1
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Bhuria V, Franz T, Baldauf C, Böttcher M, Chatain N, Koschmieder S, Brümmendorf TH, Mougiakakos D, Schraven B, Kahlfuß S, Fischer T. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal 2024; 22:186. [PMID: 38509561 PMCID: PMC10956330 DOI: 10.1186/s12964-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tobias Franz
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Böttcher
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dimitrios Mougiakakos
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. Emerging Role of AP-1 Transcription Factor JunB in Angiogenesis and Vascular Development. Int J Mol Sci 2021; 22:ijms22062804. [PMID: 33802099 PMCID: PMC8000613 DOI: 10.3390/ijms22062804] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Collapse
|
5
|
Ye C, Zhou Q, Hong Y, Li QQ. Role of alternative polyadenylation dynamics in acute myeloid leukaemia at single-cell resolution. RNA Biol 2019; 16:785-797. [PMID: 30810468 DOI: 10.1080/15476286.2019.1586139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alternative polyadenylation (APA) has been discovered to play regulatory roles in the development of many cancer cells through preferential addition of a poly(A) tail at specific sites of pre-mRNA. A recent study found that APA was involved in the mediation of acute myeloid leukaemia (AML). However, unlike gene expression heterogeneity, little attention has been directed toward variations in single-cell APA for different cell types during AML development. Here, we used single-cell RNA-seq data of a massive population of 16,843 bone marrow mononuclear cells (BMMCs) from healthy and AML patient samples to investigate dynamic APA usage in different cell types. Abnormalities of APA dynamics in the BMMCs from AML patient samples were uncovered compared to the stable APA dynamics in samples from healthy individuals, as well as lower APA diversity between eight cell types in AML patients. Genes with APA dynamics specific to the AML samples were significantly enriched in cellular signal transduction pathways that contribute to AML development. Moreover, many leukaemic cell marker genes such as NF-κB, GATA2 and IAP-Family genes exhibited APA dynamics that specifically affected abnormal proliferation and differentiation of leukemic BMMCs. Additionally, mature erythroid cells displayed greater APA dynamics and global 3' UTR shortening compared with other cell types. Our results revealed extensive involvement of APA regulation in leukemia development and erythropoiesis at the single-cell level, providing a high-resolution atlas to navigate cellular mRNA processing landscapes of differentiated cells in AML.
Collapse
Affiliation(s)
- Congting Ye
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qian Zhou
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China.,b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| | - Yiling Hong
- c College of Veterinary Medicine , Western University of Health Sciences , Pomona , CA , USA
| | - Qingshun Quinn Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China.,b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
6
|
Paolini NA, Moore KS, di Summa FM, Fokkema IFAC, ‘t Hoen PAC, von Lindern M. Ribosome profiling uncovers selective mRNA translation associated with eIF2 phosphorylation in erythroid progenitors. PLoS One 2018; 13:e0193790. [PMID: 29634759 PMCID: PMC5892948 DOI: 10.1371/journal.pone.0193790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/17/2018] [Indexed: 11/18/2022] Open
Abstract
The regulation of translation initiation factor 2 (eIF2) is important for erythroid survival and differentiation. Lack of iron, a critical component of heme and hemoglobin, activates Heme Regulated Inhibitor (HRI). This results in phosphorylation of eIF2 and reduced eIF2 availability, which inhibits protein synthesis. Translation of specific transcripts such as Atf4, however, is enhanced. Upstream open reading frames (uORFs) are key to this regulation. The aim of this study is to investigate how tunicamycin treatment, that induces eIF2 phosphorylation, affects mRNA translation in erythroblasts. Ribosome profiling combined with RNA sequencing was used to determine translation initiation sites and ribosome density on individual transcripts. Treatment of erythroblasts with Tunicamycin (Tm) increased phosphorylation of eIF2 2-fold. At a false discovery rate of 1%, ribosome density was increased for 147 transcripts, among which transcriptional regulators such as Atf4, Tis7/Ifrd1, Pnrc2, Gtf2h, Mbd3, JunB and Kmt2e. Translation of 337 transcripts decreased more than average, among which Dym and Csde1. Ribosome profiling following Harringtonine treatment uncovered novel translation initiation sites and uORFs. Surprisingly, translated uORFs did not predict the sensitivity of transcripts to altered ribosome recruitment in presence or absence of Tm. The regulation of transcription and translation factors in reponse to eIF2 phosphorylation may explain the large overall response to iron deficiency in erythroblasts.
