1
|
Dolla G, Nicolas S, Dos Santos LR, Bourgeois A, Pardossi-Piquard R, Bihl F, Zaghrini C, Justino J, Payré C, Mansuelle P, Garbers C, Ronco P, Checler F, Lambeau G, Petit-Paitel A. Ectodomain shedding of PLA2R1 is mediated by the metalloproteases ADAM10 and ADAM17. J Biol Chem 2024; 300:107480. [PMID: 38897568 PMCID: PMC11301074 DOI: 10.1016/j.jbc.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by β- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.
Collapse
Affiliation(s)
- Guillaume Dolla
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Sarah Nicolas
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Ligia Ramos Dos Santos
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Alexandre Bourgeois
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Franck Bihl
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christelle Zaghrini
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Joana Justino
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Christine Payré
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Pascal Mansuelle
- Plateforme de Protéomique de l'Institut de Microbiologie de la Méditerranée (IMM), Marseille Protéomique (MaP), Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS) FR3479, Marseille, France
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Pierre Ronco
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S1155, Paris, France; Sorbonne Université, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Frédéric Checler
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Laboratoire d'Excellence DistALZ, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| | - Agnès Petit-Paitel
- Centre National de la Recherche Scientifique, Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Université Côte d'Azur (UniCa), Valbonne, France.
| |
Collapse
|
2
|
Alekseeva AS, Boldyrev IA. Alternative Targets for sPLA2 Activity: Role of Membrane-Enzyme Interactions. MEMBRANES 2023; 13:618. [PMID: 37504984 PMCID: PMC10384401 DOI: 10.3390/membranes13070618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The secreted phospholipases A2 (sPLA2s) play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity, Alzheimer's disease and even COVID-19. The fact has led to a large-scale search for inhibitors of these enzymes. In total, several dozen promising molecules have been proposed, but not a single one has successfully passed clinical trials. The failures in clinical studies motivated in-depth fundamental studies of PLA2s. Here we review alternative ways to control sPLA2 activity, outside its catalytic site. The concept can be realized by preventing sPLA2 from attaching to the membrane surface; by binding to an external protein which blocks sPLA2 hydrolytic activity; by preventing sPLA2 from orienting properly on the membrane surface; and by preventing substrate binding to the enzyme, keeping the catalytic site unaltered. Evidence in the literature is summarized in the review with the aim to serve as a starting point for new types of sPLA2 inhibitors.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Treatment of Mouse Sperm with a Non-Catalytic Mutant of PLA2G10 Reveals That PLA2G10 Improves In Vitro Fertilization through Both Its Enzymatic Activity and as Ligand of PLA2R1. Int J Mol Sci 2022; 23:ijms23148033. [PMID: 35887380 PMCID: PMC9320362 DOI: 10.3390/ijms23148033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization.
Collapse
|
4
|
Regner PI, Saggese MD, de Oliveira VC, Lanari LC, Desio MA, Quaglia AIE, Wiemeyer G, Capdevielle A, Zuñiga SN, de Roodt CJI, de Roodt AR. Neutralization of "Chaco eagle" (Buteogallus coronatus) serum on some activities of Bothrops spp. venoms. Toxicon 2022; 216:73-87. [PMID: 35714890 DOI: 10.1016/j.toxicon.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Several species of reptiles and mammals have components in their sera that can neutralize toxic components present in snake venoms. In this manuscript, we studied the neutralizing capacity of Chaco eagle's (Buteogallus coronatus) serum. This South American bird of prey eats snakes as a regular part of its diet and has anatomical features that protect from snakes' bites. The neutralizing potency of the Chaco eagle's serum was tested on lethal, hemorrhagic, procoagulant, and phospholipase activities of the venom of "yarará grande" (Bothrops alternatus) and on phospholipase activity of "yarará ñata" (Bothrops ammodytoides) venom; both snakes are known to be the prey of Chaco eagle. Sera of crested caracara (Caracara plancus-a scavenger, omnivorous pan-American bird of prey), secretary bird (Saggitarius serpentarius-an omnivorous bird of prey from Africa that can include venomous snakes in its diet), common hen (Gallus gallus), rat (Rattus norvegicus), mouse (Mus musculus), horse (Equus caballus), and dog (Canis lupus familiaris) were also tested to compare the inhibitory capacity of neutralization. To test isologous and xenologous neutralization, sera from Bothrops alternatus and white-eared opossum (Didelphis albiventris), respectively, were used due to their known inhibitory activity on Bothrops venoms. As a control for the neutralization activity, antibothropic antivenom was used. Chaco eagle's serum neutralized hemorrhagic and phospholipasic activity and slightly neutralized the coagulation and the lethal activity of Bothrops spp. venom. The neutralizing capacity was present in the non-immunoglobulin fraction of the serum, which showed components of acidic characteristics and lower molecular weight than IgY, in correspondence with the characteristics of PLA2s and SVMPs inhibitors described in sera from some snakes and mammals. These studies showed that Chaco eagle's serum neutralizes all toxic activities tested at a higher level than sera from animal species in which inhibitors of snake venoms have not been described (p < 0.05), while it is lower or similar in neutralizing capacity to white-eared opossum and B. alternatus sera.
