcuadorQuitoEcuador
| | - Colin Berry
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Carmen Tse
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Antonio Osuna
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
| | - Susana Vílchez
- Institute of BiotechnologyCampus FuentenuevaUniversity of GranadaGranadaSpain
- Department of Biochemistry and Molecular Biology ICampus FuentenuevaUniversity of GranadaGranadaSpain
| |
Collapse
|
27
|
Qi Z, Yu J, Shen L, Yu Z, Yu M, Du Y, Zhang R, Song T, Yin X, Zhou Y, Li H, Wei Q, Liu Y. Enhanced resistance to rice blast and sheath blight in rice (oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:51-60. [PMID: 29223342 DOI: 10.1016/j.plantsci.2017.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 05/05/2023]
Abstract
Oxalate decarboxylase (OxDC), catalyzing the degradation of oxalic acid, is widely distributed in varieties of organisms. In this study, an oxalate decarboxylase gene from Bacillus subtilis strain BS-916, Bacisubin, was transformed into rice variety Nipponbare to generate transgenic rice with increased OxDC activity. Pathogenicity test revealed that the transgenic rice showed enhanced resistance to rice blast and sheath blight. Further RNA-seq analysis between Nipponbare WT (wild type) and transgenic rice identified 1764 DEGs (Differentially expressed genes) including 723 up-regulated unigenes and 1041 down-regulated unigenes. Five GO terms including single-organism process and oxidation-reduction process were significantly enriched in the up-regulated genes. Interestingly, five genes encoding glutaredoxin and one gene encoding MADS box were up- and down-regulated in the transgenic rice, respectively. Collectively, our study advances the understanding of OxDC in resistance to rice disease and its possible mechanisms. Our results also suggest that OxDC would be an effective antifungal protein preventing fungal infection in transgenic rice.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Lerong Shen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Zhenxian Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yuxin Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Huanhuan Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Qian Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu Province, People's Republic of China.
| |
Collapse
|
28
|
Pierce E, Mansoorabadi SO, Can M, Reed GH, Ragsdale SW. Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide Inactivation by Pyruvate. Biochemistry 2017; 56:2824-2835. [PMID: 28514140 PMCID: PMC5463272 DOI: 10.1021/acs.biochem.7b00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxalate:ferredoxin oxidoreductase (OOR) is an unusual member of the thiamine pyrophosphate (TPP)-dependent 2-oxoacid:ferredoxin oxidoreductase (OFOR) family in that it catalyzes the coenzyme A (CoA)-independent conversion of oxalate into 2 equivalents of carbon dioxide. This reaction is surprising because binding of CoA to the acyl-TPP intermediate of other OFORs results in formation of a CoA ester, and in the case of pyruvate:ferredoxin oxidoreductase (PFOR), CoA binding generates the central metabolic intermediate acetyl-CoA and promotes a 105-fold acceleration of the rate of electron transfer. Here we describe kinetic, spectroscopic, and computational results to show that CoA has no effect on catalysis by OOR and describe the chemical rationale for why this cofactor is unnecessary in this enzymatic transformation. Our results demonstrate that, like PFOR, OOR binds pyruvate and catalyzes decarboxylation to form the same hydroxyethylidine-TPP (HE-TPP) intermediate and one-electron transfer to generate the HE-TPP radical. However, in OOR, this intermediate remains stranded at the active site as a covalent inhibitor. These and other results indicate that, like other OFOR family members, OOR generates an oxalate-derived adduct with TPP (oxalyl-TPP) that undergoes decarboxylation and one-electron transfer to form a radical intermediate remaining bound to TPP (dihydroxymethylidene-TPP). However, unlike in PFOR, where CoA binding drives formation of the product, in OOR, proton transfer and a conformational change in the "switch loop" alter the redox potential of the radical intermediate sufficiently to promote the transfer of an electron into the iron-sulfur cluster network, leading directly to a second decarboxylation and completing the catalytic cycle.
Collapse
Affiliation(s)
- Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University , 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - George H Reed
- Department of Biochemistry, University of Wisconsin-Madison , 440 Henry Mall, Madison, Wisconsin 53726, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| |
Collapse
|
29
|
Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem 2017; 61:259-270. [PMID: 28487402 DOI: 10.1042/ebc20160070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/05/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of 'second-shell' hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.