Collapse
Affiliation(s)
- Nahuel A. Paolini
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Kat S. Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Franca M. di Summa
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Ivo F. A. C. Fokkema
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. C. ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Sudo T, Yokota T, Okuzaki D, Ueda T, Ichii M, Ishibashi T, Isono T, Habuchi Y, Oritani K, Kanakura Y. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury. PLoS One 2016; 11:e0154189. [PMID: 27111450 PMCID: PMC4844162 DOI: 10.1371/journal.pone.0154189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.
Collapse
Affiliation(s)
- Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Daisuke Okuzaki
- DNA Chip Development Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomomi Isono
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Habuchi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
8
|
Škugor A, Krasnov A, Andersen Ø. Genome-wide microarray analysis of Atlantic cod (Gadus morhua) oocyte and embryo. BMC Genomics 2014; 15:594. [PMID: 25023375 PMCID: PMC4124161 DOI: 10.1186/1471-2164-15-594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/09/2014] [Indexed: 01/06/2023] Open
Abstract
Background Regulation of gene expression plays a central role in embryonic development. Early stages are controlled by gametic transcripts, which are subsequently substituted with transcripts from the genome of the zygote. Transcriptomic analyses provide an efficient approach to explore the temporal gene expression profiles in embryos and to search for the developmental regulators. We report a study of early Atlantic cod development that used a genome-wide oligonucleotide microarray to examine the composition and putative roles of polyadenylated transcripts. Results The analyses were carried out in unfertilized oocytes, newly fertilized oocytes and embryos at the stages of mid-blastula transition and segmentation. Numerous genes transcribed in oocytes are involved in multiple aspects of cell maintenance and protection, including metabolism, signal perception and transduction, RNA processing, cell cycle, defense against pathogens and DNA damage. Transcripts found in unfertilized oocytes also encoded a large number of proteins implicated in cell adherence, tight junction and focal adhesion, suggesting high complexity in terms of structure and cellular interactions in embryos prior to midblastula transition (MBT). Prezygotic transcripts included multiple regulators that are most likely involved in developmental processes that take place long after fertilization, such as components of ErbB, hedgehog, notch, retinoid, TGFb, VEGF and Wnt signaling pathways, as well as transcripts involved in the development of nervous system. The major event of MBT was the activation of a large group of histones and other genes that modify chromatin structure preceding massive gene expression changes. A hallmark of events observed during segmentation was the induction of multiple transcription factors, including a large group of homeobox proteins in pace with decay of a large fraction of maternal transcripts. Microarray analyses detected a suite of master developmental regulators that control differentiation and maintenance of diverse cell lineages. Conclusions Transcriptome profiling of the early stages in Atlantic cod revealed the presence of transcripts involved in patterning and development of tissues and organs long before activation of the zygotic genome. The switch from maternal to zygotic developmental programs is associated with large-scale modification of chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-594) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Hydroxyurea-inducible SAR1 gene acts through the Giα/JNK/Jun pathway to regulate γ-globin expression. Blood 2014; 124:1146-56. [PMID: 24914133 DOI: 10.1182/blood-2013-10-534842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hydroxyurea (HU) is effectively used in the management of β-hemoglobinopathies by augmenting the production of fetal hemoglobin (HbF). However, the molecular mechanisms underlying HU-mediated HbF regulation remain unclear. We previously reported that overexpression of the HU-induced SAR1 gene closely mimics the known effects of HU on K562 and CD34(+) cells, including γ-globin induction and cell-cycle regulation. Here, we show that HU stimulated nuclear factor-κB interaction with its cognate-binding site on the SAR1 promoter to regulate transcriptional expression of SAR1 in K562 and CD34(+) cells. Silencing SAR1 expression not only significantly lowered both basal and HU-elicited HbF production in K562 and CD34(+) cells, but also significantly reduced HU-mediated S-phase cell-cycle arrest and apoptosis in K562 cells. Inhibition of c-Jun N-terminal kinase (JNK)/Jun phosphorylation and silencing of Giα expression in SAR1-transfected K562 and CD34(+) cells reduced both γ-globin expression and HbF level, indicating that activation of Giα/JNK/Jun proteins is required for SAR1-mediated HbF induction. Furthermore, reciprocal coimmunoprecipitation assays revealed an association between forcibly expressed SAR1 and Giα2 or Giα3 proteins in both K562 and nonerythroid cells. These results indicate that HU induces SAR1, which in turn activates γ-globin expression, predominantly through the Giα/JNK/Jun pathway. Our findings identify SAR1 as an alternative therapeutic target for β-globin disorders.