Collapse
Affiliation(s)
- Pablo I Regner
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Cátedra de Medicina, Producción y Tecnologías de Fauna Acuática y Terrestre, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Caba, Argentina
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vanessa C de Oliveira
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina
| | - Laura C Lanari
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Marcela A Desio
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Agustín I E Quaglia
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Guillermo Wiemeyer
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Andrés Capdevielle
- Ecoparque Buenos Aires, Ministerio de Ambiente y Espacio Público, Buenos Aires, Argentina
| | | | - Carolina J I de Roodt
- Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina
| | - Adolfo R de Roodt
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Caba, Argentina; Área Investigación y Desarrollo, Instituto Nacional de Producción de Biológicos - ANLIS "Dr. Carlos G. Malbrán", Caba, Argentina.
| |
Collapse
|
5
|
Lerner GB, Virmani S, Henderson JM, Francis JM, Beck LH. A conceptual framework linking immunology, pathology, and clinical features in primary membranous nephropathy. Kidney Int 2021; 100:289-300. [PMID: 33857571 DOI: 10.1016/j.kint.2021.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/07/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Primary membranous nephropathy is a leading cause of adult nephrotic syndrome. The field took a major step forward with the identification of phospholipase A2 receptor (PLA2R) as a target antigen in the majority of cases and with the ability to measure circulating autoantibodies to PLA2R. Since then, the existence of additional target antigens such as thrombospondin type-1 domain-containing 7A, exostosin 1 and 2, neural EGFL like 1, and semaphorin 3B has been demonstrated. The ability to detect and monitor levels of circulating autoantibodies has opened a new window onto the humoral aspect of primary membranous nephropathy. Clinicians now rely on clinical parameters such as proteinuria, as well as levels of circulating autoantibodies against PLA2R and the results of immunofluorescence staining for PLA2R within kidney biopsy tissue, to guide the management of this disease. The relationship between immunologic and clinical disease course is consistent, but not necessarily intuitive. In addition, kidney biopsy provides only a single snapshot of disease that needs to be interpreted in light of changing clinical and serological findings. A clear understanding of these dynamic parameters is essential for staging, treatment, and management of this disease. This review aims to shed light on current knowledge regarding the development and time course of changes in the serum levels of autoantibodies against PLA2R, proteinuria, and histological findings that underlie the pathophysiology of primary membranous nephropathy.
Collapse
Affiliation(s)
- Gabriel B Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Samarth Virmani
- Department of Internal Medicine, University of Central Florida College of Medicine, Gainesville, Florida, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Jean M Francis
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Laurence H Beck
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
7
|
Ronco P, Debiec H. Molecular Pathogenesis of Membranous Nephropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:287-313. [PMID: 31622560 DOI: 10.1146/annurev-pathol-020117-043811] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membranous nephropathy is a noninflammatory autoimmune disease of the kidney glomerulus, characterized by the formation of immune deposits, complement-mediated proteinuria, and risk of renal failure. Considerable advances in understanding the molecular pathogenesis have occurred with the identification of several antigens [neutral endopeptidase, phospholipase A2 receptor (PLA2R), thrombospondin domain-containing 7A (THSD7A)] in cases arising from the neonatal period to adulthood and the characterization of antibody-binding domains (that is, epitopes). Immunization against PLA2R occurs in 70% to 80% of adult cases. The development of highly specific and sensitive assays of circulating antibodies has induced a paradigm shift in diagnosis and treatment monitoring. In addition, several interacting loci in HLA-DQ, HLA-DR, and PLA2R1, as well as classical human leukocyte antigen (HLA)-D alleles have been identified as being risk factors, depending on a patient's ethnicity. Additionally, mechanisms of antibody pathogenicity and pathways of complement activation are now better understood. Further research is mandatory for designing new therapeutic strategies, including the identifying triggering events, the molecular bases of remission and progression, and the T cell epitopes involved.