Collapse
|
30
|
Macazo FC, Hickey DP, Abdellaoui S, Sigman MS, Minteer SD. Polymer-immobilized, hybrid multi-catalyst architecture for enhanced electrochemical oxidation of glycerol. Chem Commun (Camb) 2017; 53:10310-10313. [DOI: 10.1039/c7cc05724e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer-immobilized MWCNT/TEMPO-LPEI/OxDc hybrid tri-catalytic motif enables a synergistic enhancement in the complete oxidation of glycerol.
Collapse
Affiliation(s)
| | - David P. Hickey
- Department of Chemistry, University of Utah
- Salt Lake City
- USA
| | | | | | | |
Collapse
|
31
|
Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. J Biol Inorg Chem 2016; 22:407-424. [PMID: 27853875 DOI: 10.1007/s00775-016-1402-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The active sites of metalloenzymes that catalyze O2-dependent reactions generally contain iron or copper ions. However, several enzymes are capable of activating O2 at manganese or nickel centers instead, and a handful of dioxygenases exhibit activity when substituted with cobalt. This minireview summarizes the catalytic properties of oxygenases and oxidases with mononuclear Mn, Co, or Ni active sites, including oxalate-degrading oxidases, catechol dioxygenases, and quercetin dioxygenase. In addition, recent developments in the O2 reactivity of synthetic Mn, Co, or Ni complexes are described, with an emphasis on the nature of reactive intermediates featuring superoxo-, peroxo-, or oxo-ligands. Collectively, the biochemical and synthetic studies discussed herein reveal the possibilities and limitations of O2 activation at these three "overlooked" metals.
Collapse
|
32
|
Twahir UT, Ozarowski A, Angerhofer A. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis. Biochemistry 2016; 55:6505-6516. [DOI: 10.1021/acs.biochem.6b00891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umar T. Twahir
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Alexander Angerhofer
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
33
|
Tondreau AM, Boncella JM. The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Tondreau AM, Boncella JM. 1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2-Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00274] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron M. Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - James M. Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Wang XH, Guo XJ, Li HY, Gou P. Characteristics of inositol phosphorylceramide synthase and effects of aureobasidin A on growth and pathogenicity of Botrytis cinerea. J GEN APPL MICROBIOL 2016; 61:108-16. [PMID: 26377130 DOI: 10.2323/jgam.61.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inositol phosphorylceramide (IPC) synthase is the key enzyme with highly conserved sequences, which is involved in fungal sphingolipid biosynthesis. The antibiotic aureobasidin A (AbA) induces the death of fungi through inhibiting IPC synthase activity. The mutations of AUR1 gene coding IPC synthase in fungi and protozoa causes a resistance to AbA. However, the mechanism of AbA resistance is still elusive. In this paper, we generated two mutants of Botrytis cinerea with AbA-resistance, BcAUR1a and BcAUR1b, through UV irradiation. BcAUR1a lost an intron and BcAUR1b had three amino acid mutations (L197P, F288S and T323A) in the AUR1 gene. AbA strongly inhibits the activity of IPC synthase in wild-type B. cinerea, which leads to distinct changes in cell morphology, including the delay in conidial germination, excessive branching near the tip of the germ tube and mycelium, and the inhibition of the mycelium growth. Further, AbA prevents the infection of wild-type B. cinerea in tomato fruits via reducing oxalic acid secretion and the activity of cellulase and pectinase. On the contrary, AbA has no effect on the growth and pathogenicity of the two mutants. Although both mutants show a similar AbA resistance, the molecular mechanisms might be different between the two mutants.