Collapse
|
10
|
Čokić VP, Smith RD, Biancotto A, Noguchi CT, Puri RK, Schechter AN. Globin gene expression in correlation with G protein-related genes during erythroid differentiation. BMC Genomics 2013; 14:116. [PMID: 23425329 PMCID: PMC3602204 DOI: 10.1186/1471-2164-14-116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results demonstrate the concomitant activity of GPCR-coupled genes and related signaling pathways during erythropoietic stimulation of globin genes. In accordance with previous reports, the stimulation of GPCRs supports the postulated connection between cAMP/PKA and NO/cGMP pathways in activation of γ-globin expression, via JUN and p38 MAPK signaling.
Collapse
Affiliation(s)
- Vladan P Čokić
- Laboratory of Experimental Hematology, Institute for Medical Research, University of Belgrade, Dr, Subotica 4, 11129, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
11
|
Kodippili GC, Spector J, Kang GE, Liu H, Wickrema A, Ritchie K, Low PS. Analysis of the kinetics of band 3 diffusion in human erythroblasts during assembly of the erythrocyte membrane skeleton. Br J Haematol 2010; 150:592-600. [PMID: 20553270 DOI: 10.1111/j.1365-2141.2010.08268.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During definitive erythropoiesis, erythroid precursors undergo differentiation through multiple nucleated states to an enucleated reticulocyte, which loses its residual RNA/organelles to become a mature erythrocyte. Over the course of these transformations, continuous changes in membrane proteins occur, including shifts in protein abundance, rates of expression, isoform prominence, states of phosphorylation, and stability. In an effort to understand when assembly of membrane proteins into an architecture characteristic of the mature erythrocyte occurs, we quantitated the lateral diffusion of the most abundant membrane protein, band 3 (AE1), during each stage of erythropoiesis using single particle tracking. Analysis of the lateral trajectories of individual band 3 molecules revealed a gradual reduction in mobility of the anion transporter as erythroblasts differentiated. Evidence for this progressive immobilization included a gradual decline in diffusion coefficients as determined at a video acquisition rate of 120 frames/s and a decrease in the percentage of compartment sizes >100 nm. Because complete acquisition of the properties of band 3 seen in mature erythrocytes is not observed until circulating erythrocytes are formed, we suggest that membrane maturation involves a gradual and cooperative assembly process that is not triggered by the synthesis of any single protein.