Collapse
Affiliation(s)
- Pierre Ronco
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| | - Hanna Debiec
- Rare and Common Kidney Diseases: From Molecular Mechanisms to Personalized Medicine Unit, INSERM UMRS 1155, Sorbonne Université, 75020 Paris, France;
| |
Collapse
|
8
|
Williams D, Fingleton B. Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis. Clin Exp Metastasis 2019; 36:211-224. [PMID: 31073762 DOI: 10.1007/s10585-019-09967-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.
Collapse
Affiliation(s)
- Demond Williams
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Program in Cancer Biology and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Watanabe K, Watanabe K, Watanabe Y, Fujioka D, Nakamura T, Nakamura K, Obata JE, Kugiyama K. Human soluble phospholipase A2 receptor is an inhibitor of the integrin-mediated cell migratory response to collagen-I. Am J Physiol Cell Physiol 2018; 315:C398-C408. [DOI: 10.1152/ajpcell.00239.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine membrane-bound phospholipase A2 receptor 1 (PLA2R) is shed and released into plasma in a soluble form that retains all of the extracellular domains. Relatively little is known about human PLA2R. This study examined whether human soluble PLA2R has biological functions and whether soluble PLA2R exists in human plasma. Here, we showed that human recombinant soluble PLA2R (rsPLA2R) bound to collagen-I and inhibited interaction of collagen-I with the extracellular domain of integrin β1 on the cell surface of human embryonic kidney 293 (HEK293) cells. As a result, rsPLA2R suppressed integrin β1-mediated migratory responses of HEK293 cells to collagen-I in Boyden chamber experiments. Inhibition of phosphorylation of FAK Tyr397 was also observed. Similar results were obtained with experiments using soluble PLA2R released from HEK293 cells transfected with a construct encoding human soluble PLA2R. rsPLA2R lacking the fibronectin-like type II (FNII) domain had no inhibitory effects on cell responses to collagen-I, suggesting an important role of the FNII domain in the interaction of rsPLA2R with collagen-I. In addition, rsPLA2R suppressed the migratory response to collagen-IV and binding of collagen-IV to the cell surface of human podocytes that endogenously express membrane-bound, full-length PLA2R. Immunoprecipitation and Western blotting showed the existence of immunoreactive PLA2R in human plasma. In conclusion, human recombinant soluble PLA2R inhibits integrin β1-mediated cell responses to collagens. Further studies are warranted to elucidate whether immunoreactive PLA2R in human plasma has the same properties as rsPLA2R.
Collapse
Affiliation(s)
- Kazunori Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Yosuke Watanabe
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Daisuke Fujioka
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Takamitsu Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kazuto Nakamura
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Jun-ei Obata
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
10
|
Abstract
The phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major autoantigens in primary membranous nephropathy (MN), and define two molecular subclasses of this disease. Both proteins are large transmembrane glycoproteins expressed by the podocyte, and both induce IgG4-predominant humoral immune responses that produce circulating autoantibodies that can be used clinically for diagnostic and monitoring purposes. The biologic roles of these proteins remain speculative, although several features of THSD7A suggest a role in adhesion. PLA2R-associated MN was initially found to associate with risk alleles within HLA-DQA1, but subsequent studies have shifted the focus to the HLA-DRB locus. Three distinct humoral epitope-containing regions have been defined within the extracellular portion of PLA2R, and it appears that the number of targeted epitopes may determine disease severity. Although similar information is not yet available for THSD7A-associated MN, this form of MN may have a unique association with malignancy. Finally, it appears likely that other autoantigens in primary MN exist. Although protocols similar to those that identified PLA2R and THSD7A may be successful in the identification of novel antigenic targets in MN, newer techniques such as laser-capture mass spectrometry or protein arrays may be helpful as well.
Collapse
Affiliation(s)
- Laurence H Beck
- Renal Section, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Goyffon M, Saul F, Faure G. [Relationships between venomous function and innate immune function]. Biol Aujourdhui 2016; 209:195-210. [PMID: 26820828 DOI: 10.1051/jbio/2015018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in structure, function and phylogeny, venomous function in both vertebrates and invertebrates are clearly interrelated with innate immune function.