Collapse
Affiliation(s)
- Xin-hui Wang
- College of Life Science and Technology, Xinjiang University
| | | | | | | |
Collapse
|
36
|
Zhu W, Easthon LM, Reinhardt LA, Tu C, Cohen SE, Silverman DN, Allen KN, Richards NGJ. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase. Biochemistry 2016; 55:2163-73. [PMID: 27014926 PMCID: PMC4854488 DOI: 10.1021/acs.biochem.6b00043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxalate
decarboxylase (OxDC) catalyzes the conversion of oxalate
into formate and carbon dioxide in a remarkable reaction that requires
manganese and dioxygen. Previous studies have shown that replacing
an active-site loop segment Ser161-Glu162-Asn163-Ser164 in the N-terminal domain of OxDC with
the cognate residues Asp161-Ala162-Ser-163-Asn164 of an evolutionarily related, Mn-dependent
oxalate oxidase gives a chimeric variant (DASN) that exhibits significantly
increased oxidase activity. The mechanistic basis for this change
in activity has now been investigated using membrane inlet mass spectrometry
(MIMS) and isotope effect (IE) measurements. Quantitative analysis
of the reaction stoichiometry as a function of oxalate concentration,
as determined by MIMS, suggests that the increased oxidase activity
of the DASN OxDC variant is associated with only a small fraction
of the enzyme molecules in solution. In addition, IE measurements
show that C–C bond cleavage in the DASN OxDC variant proceeds
via the same mechanism as in the wild-type enzyme, even though the
Glu162 side chain is absent. Thus, replacement of the loop
residues does not modulate the chemistry of the enzyme-bound Mn(II)
ion. Taken together, these results raise the possibility that the
observed oxidase activity of the DASN OxDC variant arises from an
increased level of access of the solvent to the active site during
catalysis, implying that the functional role of Glu162 is
to control loop conformation. A 2.6 Å resolution X-ray crystal
structure of a complex between oxalate and the Co(II)-substituted
ΔE162 OxDC variant, in which Glu162 has been deleted
from the active site loop, reveals the likely mode by which the substrate
coordinates the catalytically active Mn ion prior to C–C bond
cleavage. The “end-on” conformation of oxalate observed
in the structure is consistent with the previously published V/K IE data and provides an empty coordination
site for the dioxygen ligand that is thought to mediate the formation
of Mn(III) for catalysis upon substrate binding.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Lindsey M Easthon
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Laurie A Reinhardt
- Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53726, United States
| | - Chingkuang Tu
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Steven E Cohen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - David N Silverman
- Department of Pharmacology & Therapeutics, University of Florida , Gainesville, Florida 32610, United States
| | - Karen N Allen
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|
37
|
Colmer HE, Howcroft AW, Jackson TA. Formation, Characterization, and O-O Bond Activation of a Peroxomanganese(III) Complex Supported by a Cross-Clamped Cyclam Ligand. Inorg Chem 2016; 55:2055-69. [PMID: 26908013 DOI: 10.1021/acs.inorgchem.5b02398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although there have been reports describing the nucleophilic reactivity of peroxomanganese(III) intermediates, as well as their conversion to high-valent oxo-bridged dimers, it remains a challenge to activate peroxomanganese(III) species for conversion to high-valent, mononuclear manganese complexes. Herein, we report the generation, characterization, and activation of a peroxomanganese(III) adduct supported by the cross-clamped, macrocyclic Me2EBC ligand (4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). This ligand is known to support high-valent, mononuclear Mn(IV) species with well-defined spectroscopic properties, which provides an opportunity to identify mononuclear Mn(IV) products from O-O bond activation of the corresponding Mn(III)-peroxo adduct. The peroxomanganese(III) intermediate, [Mn(III)(O2)(Me2EBC)](+), was prepared at low-temperature by the addition of KO2 to [Mn(II)(Cl)2(Me2EBC)] in CH2Cl2, and this complex was characterized by electronic absorption, electron paramagnetic resonance (EPR), and Mn K-edge X-ray absorption (XAS) spectroscopies. The electronic structure of the [Mn(III)(O2)(Me2EBC)](+) intermediate was examined by density functional theory (DFT) and time-dependent (TD) DFT calculations. Detailed spectroscopic investigations of the decay products of [Mn(III)(O2)(Me2EBC)](+) revealed the presence of mononuclear Mn(III)-hydroxo species or a mixture of mononuclear Mn(IV) and Mn(III)-hydroxo species. The nature of the observed decay products depended on the amount of KO2 used to generate [Mn(III)(O2)(Me2EBC)](+). The Mn(III)-hydroxo product was characterized by Mn K-edge XAS, and shifts in the pre-edge transition energies and intensities relative to [Mn(III)(O2)(Me2EBC)](+) provide a marker for differences in covalency between peroxo and nonperoxo ligands. To the best of our knowledge, this work represents the first observation of a mononuclear Mn(IV) center upon decay of a nonporphyrinoid Mn(III)-peroxo center.