Collapse
|
12
|
Marqués-García F, Ferrandiz N, Fernández-Alonso R, González-Cano L, Herreros-Villanueva M, Rosa-Garrido M, Fernández-García B, Vaque JP, Marqués MM, Alonso ME, Segovia JC, León J, Marín MC. p73 plays a role in erythroid differentiation through GATA1 induction. J Biol Chem 2009; 284:21139-56. [PMID: 19509292 DOI: 10.1074/jbc.m109.026849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TP73 gene gives rise to transactivation domain-p73 isoforms (TAp73) as well as DeltaNp73 variants with a truncated N terminus. Although TAp73alpha and -beta proteins are capable of inducing cell cycle arrest, apoptosis, and differentiation, DeltaNp73 acts in many cell types as a dominant-negative repressor of p53 and TAp73. It has been proposed that p73 is involved in myeloid differentiation, and its altered expression is involved in leukemic degeneration. However, there is little evidence as to which p73 variants (TA or DeltaN) are expressed during differentiation and whether specific p73 isoforms have the capacity to induce, or hinder, this differentiation in leukemia cells. In this study we identify GATA1 as a direct transcriptional target of TAp73alpha. Furthermore, TAp73alpha induces GATA1 activity, and it is required for erythroid differentiation. Additionally, we describe a functional cooperation between TAp73 and DeltaNp73 in the context of erythroid differentiation in human myeloid cells, K562 and UT-7. Moreover, the impaired expression of GATA1 and other erythroid genes in the liver of p73KO embryos, together with the moderated anemia observed in p73KO young mice, suggests a physiological role for TP73 in erythropoiesis.
Collapse
|
13
|
Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia 2008; 23:144-52. [PMID: 18843287 DOI: 10.1038/leu.2008.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The JAK2 V617F mutation, present in the majority of polycythemia vera (PV) patients, causes constitutive activation of JAK2 and seems to be responsible for the PV phenotype. However, the transcriptional changes triggered by the mutation have not yet been totally characterized. In this study, we performed a large-scale gene expression study using serial analysis of gene expression in bone marrow cells of a newly diagnosed PV patient harboring the JAK2 V617F mutation and in normal bone marrow cells of healthy donors. JUNB was one of the genes upregulated in PV, and we confirmed, by quantitative real-time PCR, an overexpression of JUNB in hematopoietic cells of other JAK2 V617F PV patients. Using Ba/F3-EPOR cell lines and primary human erythroblast cultures, we found that JUNB was transcriptionally induced after erythropoietin addition and that JAK2 V617F constitutively induced JunB protein expression. Furthermore, JUNB knockdown reduced not only the growth of Ba/F3 cells by inducing apoptosis, but also the clonogenic and proliferative potential of human erythroid progenitors. These results establish a role for JunB in normal erythropoiesis and indicate that JunB may play a major role in the development of JAK2 V617F myeloproliferative disorders.
Collapse
|
14
|
Abstract
Abstract
Ikaros—a factor that positively or negatively controls gene transcription—is active in murine adult erythroid cells, and involved in fetal to adult globin switching. Mice with Ikaros mutations have defects in erythropoiesis and anemia. In this paper, we have studied the role of Ikaros in human erythroid development for the first time. Using a gene-transfer strategy, we expressed Ikaros 6 (Ik6)—a known dominant-negative protein that interferes with normal Ikaros activity—in cord blood or apheresis CD34+ cells that were induced to differentiate along the erythroid pathway. Lentivirally induced Ik6-forced expression resulted in increased cell death, decreased cell proliferation, and decreased expression of erythroid-specific genes, including GATA1 and fetal and adult globins. In contrast, we observed the maintenance of a residual myeloid population that can be detected in this culture system, with a relative increase of myeloid gene expression, including PU1. In secondary cultures, expression of Ik6 favored reversion of sorted and phenotypically defined erythroid cells into myeloid cells, and prevented reversion of myeloid cells into erythroid cells. We conclude that Ikaros is involved in human adult or fetal erythroid differentiation as well as in the commitment between erythroid and myeloid cells.