Collapse
Affiliation(s)
- Max Goyffon
- UMR CNRS 7245, Département RDDM, Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Frederick Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, 25 rue du Docteur Roux, 75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
12
|
Layne JD, Shridas P, Webb NR. Ectopically expressed pro-group X secretory phospholipase A2 is proteolytically activated in mouse adrenal cells by furin-like proprotein convertases: implications for the regulation of adrenal steroidogenesis. J Biol Chem 2015; 290:7851-60. [PMID: 25623068 DOI: 10.1074/jbc.m114.634667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group X secretory phospholipase A2 (GX sPLA2) hydrolyzes mammalian cell membranes, liberating free fatty acids and lysophospholipids. GX sPLA2 is produced as a pro-enzyme (pro-GX sPLA2) that contains an N-terminal 11-amino acid propeptide ending in a dibasic motif, suggesting cleavage by a furin-like proprotein convertase (PC). Although propeptide cleavage is clearly required for enzymatic activity, the protease(s) responsible for pro-GX sPLA2 activation have not been identified. We previously reported that GX sPLA2 negatively regulates adrenal glucocorticoid production, likely by suppressing liver X receptor-mediated activation of steroidogenic acute regulatory protein expression. In this study, using a FLAG epitope-tagged pro-GX sPLA2 expression construct (FLAG-pro-GX sPLA2), we determined that adrenocorticotropic hormone (ACTH) enhanced FLAG-pro-GX sPLA2 processing and phospholipase activity secreted by Y1 adrenal cells. ACTH increased the expression of furin and PCSK6, but not other members of the PC family, in Y1 cells. Overexpression of furin and PCSK6 in HEK 293 cells significantly enhanced FLAG-pro-GX sPLA2 processing, whereas siRNA-mediated knockdown of both PCs almost completely abolished FLAG-pro-GX sPLA2 processing in Y1 cells. Expression of either furin or PCSK6 enhanced the ability of GX sPLA2 to suppress liver X receptor reporter activity. The PC inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone significantly suppressed FLAG-pro-GX sPLA2 processing and sPLA2 activity in Y1 cells, and it significantly attenuated GX sPLA2-dependent inhibition of steroidogenic acute regulatory protein expression and progesterone production. These findings provide strong evidence that pro-GX sPLA2 is a substrate for furin and PCSK6 proteolytic processing and define a novel mechanism for regulating corticosteroid production in adrenal cells.
Collapse
Affiliation(s)
- Joseph D Layne
- From the Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, the Saha Cardiovascular Research Center, and
| | - Preetha Shridas
- the Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky 40536
| | - Nancy R Webb
- the Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky 40536
| |
Collapse
|
13
|
Girard CA, Seitz-Polski B, Dolla G, Augert A, Vindrieux D, Bernard D, Lambeau G. Nouveaux rôles physiopathologiques pour le récepteur PLA2R1 dans le cancer et la glomérulonéphrite extramembraneuse. Med Sci (Paris) 2014; 30:519-25. [DOI: 10.1051/medsci/20143005014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Tamaru S, Mishina H, Watanabe Y, Watanabe K, Fujioka D, Takahashi S, Suzuki K, Nakamura T, Obata JE, Kawabata K, Yokota Y, Murakami M, Hanasaki K, Kugiyama K. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1021-8. [PMID: 23817419 DOI: 10.4049/jimmunol.1300738] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.
Collapse
Affiliation(s)
- Shun Tamaru
- Department of Internal Medicine II, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Differences between group X and group V secretory phospholipase A(2) in lipolytic modification of lipoproteins. Cell Mol Biol Lett 2012; 17:459-78. [PMID: 22706677 PMCID: PMC6275602 DOI: 10.2478/s11658-012-0019-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.