Collapse
Affiliation(s)
- Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Anthony W Howcroft
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
38
|
Zhu W, Wilcoxen J, Britt RD, Richards NGJ. Formation of Hexacoordinate Mn(III) in Bacillus subtilis Oxalate Decarboxylase Requires Catalytic Turnover. Biochemistry 2016; 55:429-34. [PMID: 26744902 DOI: 10.1021/acs.biochem.5b01340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the disproportionation of oxalic acid monoanion into CO2 and formate. The enzyme has long been hypothesized to utilize dioxygen to form mononuclear Mn(III) or Mn(IV) in the catalytic site during turnover. Recombinant OxDC, however, contains only tightly bound Mn(II), and direct spectroscopic detection of the metal in higher oxidation states under optimal catalytic conditions (pH 4.2) has not yet been reported. Using parallel mode electron paramagnetic resonance spectroscopy, we now show that substantial amounts of Mn(III) are indeed formed in OxDC, but only in the presence of oxalate and dioxygen under acidic conditions. These observations provide the first direct support for proposals in which Mn(III) removes an electron from the substrate to yield a radical intermediate in which the barrier to C-C bond cleavage is significantly decreased. Thus, OxDC joins a small list of enzymes capable of stabilizing and controlling the reactivity of the powerful oxidizing species Mn(III).
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| |
Collapse
|
39
|
Chang CH, Richards NGJ. Intrinsic Carbon-Carbon Bond Reactivity at the Manganese Center of Oxalate Decarboxylase from Density Functional Theory. J Chem Theory Comput 2015; 1:994-1007. [PMID: 26641915 DOI: 10.1021/ct050063d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detailed manganese-dependent chemistry employed by oxalate decarboxylase (OxDC) to catalyze the nonoxidative decarboxylation of oxalic acid remains poorly understood. For example, enzyme activity requires the presence of dioxygen even though this compound is not a formal substrate in the reaction. We now report density functional theory (DFT) calculations upon a series of hypothetical OxDC active site model structures. Our results suggest that the function of the metal ion may be to position dioxygen and oxalate such that electrons can be shuttled directly between these species, thereby removing the need for the existence of Mn(III) as an intermediate in the mechanism. These calculations also indicate that the intrinsic, gas-phase reactivity of the Bacillus subtilis oxalate decarboxylase active center is to oxidize oxalate. Since this reactivity is not observed for OxDC, our DFT results suggest that protein environment modulates the intrinsic metallocenter reactivity, presumably by affecting the electronic distribution at the manganese center during catalysis.
Collapse
Affiliation(s)
- Christopher H Chang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Nigel G J Richards
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| |
Collapse
|
40
|
Immobilization of Bacillus subtilis oxalate decarboxylase on a Zn-IMAC resin. Biochem Biophys Rep 2015; 4:98-103. [PMID: 29124192 PMCID: PMC5668902 DOI: 10.1016/j.bbrep.2015.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Oxalate decarboxylase, a bicupin enzyme coordinating two essential manganese ions per subunit, catalyzes the decomposition of oxalate into carbon dioxide and formate in the presence of oxygen. Current efforts to elucidate its catalytic mechanism are focused on EPR studies of the Mn. We report on a new immobilization strategy linking the enzyme's N-terminal His6-tag to a Zn-loaded immobilized metal affinity resin. Activity is lowered somewhat due to the expected crowding effect. High-field EPR spectra of free and immobilized enzyme show that the resin affects the coordination environment of the active site Mn ions only minimally. The immobilized preparation was used to study the effect of varying pH on the same sample. Repeated freeze-thaw cycles lead to break down of the resin beads and some enzyme loss from the sample. However, the EPR signal increases due to higher packing efficiency on the sample column. Immobilization of Oxalate decarboxylase on Zn-IMAC resin. Overall KM is unaffected after immobilization. Immobilized enzyme exhibits lower overall activity due to crowding on the resin. High-field EPR confirms minimal perturbations of manganese sites due to immobilization.
Collapse
|
41
|
Twahir UT, Stedwell CN, Lee CT, Richards NGJ, Polfer NC, Angerhofer A. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4. Free Radic Biol Med 2015; 80:59-66. [PMID: 25526893 PMCID: PMC4355160 DOI: 10.1016/j.freeradbiomed.2014.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023]
Abstract
This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein.