Collapse
|
15
|
Čokić VP, Schechter AN. Chapter 7 Effects of Nitric Oxide on Red Blood Cell Development and Phenotype. Curr Top Dev Biol 2008; 82:169-215. [DOI: 10.1016/s0070-2153(07)00007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Jin X, Song X, Li L, Wang Z, Tao Y, Deng L, Tang M, Yi W, Cao Y. Blockade of AP-1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma. Mol Carcinog 2007; 46:901-11. [PMID: 17477349 DOI: 10.1002/mc.20319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although activating protein-1 (AP-1) transcription factors play an important role in mediating metastasis for nasopharyngeal carcinoma (NPC), the biological and physiological functions of AP-1, in relation to the oncogenic phenotype of NPC, are not fully understood. Our previous study showed that the latent membrane protein 1 (LMP1) mediated a primary dimer form of c-jun and jun B. In this study, we used a NPC cell line that express a specific inhibitor of AP-1, a dominant-negative c-jun mutant (TAM67), to investigate the role of AP-1 in regulating the NPC oncogenic phenotype. First, we observed that TAM67 inhibited cell growth in vitro and in vivo. Next, with Western blotting, we discovered that TAM67 impaired the cyclin D1/cdk4 complex but had little effect on the cyclin E/cdk2 complex, concomitantly with inhibiting Rb phosphorylation. RT-PCR and luciferase assay results demonstrated that the levels of cyclin D1 mRNA and the promoter activity in TAM67 transfectants were reduced as compared with control cells. Thereby, we show that blockade of AP-1 transcriptional activity has a negative impact on cyclin D1 transcription. We obtained the first evidence that TAM67 prevented NPC growth both in vitro and in vivo. AP-1 appears to be a novel target for treating or preventing LMP1-positive NPC effectively.
Collapse
Affiliation(s)
- Xin Jin
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Glunde K, Jie C, Bhujwalla ZM. Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia 2006; 8:758-71. [PMID: 16984733 PMCID: PMC1584299 DOI: 10.1593/neo.06187] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human mammary epithelial cells (HMECs) exhibit an increase in phosphocholine (PC) and total choline-containing compounds, as well as a switch from high glycerophosphocholine (GPC)/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacin-induced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.
Collapse
Affiliation(s)
- Kristine Glunde
- MR Oncology Section, Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
18
|
Aida M, Chen Y, Nakajima K, Yamaguchi Y, Wada T, Handa H. Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene. Mol Cell Biol 2006; 26:6094-104. [PMID: 16880520 PMCID: PMC1592793 DOI: 10.1128/mcb.02366-05] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that DSIF- and NELF-mediated transcriptional pausing has a dual function in regulating immediate-early expression of the human junB gene. Before induction by interleukin-6, RNAPII, DSIF, and NELF accumulate in the promoter-proximal region of junB, mainly at around position +50 from the transcription initiation site. After induction, the association of these proteins with the promoter-proximal region continues whereas RNAPII and DSIF are also found in the downstream regions. Depletion of a subunit of NELF by RNA interference enhances the junB mRNA level both before and after induction, indicating that DSIF- and NELF-mediated pausing contributes to the negative regulation of junB expression, not only by inducing RNAPII pausing before induction but also by attenuating transcription after induction. These regulatory mechanisms appear to be conserved in other immediate-early genes as well.
Collapse
Affiliation(s)
- Masatoshi Aida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Song X, Tao YG, Zeng L, Deng XY, Lee LM, Gong JP, Wu Q, Cao Y. Latent membrane protein 1 encoded by Epstein-Barr virus modulates directly and synchronously cyclin D1 and p16 by newly forming a c-Jun/Jun B heterodimer in nasopharyngeal carcinoma cell line. Virus Res 2005; 113:89-99. [PMID: 15936839 DOI: 10.1016/j.virusres.2005.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Recently we confirmed that latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus (EBV) accelerates a newly forming active c-Jun/Jun B heterodimer, a transcription factor, but little is known about the target gene regulated by it. In this paper, results indicated that a c-Jun/Jun B heterodimer induced by LMP1 upregulated cyclin D1 promoters activity and expression, on the contrary, downregulated p16, and maladjustment of cyclin D1 and p16 expression accelerated progression of cell cycle. Firstly, we found a c-Jun/Jun B heterodimer regulated synchronously and directly cyclin D1 and p16 in the Tet-on-LMP1-HNE2 cell line, in which LMP1 expression is regulated by Tet-on system. This paper investigated in depth function of the newly forming active c-Jun/Jun B heterodimer, and built new connection between environmental pathogenic factor, signal transduction and cell cycle.