Collapse
|
16
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
17
|
|
18
|
Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2009; 1792:941-53. [PMID: 19577642 DOI: 10.1016/j.bbadis.2009.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 01/12/2023]
Abstract
Phospholipases A2 (PLA2) catalyse the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids. In acute lung injury-acute respiratory distress syndrome (ALI-ARDS) several distinct isoenzymes appear in lung cells and fluid. Some are capable to trigger molecular events leading to enhanced inflammation and lung damage and others have a role in lung surfactant recycling preserving lung function: Secreted forms (groups sPLA2-IIA, -V, -X) can directly hydrolyze surfactant phospholipids. Cytosolic PLA2 (cPLA2-IVA) requiring Ca2+ has a preference for arachidonate, the precursor of eicosanoids which participate in the inflammatory response in the lung. Ca(2+)-independent intracellular PLA2s (iPLA2) take part in surfactant phospholipids turnover within alveolar cells. Acidic Ca(2+)-independent PLA2 (aiPLA2), of lysosomal origin, has additionally antioxidant properties, (peroxiredoxin VI activity), and participates in the formation of dipalmitoyl-phosphatidylcholine in lung surfactant. PAF-AH degrades PAF, a potent mediator of inflammation, and oxidatively fragmented phospholipids but also leads to toxic metabolites. Therefore, the regulation of PLA2 isoforms could be a valuable approach for ARDS treatment.
Collapse
Affiliation(s)
- Eirini Kitsiouli
- Department of Biological Applications and Technologies, School of Sciences and Technologies, University of Ioannina, Greece
| | | | | |
Collapse
|
19
|
Abstract
Introduction The secretory phospholipase A2 (sPLA2) family provides a seemingly endless array of potential biological functions that is only beginning to be appreciated. In humans, this family comprises 9 different members that vary in their tissue distribution, hydrolytic activity, and phospholipid substrate specificity. Through their lipase activity, these enzymes trigger various cell-signaling events to regulate cellular functions, directly kill bacteria, or modulate inflammatory responses. In addition, some sPLA2’s are high affinity ligands for cellular receptors. Objective This review merely scratches the surface of some of the actions of sPLA2s in innate immunity, inflammation, and atherosclerosis. The goal is to provide an overview of recent findings involving sPLA2s and to point to potential pathophysiologic mechanisms that may become targets for therapy.
Collapse
|
20
|
Rouault M, Le Calvez C, Boilard E, Surrel F, Singer A, Ghomashchi F, Bezzine S, Scarzello S, Bollinger J, Gelb MH, Lambeau G. Recombinant production and properties of binding of the full set of mouse secreted phospholipases A2 to the mouse M-type receptor. Biochemistry 2007; 46:1647-62. [PMID: 17279628 DOI: 10.1021/bi062119b] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, 12 secreted phospholipases A2 (sPLA2s) have been identified in the mouse species and divided into three structural collections (I/II/V/X, III, and XII). On the basis of their different molecular properties and tissue distributions, each sPLA2 is likely to exert distinct functions by acting as an enzyme or ligand for specific soluble proteins or receptors, among which the M-type receptor is the best-characterized target. Here, we present the properties of binding of the full set of mouse sPLA2s to the mouse M-type receptor. All enzymes have been produced in Escherichia coli or insect cells, and their properties of binding to the cloned and native M-type receptor have been determined. sPLA2s IB, IIA, IIE, IIF, and X are high-affinity ligands (K0.5 = 0.3-3 nM); sPLA2s IIC and V are low-affinity ligands (K0.5 = 30-75 nM), and sPLA2s IID, III, XIIA, and XIIB bind only very weakly or do not bind to the M-type receptor (K0.5 > 100 nM). Three exogenous parvoviral group XIII PLA2s and two fungal group XIV sPLA2s do not bind to the receptor. Together, these results indicate that the mouse M-type receptor is selective for only a subset of mouse sPLA2s from the group I/II/V/X structural collection. Binding of mouse sPLA2s to a recombinant soluble mouse M-type receptor leads in all cases to inhibition of enzymatic activity, and the extent of deglycosylation of the receptor decreases yet does not abolish sPLA2 binding. The physiological meaning of binding of sPLA2 to the M-type receptor is discussed on the basis of our current knowledge of sPLA2 functions.
