1
|
Specterman MJ, Aziz Q, Li Y, Anderson NA, Ojake L, Ng KE, Thomas AM, Finlay MC, Schilling RJ, Lambiase PD, Tinker A. Hypoxia Promotes Atrial Tachyarrhythmias via Opening of ATP-Sensitive Potassium Channels. Circ Arrhythm Electrophysiol 2023; 16:e011870. [PMID: 37646176 PMCID: PMC10510820 DOI: 10.1161/circep.123.011870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.
Collapse
Affiliation(s)
- Mark J. Specterman
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Qadeer Aziz
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Yiwen Li
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Naomi A. Anderson
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Leona Ojake
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Keat-Eng Ng
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Alison M. Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Malcolm C. Finlay
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Richard J. Schilling
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (P.D.L.)
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.J.S., Q.A., Y.L., N.A.A., L.O., K.-E.N., A.M.T., M.C.F., R.J.S., A.T.)
| |
Collapse
|
2
|
Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Biochem J 2020; 477:671-689. [PMID: 31957808 PMCID: PMC7015859 DOI: 10.1042/bcj20190753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are widely expressed and play key roles in many tissues by coupling metabolic state to membrane excitability. The SUR subunits confer drug and enhanced nucleotide sensitivity to the pore-forming Kir6 subunit, and so information transfer between the subunits must occur. In our previous study, we identified an electrostatic interaction between Kir6 and SUR2 subunits that was key for allosteric information transfer between the regulatory and pore-forming subunit. In this study, we demonstrate a second putative interaction between Kir6.2-D323 and SUR2A-Q1336 using patch clamp electrophysiological recording, where charge swap mutation of the residues on either side of the potential interaction compromise normal channel function. The Kir6.2-D323K mutation gave rise to a constitutively active, glibenclamide and ATP-insensitive KATP complex, further confirming the importance of information transfer between the Kir6 and SUR2 subunits. Sensitivity to modulators was restored when Kir6.2-D323K was co-expressed with a reciprocal charge swap mutant, SUR-Q1336E. Importantly, equivalent interactions have been identified in both Kir6.1 and Kir6.2 suggesting this is a second important interaction between Kir6 and the proximal C terminus of SUR.
Collapse
|
3
|
Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K ATP channels. J Biol Chem 2018; 294:3707-3719. [PMID: 30587573 DOI: 10.1074/jbc.ra118.005236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jelena Sikimic
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Timothy S McMillen
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Cita Bleile
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Frank Dastvan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Ulrich Quast
- Department of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, D-72074 Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Gisela Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| |
Collapse
|
4
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
The shifting landscape of KATP channelopathies and the need for 'sharper' therapeutics. Future Med Chem 2016; 8:789-802. [PMID: 27161588 DOI: 10.4155/fmc-2016-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels play fundamental roles in the regulation of endocrine, neural and cardiovascular function. Small-molecule inhibitors (e.g., sulfonylurea drugs) or activators (e.g., diazoxide) acting on SUR1 or SUR2 have been used clinically for decades to manage the inappropriate secretion of insulin in patients with Type 2 diabetes, hyperinsulinism and intractable hypertension. More recently, the discovery of rare disease-causing mutations in KATP channel-encoding genes has highlighted the need for new therapeutics for the treatment of certain forms of neonatal diabetes mellitus, congenital hyperinsulinism and Cantu syndrome. Here, we provide a high-level overview of the pathophysiology of these diseases and discuss the development of a flexible high-throughput screening platform to enable the development of new classes of KATP channel modulators.
Collapse
|
6
|
Nichols CG. Adenosine Triphosphate-Sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin 2016; 8:323-35. [PMID: 27261824 DOI: 10.1016/j.ccep.2016.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The subunit makeup of the family of adenosine triphosphate-sensitive potassium channel (KATP) channels is more complex and labile than thought. The growing association of Kir6.1 and SUR2 variants with specific cardiovascular electrical and contractile derangements and the clear association with Cantu syndrome establish the importance of appropriate activity in normal function of the heart and vasculature. Further studies of such patients will reveal new mutations in KATP subunits and perhaps in proteins that regulate KATP synthesis, trafficking, or location, all of which may ultimately benefit therapeutically from the unique pharmacology of KATP channels.
Collapse
Affiliation(s)
- Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge. Biochem J 2015; 464:343-54. [PMID: 25236767 DOI: 10.1042/bj20140273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ATP-sensitive potassium channels play key roles in many tissues by coupling metabolic status to membrane potential. In contrast with other potassium channels, the pore-forming Kir6 subunits must co-assemble in hetero-octameric complexes with ATP-binding cassette (ABC) family sulfonylurea receptor (SUR) subunits to facilitate cell surface expression. Binding of nucleotides and drugs to SUR regulates channel gating but how these responses are communicated within the complex has remained elusive to date. We have now identified an electrostatic interaction, forming part of a functional interface between the cytoplasmic nucleotide-binding domain-2 of SUR2 subunits and the distal C-terminus of Kir6 polypeptides that determines channel response to nucleotide, potassium channel opener and antagonist. Mutation of participating residues disrupted physical interaction and regulation of expressed channels, properties that were restored in paired charge-swap mutants. Equivalent interactions were identified in Kir6.1- and Kir6.2-containing channels suggesting a conserved mechanism of allosteric regulation.