Collapse
Affiliation(s)
- X Song
- Cancer Research Institute, Xiangya School of Medicine, Central South of University, No. 88 Road Xiangya, Changsha 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gustafsson AC, Kupershmidt I, Edlundh-Rose E, Greco G, Serafino A, Krasnowska EK, Lundeberg T, Bracci-Laudiero L, Romano MC, Parasassi T, Lundeberg J. Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro. BMC Cancer 2005; 5:75. [PMID: 16001974 PMCID: PMC1182358 DOI: 10.1186/1471-2407-5-75] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 07/07/2005] [Indexed: 01/07/2023] Open
Abstract
Background Cancer prevention trials using different types of antioxidant supplements have been carried out at several occasions and one of the investigated compounds has been the antioxidant N-acetyl-L-cysteine (NAC). Studies at the cellular level have previously demonstrated that a single supplementation of NAC induces a ten-fold more rapid differentiation in normal primary human keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation [1]. The investigated cells showed an early change in the organization of the cytoskeleton, several newly established adherens junctions with E-cadherin/β-catenin complexes and increased focal adhesions, all features characterizing the differentiation process. Methods In order to investigate the molecular mechanisms underlying the proliferation arrest and accelerated differentiation induced by NAC treatment of NHEK and Caco-2 cells in vitro, we performed global gene expression analysis of NAC treated cells in a time series (1, 12 and 24 hours post NAC treatment) using the Affymetrix GeneChip™ Human Genome U95Av2 chip, which contains approximately 12,000 previously characterized sequences. The treated samples were compared to the corresponding untreated culture at the same time point. Results Microarray data analysis revealed an increasing number of differentially expressed transcripts over time upon NAC treatment. The early response (1 hour) was transient, while a constitutive trend was commonly found among genes differentially regulated at later time points (12 and 24 hours). Connections to the induction of differentiation and inhibition of growth were identified for a majority of up- and down-regulated genes. All of the observed transcriptional changes, except for seven genes, were unique to either cell line. Only one gene, ID-1, was mutually regulated at 1 hour post treatment and might represent a common mediator of early NAC action. The detection of several genes that previously have been identified as stimulated or repressed during the differentiation of NHEK and Caco-2 provided validation of results. In addition, real-time kinetic PCR analysis of selected genes also verified the differential regulation as identified by the microarray platform. Conclusion NAC induces a limited and transient early response followed by a more consistent and extensively different expression at later time points in both the normal and cancer cell lines investigated. The responses are largely related to inhibition of proliferation and stimulation of differentiation in both cell types but are almost completely lineage specific. ID-1 is indicated as an early mediator of NAC action.