Collapse
Affiliation(s)
- Morgane Rouault
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prijatelj P, Vardjan N, Rowan EG, Krizaj I, Pungercar J. Binding to the high-affinity M-type receptor for secreted phospholipases A2 is not obligatory for the presynaptic neurotoxicity of ammodytoxin A. Biochimie 2006; 88:1425-33. [PMID: 16815622 DOI: 10.1016/j.biochi.2006.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 06/05/2006] [Indexed: 01/19/2023]
Abstract
R180, isolated from porcine brain cortex, is a high-affinity membrane receptor for ammodytoxin A (AtxA), a secreted phospholipase A(2) (sPLA(2)) and presynaptically active neurotoxin from venom of the long-nosed viper (Vipera ammodytes ammodytes). As a member of the M-type sPLA(2) receptors, present on the mammalian plasma membrane, R180 has been proposed to be responsible for one of the first events in the process of presynaptic neurotoxicity, the binding of the toxin to the nerve cell. To test this hypothesis, we prepared and analyzed three N-terminal fusion proteins of AtxA possessing a 12 or 5 amino acid residue peptide. The presence of such an additional "propeptide" prevented interaction of the toxin with the M-type receptor but not its lethality in mouse and neurotoxic effects on a mouse phrenic nerve-hemidiaphragm preparation. In addition, antibodies raised against the sPLA(2)-binding C-type lectin-like domain 5 of the M-type sPLA(2) receptor were unable to abolish the neurotoxic action of AtxA on the neuromuscular preparation. The specific enymatic activities of the fusion AtxAs were two to three orders of magnitude lower from that of the wild type, yet resulting in a similar but less pronounced neurotoxic profile on the neuromuscular junction. This is in accordance with other data showing that a minimal enzymatic activity suffices for presynaptic toxicity of sPLA(2)s to occur. Our results indicate that the interaction of AtxA with the M-type sPLA(2) receptor at the plasma membrane is not essential for presynaptic activity of the toxin. Interaction of AtxA with two intracellular proteins, calmodulin and the R25 receptor, was affected but not prevented by the presence of the N-terminal fusion peptides, implying that these proteins may play a role in the sPLA(2) neurotoxicity.
Collapse
Affiliation(s)
- Petra Prijatelj
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
22
|
Quirós S, Alape-Girón A, Angulo Y, Lomonte B. Isolation, characterization and molecular cloning of AnMIP, a new alpha-type phospholipase A2 myotoxin inhibitor from the plasma of the snake Atropoides nummifer (Viperidae: Crotalinae). Comp Biochem Physiol B Biochem Mol Biol 2006; 146:60-8. [PMID: 17071122 DOI: 10.1016/j.cbpb.2006.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 09/09/2006] [Indexed: 10/24/2022]
Abstract
A new phospholipase A(2) (PLA(2))-inhibitory protein was isolated from the plasma of Atropoides nummifer, a crotaline snake from Central America. This inhibitor was named AnMIP, given its ability to neutralize the activity of basic PLA(2) myotoxins of its own and related venoms. The cDNA of AnMIP was cloned and sequenced, showing that it belongs to the alpha group of phospholipase A(2) inhibitors (PLIs). AnMIP appears as a homotrimer in the native state, held together by non-covalent forces, with a subunit molecular mass of 22,247-22,301 and an isoelectric point of 4.1-4.7. This trimeric structure is the first observed in a PLIalpha from American crotaline snakes, previously reported only in Asian species. Sequencing, mass spectrometry, and analytical isoelectrofocusing indicated the existence of isoforms, as reported for other PLIalphas isolated from snake plasma. The inhibitory profile of AnMIP showed specificity towards group II PLA(2)s, either belonging to the catalytically-active (D49) or -inactive (K49) subtypes, exemplified in this study by Bothrops asper myotoxin I and A. nummifer myotoxin II, respectively. By phylogenetic analysis it was shown that AnMIP is closely related to CgMIP-II, previously isolated from the plasma of Cerrophidion godmani, showing 93% amino acid sequence identity.
Collapse
Affiliation(s)
- Steve Quirós
- Instituto Clodomiro Picado, Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | | |
Collapse
|
23
|
Okumura K, Ohno A, Nishida M, Hayashi K, Ikeda K, Inoue S. Mapping the Region of the α-Type Phospholipase A2 Inhibitor Responsible for Its Inhibitory Activity. J Biol Chem 2005; 280:37651-9. [PMID: 16150695 DOI: 10.1074/jbc.m507250200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Type phospholipase A(2) inhibitory protein (PLIalpha) from the serum of the venomous snake Gloydius brevicaudus, GbPLIalpha,isone of the protective endogenous proteins that neutralizes its own venom phospholipase A(2) (PLA(2)), and it is a homotrimer of subunits having a C-type lectin-like domain. The nonvenomous snake Elaphe quadrivirgata has a homologous serum protein, EqPLIalpha-LP, that does not show any inhibitory activity against various snake venom PLA(2)s (Okumura, K., Inoue, S., Ikeda, K., and Hayashi, K. (2003) IUBMB Life 55, 539-545). By constructing GbPLIalpha-Eq- PLIalpha-LP chimeric proteins, we have mapped the residues important in conferring GbPLIalpha inhibitory activity on region 13-36 in the primary structure of GbPLIalpha. Noninhibitory EqPLIalpha-LP showed comparable inhibitory activity only when this region was replaced with that of GbPLIalpha. Further, mutational analysis of the candidate residues revealed that the individual GbPLIalpha to EqPLIalpha-LP residue substitutions N26K, K28E, D29N, and Y144S each produced a mutant GbPLIalpha protein with reduced inhibitory activity, with the single N26K substitution having the most significant effect. Residues 13-36 were suspected to be located in the helical neck region of the GbPLIalpha trimer. Therefore, the region of GbPLIalpha responsible for PLA(2) inhibition was distinct from the carbohydrate-binding site of the homologous C-type lectin.