Collapse
Affiliation(s)
- Umar T Twahir
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Corey N Stedwell
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Cory T Lee
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Nigel G J Richards
- Department of Chemistry & Chemical Biology, Indiana University Purdue University, Indianapolis, Indianapolis, IN 46202, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
42
|
Abdellaoui S, Hickey DP, Stephens AR, Minteer SD. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. Chem Commun (Camb) 2015; 51:14330-3. [PMID: 26271633 DOI: 10.1039/c5cc06131h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete electro-oxidation of glycerol to CO2is performed through an electro-oxidation cascade using a hybrid catalytic system combining an organic oxidation catalyst, 4-amino-TEMPO and a recombinant enzyme, oxalate decarboxylase fromBacillus subtilis.
Collapse
Affiliation(s)
- Sofiene Abdellaoui
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - David P. Hickey
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - Andrew R. Stephens
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science and Engineering
- Salt Lake City
- USA
| |
Collapse
|
43
|
Colmer HE, Geiger RA, Leto DF, Wijeratne GB, Day VW, Jackson TA. Geometric and electronic structure of a peroxomanganese(III) complex supported by a scorpionate ligand. Dalton Trans 2014; 43:17949-63. [PMID: 25312785 PMCID: PMC4237624 DOI: 10.1039/c4dt02483d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monomeric Mn(II) complex has been prepared with the facially-coordinating Tp(Ph2) ligand, (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin Mn(II) ion. Treatment of this Mn(II) complex with excess KO2 at room temperature resulted in the formation of a Mn(III)-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the Mn(III)-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz(2) MO that is the donor MO for this transition.
Collapse
Affiliation(s)
- Hannah E Colmer
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
ABSTRACT
A variety of bioactive peptides and proteins have been successfully displayed on the surface of recombinant spores of
Bacillus subtilis
and other sporeformers. In most cases, spore display has been achieved by stably anchoring the foreign molecules to endogenous surface proteins or parts of them. Recombinant spores have been proposed for a large number of potential applications ranging from oral vaccine vehicles to bioremediation tools, and including biocatalysts, probiotics for animal or human use, as well as the generation and screening of mutagenesis libraries. In addition, a nonrecombinant approach has been recently developed to adsorb antigens and enzymes on the spore surface. This nonrecombinant approach appears particularly well suited for applications involving the delivery of active molecules to human or animal mucosal surfaces. Both the recombinant and nonrecombinant spore display systems have a number of advantages over cell- or phage-based systems. The stability, safety of spores of several bacterial species, and amenability to laboratory manipulations, together with the lack of some constraints limiting the use of other systems, make the spore a highly efficient platform to display heterologous proteins.
Collapse
|
45
|
Lee E, Jeong BC, Park YH, Kim HH. Expression of the gene encoding oxalate decarboxylase from Bacillus subtilis and characterization of the recombinant enzyme. BMC Res Notes 2014; 7:598. [PMID: 25186982 PMCID: PMC4161865 DOI: 10.1186/1756-0500-7-598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background The concentration of urinary oxalate is more influential to the formation of calcium oxalate urolithiasis than is urinary calcium concentration. YvrK gene encodes a 43 KD-sized oxalate decarboxylase. We previously developed the recombinant Escherichia coli (E. coli) expressing Yvrk gene from Bacillus subtilis and named it as pBy. The aim of this study was to purify the recombinant oxalate decarboxylase overexpressed in E. coli and evaluate the oxalate-degrading activity of the purified enzyme. Results The oxalate-degrading activity of pBy was highest when cultured at pH 5. The activity of purified oxalate decarboxylase was determined after incubation with sodium oxalate and the optimal pH and temperature of oxalate decarboxylase were determined. Purified oxalate decarboxylase degraded more than 50% of oxalate when incubated with MnCl2 and sodium oxalate in atmospheric O2. The optimal pH of recombinant oxalate decarboxylase was 5 and the optimal temperature was 28°C. Eight-week-old Sprague–Dawley male rats were used as a transient hyperoxaluric rat model. Suprapubic catheter was inserted into the bladder of each rat and urine was collected hourly before and 3 hours after oral oxalate intake in the absence and presence of homogenates of pBy and non-recombinant E. coli as the control. After the oral intake of sodium oxalate, the concentration of oxalate in urine increased exponentially for 3 hours. The oxalate concentration in urine was decreased significantly by pBy homogenates compared to control. Conclusions We constructed the recombinant E. coli expressing YvrK gene and purified the recombinant oxalate decarboxylase successfully. Purified recombinant oxalate decarboxylase, as well as recombinant E. coli named pBy, showed the oxalate-degrading activity in in vitro and in vivo model.