Collapse
Affiliation(s)
- Anna C Gustafsson
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Ilya Kupershmidt
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
- Silicon Genetics, 2601 Spring Street, Redwood City, California 94063, USA
| | - Esther Edlundh-Rose
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Annalucia Serafino
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Eva K Krasnowska
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Thomas Lundeberg
- Rehabilitation Medicine, Karolinska University Hospital, 117 76 Stockholm, Sweden
| | - Luisa Bracci-Laudiero
- Associazione Italiana Iniziativa Medicina Sociale, Corso Trieste 16, 00185 Roma, Italy
| | - Maria-Concetta Romano
- Associazione Italiana Iniziativa Medicina Sociale, Corso Trieste 16, 00185 Roma, Italy
| | - Tiziana Parasassi
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Joakim Lundeberg
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Song X, Tao YG, Deng XY, Jin X, Tan YN, Tang M, Wu Q, Lee LM, Cao Y. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein–Barr virus encoded latent membrane protein 1. Cell Signal 2004; 16:1153-62. [PMID: 15240010 DOI: 10.1016/j.cellsig.2004.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 03/15/2004] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is essential for the immortalization of human B cells and is linked etiologically to several human tumors. LMP1 is an integral membrane protein which acts like a constitutively active receptor. It binds tumor necrosis factor (TNF)-receptor-associated factors (TRAFs), activates NFkappaB and triggers the transcription factor activating protein-1 (AP-1) via the c-Jun N-terminal kinase (JNK) cascade, but its specific contribution to AP-1 has not been elucidated fully. Members of AP-1 family, the Jun and fos related protein, have been shown to directly interact and form heterodimeric complexes. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser63, ser73) and Jun B involved in the process of the new heterodimeric form. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer form of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xin Song
- Cancer Research Institute, Xiangya School of Medicine, Central South of University, 88 Xiangya Road, Changsha 410078, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Winteringham LN, Kobelke S, Williams JH, Ingley E, Klinken SP. Myeloid Leukemia Factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene 2004; 23:5105-9. [PMID: 15122318 DOI: 10.1038/sj.onc.1207661] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myeloid leukemia factor 1 (MLF1) is a novel oncoprotein involved in translocations associated with acute myeloid leukemia (AML), especially erythroleukemias. In this study, we demonstrate that ectopic expression of Mlf1 prevented J2E erythroleukemic cells from undergoing biological and morphological maturation in response to erythropoietin (Epo). We show that Mlf1 inhibited Epo-induced cell cycle exit and suppressed a rise in the cell cycle inhibitor p27(Kip1). Unlike differentiating J2E cells, Mlf1-expressing cells did not downregulate Cul1 and Skp2, components of the ubiquitin E3 ligase complex SCF(Skp2) involved in the proteasomal degradation of p27(Kip1). In contrast, Mlf1 did not interfere with increases in p27(Kip1) and terminal differentiation initiated by thyroid hormone withdrawal from erythroid cells, or cytokine-stimulated maturation of myeloid cells. These data demonstrate that Mlf1 interferes with an Epo-responsive pathway involving p27(Kip1) accumulation, which inhibits cell cycle arrest essential for erythroid terminal differentiation.
Collapse
Affiliation(s)
- Louise Natalie Winteringham
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, and Centre for Medical Research, The University of Western Australia, Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|
23
|
Jacobs-Helber SM, Sawyer ST. Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines. Blood 2004; 104:696-703. [PMID: 15059850 DOI: 10.1182/blood-2003-05-1754] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) is the hormone necessary for development of erythrocytes from immature erythroid cells. EPO activates Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in the EPO-dependent murine erythroid HCD57 cells. Therefore, we tested if JNK activity supported proliferation and/or survival of these cells. Treatment with the JNK inhibitor SP600125 inhibited JNK activity and EPO-dependent proliferation of HCD57 cells and the human EPO-dependent cell lines TF-1 and UT7-EPO. SP600125 also increased the fraction of cells in G2/M. Introduction of a dominant-negative form of JNK1 inhibited EPO-dependent proliferation in HCD57 cells but did not increase the fraction of cells in G2/M. Constitutive JNK activity was observed in primary murine erythroid progenitors. Treatment of primary mouse bone marrow cells with the SP600125 inhibitor reduced the number of erythroid burst-forming units (BFU-e's) but not the more differentiated erythroid colony-forming units (CFU-e's), and SP600125 protected the BFU-e's from apoptosis induced by cytosine arabinoside, demonstrating that the SP600125 inhibited proliferation of the BFU-e's. Therefore, JNK activity appears to be an important regulator of proliferation in immature, primary erythroid cells and 3 erythroid cell lines but may not be required for the survival or proliferation of CFU-e's or proerythroblasts.