Collapse
Affiliation(s)
- Kohji Okumura
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Jaulmes A, Janvier B, Andreani M, Raymondjean M. Autocrine and Paracrine Transcriptional Regulation of Type IIA Secretory Phospholipase A2 Gene in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2005; 25:1161-7. [PMID: 15802623 DOI: 10.1161/01.atv.0000164310.67356.a9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The inflammation that occurs during the development of atherosclerosis is characterized by a massive release of sPLA2-IIA (group IIA secretory phospholipase A2) from vascular smooth muscle cells (VSMCs). We have investigated the autocrine function of sPLA2-IIA in rat aortic and human VSMCs.
Methods and Results—
We found that the transcription of the endogenous sPLA2-IIA gene increased by adding a cell supernatant containing human sPLA2-IIA proteins. We show that this effect was independent of the sPLA2 activity using sPLA2-IIA proteins lacking enzyme activity. Transient transfections with various sPLA2-IIA rat promoter-luciferase constructs demonstrated that the C/EBP, NK-κB, and Ets transcription factors are involved in the increase in sPLA2-IIA gene transcription. We also found the M-type sPLA2 receptor mRNA in VSMCs, and we showed that the sPLA2-luciferase reporter gene was induced by the specific agonist of the sPLA2 receptor, aminophenylmannopyranoside (APMP), and that this induction was mediated by the same transcription factor-binding sites. Finally, we used a sPLA2-IIA mutant unable to bind heparan-sulfate proteoglycans to show that the binding of wild-type sPLA2-IIA to proteoglycans is essential for the induction of an autocrine loop.
Conclusions—
We have thus identified new autocrine and paracrine pathways activating sPLA2-IIA gene expression in rat and human VSMCs.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Autocrine Communication/physiology
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- Gene Expression Regulation, Enzymologic/physiology
- Group II Phospholipases A2
- Humans
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- NF-kappa B/metabolism
- Paracrine Communication/physiology
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- Protein Binding
- Proteoglycans/metabolism
- Rats
- Rats, Wistar
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Phospholipase A2
- Transcriptional Activation/physiology
- Winged-Helix Transcription Factors/metabolism
Collapse
Affiliation(s)
- Amandine Jaulmes
- UMR Physiologie et Physiopathologie, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
25
|
Chioato L, Ward RJ. Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 2004; 42:869-83. [PMID: 15019488 DOI: 10.1016/j.toxicon.2003.11.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to their catalytic activity, snake venom phospholipases A2 (vPLA2) present remarkable diversity in their biological effects. Sequence alignment analyses of functionally related PLA2 are frequently used to predict the structural determinants of these effects, and the predictions are subsequently evaluated by site directed mutagenesis experiments and functional assays. In order to improve the predictive potential of computer-based analysis, a simple method for scanning amino acid variation analysis (SAVANA) has been developed and included in the analysis of the lysine 49 PLA2 myotoxins (Lys49-PLA2). The SAVANA analysis identified positions in the C-terminal loop region of the protein, which were not identified using previously available sequence analysis tools. Site directed mutagenesis experiments of bothropstoxin-I, a Lys49-PLA2 isolated from the venom of Bothrops jararacussu, reveals that these residues are exactly those involved in the determination of myotoxic and membrane damaging activities. The SAVANA method has been used to analyse presynaptic neurotoxic and anti-coagulant vPLA2s, and the predicted structural determinants of these activities are in excellent agreement with the available results of site directed mutagenesis experiments. The positions of residues involved in the myotoxic and neurotoxic determinants demonstrate significant overlap, suggesting that the multiple biological effects observed in many snake vPLA2s are a consequence of superposed structural determinants on the protein surface.