Collapse
Affiliation(s)
| | | | | | - Hyeon Hoe Kim
- Department of Urology, Seoul National University College of Medicine and Clinical Research Institute, 28 Yeongeon-dong, Jongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
46
|
Campomanes P, Kellett WF, Easthon LM, Ozarowski A, Allen KN, Angerhofer A, Rothlisberger U, Richards NGJ. Assigning the EPR fine structure parameters of the Mn(II) centers in Bacillus subtilis oxalate decarboxylase by site-directed mutagenesis and DFT/MM calculations. J Am Chem Soc 2014; 136:2313-23. [PMID: 24444454 PMCID: PMC4004257 DOI: 10.1021/ja408138f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants.
Collapse
Affiliation(s)
- Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Karmakar T, Periyasamy G, Balasubramanian S. CO2 migration pathways in oxalate decarboxylase and clues about its active site. J Phys Chem B 2013; 117:12451-60. [PMID: 24053484 DOI: 10.1021/jp4074834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase catalyzes the decarboxylation of oxalate to formate and CO2 in the presence of molecular oxygen. This enzyme has two domains, each containing a Mn(II) ion coordinated with three histidine residues. The specific domain in which the decarboxylation process takes place is still a matter of investigation. Herein, the transport of the product, i.e., CO2, from the reaction center to the surface of the enzyme is studied using atomistic molecular dynamics simulations. The specific pathway for the migration of the molecule as well as its microscopic interactions with the amino acid residues lining the path is delineated. Further, the transport of CO2 is shown to occur in a facile manner from only domain I and not from domain II, indicating that the former is likely to be the active site of the enzyme.
Collapse
Affiliation(s)
- Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | | | | |
Collapse
|
48
|
Matuz A, Giorgi M, Speier G, Kaizer J. Structural and functional comparison of manganese-, iron-, cobalt-, nickel-, and copper-containing biomimic quercetinase models. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Hajnal I, Lyskowski A, Hanefeld U, Gruber K, Schwab H, Steiner K. Biochemical and structural characterization of a novel bacterial manganese-dependent hydroxynitrile lyase. FEBS J 2013; 280:5815-28. [PMID: 23981508 DOI: 10.1111/febs.12501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
Hydroxynitrile lyases (HNLs), which catalyse the decomposition of cyanohydrins, are found mainly in plants. In vitro, they are able to catalyse the synthesis of enantiopure cyanohydrins, which are versatile building blocks in the chemical industry. Recently, HNLs have also been discovered in bacteria. Here, we report on the detailed biochemical and structural characterization of a hydroxynitrile lyase from Granulicella tundricola (GtHNL), which was successfully heterologously expressed in Escherichia coli. The crystal structure was solved at a crystallographic resolution of 2.5 Å and exhibits a cupin fold. As GtHNL does not show any sequence or structural similarity to any other HNL and does not contain conserved motifs typical of HNLs, cupins represent a new class of HNLs. GtHNL is metal-dependent, as confirmed by inductively coupled plasma/optical emission spectroscopy, and in the crystal structure, manganese is bound to three histidine and one glutamine residue. GtHNL displayed a specific activity of 1.74 U·mg(-1) at pH 6 with (R)-mandelonitrile, and synthesized (R)-mandelonitrile with 90% enantiomeric excess at 80% conversion using 0.5 m benzaldehyde in a biphasic reaction system with methyl tertiary butyl ether.
Collapse
Affiliation(s)
- Ivan Hajnal
- Austrian Centre of Industrial Biotechnology GmbH, Graz, Austria; Gebouw voor Scheikunde, Technische Universiteit Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Uberto R, Moomaw EW. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily. PLoS One 2013; 8:e74477. [PMID: 24040257 PMCID: PMC3765361 DOI: 10.1371/journal.pone.0074477] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.
Collapse
Affiliation(s)
- Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Ellen W. Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
- * E-mail:
| |
Collapse
|