Collapse
Affiliation(s)
- Sarah M Jacobs-Helber
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
24
|
Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, Blobel GA, Weiss MJ. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 2003; 23:5031-42. [PMID: 12832487 PMCID: PMC162202 DOI: 10.1128/mcb.23.14.5031-5042.2003] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 03/07/2003] [Accepted: 04/17/2003] [Indexed: 12/15/2022] Open
Abstract
Transcription factor GATA-1 is essential for erythroid and megakaryocytic maturation. GATA-1 mutations are associated with hematopoietic precursor proliferation and leukemogenesis, suggesting a role in cell cycle control. While numerous GATA-1 target genes specifying mature hematopoietic phenotypes have been identified, how GATA-1 regulates proliferation remains unknown. We used a complementation assay based on synchronous inducible rescue of GATA-1(-) erythroblasts to show that GATA-1 promotes both erythroid maturation and G(1) cell cycle arrest. Molecular studies combined with microarray transcriptome analysis revealed an extensive GATA-1-regulated program of cell cycle control in which numerous growth inhibitors were upregulated and mitogenic genes were repressed. GATA-1 inhibited expression of cyclin-dependent kinase (Cdk) 6 and cyclin D2 and induced the Cdk inhibitors p18(INK4C) and p27(Kip1) with associated inactivation of all G(1) Cdks. These effects were dependent on GATA-1-mediated repression of the c-myc (Myc) proto-oncogene. GATA-1 inhibited Myc expression within 3 h, and chromatin immunoprecipitation studies indicated that GATA-1 occupies the Myc promoter in vivo, suggesting a direct mechanism for gene repression. Surprisingly, enforced expression of Myc prevented GATA-1-induced cell cycle arrest but had minimal effects on erythroid maturation. Our results illustrate how GATA-1, a lineage-determining transcription factor, coordinates proliferation arrest with cellular maturation through distinct, interrelated genetic programs.
Collapse
Affiliation(s)
- Marcin Rylski
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jacobs-Helber SM, Roh KH, Bailey D, Dessypris EN, Ryan JJ, Chen J, Wickrema A, Barber DL, Dent P, Sawyer ST. Tumor necrosis factor-alpha expressed constitutively in erythroid cells or induced by erythropoietin has negative and stimulatory roles in normal erythropoiesis and erythroleukemia. Blood 2003; 101:524-31. [PMID: 12393629 DOI: 10.1182/blood-2001-11-0084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of erythropoietin (EPO) to its receptor (EPOR) on erythroid cells induces the activation of numerous signal transduction pathways, including the mitogen-activated protein kinase Jun-N-terminal kinase (JNK). In an effort to understand the regulation of EPO-induced proliferation and JNK activation, we have examined the role of potential autocrine factors in the proliferation of the murine erythroleukemia cell line HCD57. We report here that treatment of these cells with EPO induced the expression and secretion of tumor necrosis factor alpha (TNF-alpha). EPO-dependent proliferation was reduced by the addition of neutralizing antibodies to TNF-alpha, and exogenously added TNF-alpha induced proliferation of HCD57 cells. EPO also could induce TNF-alpha expression in BAF3 and DA3 myeloid cells ectopically expressing EPOR. Addition of TNF-alpha activated JNK in HCD57 cells, and the activity of JNK was partially inhibited by addition of a TNF-alpha neutralizing antibody. Primary human and murine erythroid progenitors expressed TNF-alpha in either an EPO-dependent or constitutive manner. However, TNF-alpha had an inhibitory effect on both immature primary human and murine cells, suggestive that the proliferative effects of TNF-alpha may be limited to erythroleukemic cells. This study suggests a novel role for autocrine TNF-alpha expression in the proliferation of erythroleukemia cells that is distinct from the effect of TNF-alpha in normal erythropoiesis.
Collapse
Affiliation(s)
- Sarah M Jacobs-Helber
- Departments of Pharmacology/Toxicology, Radiation Oncology and Physiology, Medical College of Virginia Campus, Richmond 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|