Collapse
Affiliation(s)
- Lucimara Chioato
- Department of Biochemistry and Immunology, FMRP-USP, Universidade de São Paulo, Brazil
| | | |
Collapse
|
26
|
Abstract
The phospholipase A2 receptor (PLA2R) is a type I transmembrane glycoprotein related to the C-type animal lectin family such as the mannose receptor. PLA2R regulates a variety of biological responses elicited by secretory phospholipase A2s (sPLA2s). Group IB sPLA2 acts as an endogenous ligand to induce cell proliferation and lipid mediator production. Analysis of PLA2R-deficient mice suggested a potential role of the sPLA2-IB/PLA2R pathway in the production of proinflammatory cytokines during endotoxic shock. PLA2R is also involved in the clearance of sPLA2s, especially group X sPLA2, to protect their exaggerated reactions by potent enzymatic activities. In circulation, the soluble form of PLA2R is constitutively present as an endogenous inhibitor for mammalian sPLA2s.
Collapse
Affiliation(s)
- Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi & Co., Ltd, Osaka, Japan.
| |
Collapse
|
27
|
Hanasaki K, Arita H. Biological functions of group X secretory PLA2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 525:93-6. [PMID: 12751743 DOI: 10.1007/978-1-4419-9194-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | | |
Collapse
|
28
|
Granata F, Balestrieri B, Petraroli A, Giannattasio G, Marone G, Triggiani M. Secretory phospholipases A2 as multivalent mediators of inflammatory and allergic disorders. Int Arch Allergy Immunol 2003; 131:153-63. [PMID: 12876405 DOI: 10.1159/000071481] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phospholipases A(2) (PLA(2)s) are enzymes responsible for mobilization of fatty acids, including arachidonic acid (AA), from phospholipids. These enzymes are classified as high-molecular-weight cytosolic PLA(2)s (cPLA(2)s) and low-molecular-weight secretory PLA(2)s (sPLA(2)s). There is increasing evidence that large quantities of sPLA(2)s are released in the plasma of patients with systemic inflammatory and autoimmune diseases. In addition, high levels of sPLA(2)s can be detected at sites of allergic inflammation including the upper airways of patients with rhinitis and the lower airways of patients with asthma. These extracellular enzymes play an important role in inflammation by releasing AA, which can be subsequently converted to proinflammatory prostaglandins and leukotrienes. Generation of AA mediated by sPLA(2)s occurs through different mechanisms, including (1) the direct hydrolysis of outer cell membrane phospholipids, (2) internalization and transfer of sPLA(2)s to intracellular pools of phospholipids enriched in AA, and (3) activation of cPLA(2)s. In addition, sPLA(2)s induce degranulation and production of cytokines and chemokines from a variety of cells involved in inflammatory and immune responses. These effects are exerted by mechanisms that are independent of the enzymatic activity and are mediated by the interaction of sPLA(2)s with specific or promiscuous membrane receptors. Therefore, sPLA(2)s may have an important role in inflammatory and allergic reactions by activating multiple mechanisms within inflammatory and immune cells, leading to the production of eicosanoids, cytokines and chemokines.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Hanasaki K, Arita H. Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat 2002; 68-69:71-82. [PMID: 12432910 DOI: 10.1016/s0090-6980(02)00022-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phospholipase A2 receptor (PLA2R) is a type I transmembrane glycoprotein related to the C-type animal lectin family that includes the mannose receptor. PLA2R regulates a variety of biological responses elicited by specific types of secretory PLA2s (sPLA2s). Group IB sPLA2 (sPLA2-IB) acts as an endogenous PLA2R ligand to induce cell proliferation, cell migration, and lipid mediator production. Analysis of PLA2R-deficient mice has suggested a potential role of the sPLA2-IB/PLA2R pathway in the production of pro-inflammatory cytokines in endotoxic shock. PLA2R is also involved in the clearance of sPLA2s, including group X sPLA2 (sPLA2-X) and a particular type of snake venom sPLA2, and clearance suppresses their potent enzymatic activities. In the circulation, the soluble form of PLA2R is constitutively present as anendogenous inhibitor of sPLA2s. This review will focus on recent findings on the roles of PLA2R in regulating sPLA2 functions and summarize what is known about the otherbinding proteins for mammalian and snake venom sPLA2s.
Collapse
Affiliation(s)
- Kohji Hanasaki
- Shionogi Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan.
| | | |
Collapse
|