Collapse
|
8
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
9
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
10
|
Li A, Knutsen RH, Zhang H, Osei-Owusu P, Moreno-Dominguez A, Harter TM, Uchida K, Remedi MS, Dietrich HH, Bernal-Mizrachi C, Blumer KJ, Mecham RP, Koster JC, Nichols CG. Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle. J Am Heart Assoc 2013; 2:e000365. [PMID: 23974906 PMCID: PMC3828800 DOI: 10.1161/jaha.113.000365] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome.
Collapse
Affiliation(s)
- Anlong Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
ATP-sensitive potassium (KATP) channels were first discovered in the heart 30 years ago. Reconstitution of KATP channel activity by coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein subfamily has led to the elucidation of many details of channel gating and pore properties. In addition, the essential roles of Kir6.x and SURx subunits in generating cardiac and vascular KATP(2) and the detrimental consequences of genetic deletions or mutations in mice have been recognized. However, despite this extensive body of knowledge, there has been a paucity of defined roles of KATP subunits in human cardiovascular diseases, although there are reports of association of a single Kir6.1 variant with the J-wave syndrome in the ECG, and 2 isolated studies have reported association of loss of function mutations in SUR2 with atrial fibrillation and heart failure. Two new studies convincingly demonstrate that mutations in the SUR2 gene are associated with Cantu syndrome, a complex multi-organ disorder characterized by hypertrichosis, craniofacial dysmorphology, osteochondrodysplasia, patent ductus arteriosus, cardiomegaly, pericardial effusion, and lymphoedema. This realization of previously unconsidered consequences provides significant insight into the roles of the KATP channel in the cardiovascular system and suggests novel therapeutic possibilities.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
12
|
Winkler M, Kühner P, Russ U, Ortiz D, Bryan J, Quast U. Role of the amino-terminal transmembrane domain of sulfonylurea receptor SUR2B for coupling to KIR6.2, ligand binding, and oligomerization. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:287-98. [DOI: 10.1007/s00210-011-0708-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/24/2011] [Indexed: 01/11/2023]
|
13
|
Bao L, Kefaloyianni E, Lader J, Hong M, Morley G, Fishman GI, Sobie EA, Coetzee WA. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system. Circ Arrhythm Electrophysiol 2011; 4:926-35. [PMID: 21984445 DOI: 10.1161/circep.111.964643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background- The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (K(ATP)) channels in these myocytes have not been systemically investigated. Methods and Results- We recorded K(ATP) channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS K(ATP) channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS K(ATP) channel had a prolonged interburst closed time. CCS K(ATP) channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular K(ATP) channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions- These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to K(ATP) channel opening during periods of ischemia.
Collapse
Affiliation(s)
- Li Bao
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
15
|
Amann T, Schell S, Kühner P, Winkler M, Schwanstecher M, Russ U, Quast U. Substitution of the Walker A lysine by arginine in the nucleotide-binding domains of sulphonylurea receptor SUR2B: effects on ligand binding and channel activity. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:507-16. [PMID: 20352196 DOI: 10.1007/s00210-010-0510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
Sulphonylurea receptors (SURs) serve as regulatory subunits of ATP-sensitive K(+) channels. SURs are members of the ATP-binding cassette (ABC) protein superfamily and contain two conserved nucleotide-binding domains (NBDs) which bind and hydrolyse MgATP; in addition, they carry the binding sites for the sulphonylureas like glibenclamide (GBC) which close the channel and for the K(ATP) channel openers such as P1075. Here we have exchanged the conserved Lys in the Walker A motif by Arg in both NBDs of SUR2B, the regulatory subunit of the vascular K(ATP) channel. Then the effect of the mutation on the ATPase-dependent binding of GBC and P1075 to SUR2B and on the activity of the recombinant vascular (Kir6.1/SUR2B) channel was assessed. Surprisingly, in the absence of MgATP, the mutation weakened binding of P1075 and the extent of allosteric inhibition of GBC binding by P1075. The mutation abolished most, but not all, of the MgATP effects on the binding of GBC and P1075 and prevented nucleotide-induced activation of the channel which relies on SUR reaching the posthydrolytic (MgADP-bound) state; the mutant channel was, however, opened by P1075 at higher concentrations. The data provide evidence that mutant SUR2B binds MgATP but that the posthydrolytic state is insufficiently populated. This suggests that the mutation locks SUR2B in an MgATP-binding prehydrolytic-like state; binding of P1075 may induce a posthydrolytic-like conformation to open the channel.
Collapse
Affiliation(s)
- Tobias Amann
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard-Karls-University Hospitals and Clinics, University of Tübingen, Wilhelmstr. 56, 72074, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Winkler M, Lutz R, Russ U, Quast U, Bryan J. Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 I60G substitution: differences between the channel subtypes formed with SUR1. J Biol Chem 2009; 284:6752-62. [PMID: 19139106 PMCID: PMC2652280 DOI: 10.1074/jbc.m805435200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
beta-Cell-type K(ATP) channels are octamers assembled from Kir6.2/KCNJ11 and SUR1/ABCC8. Adenine nucleotides play a major role in their regulation. Nucleotide binding to Kir6.2 inhibits channel activity, whereas ATP binding/hydrolysis on sulfonylurea receptor 1 (SUR1) opposes inhibition. Segments of the Kir6.2 N terminus are important for open-to-closed transitions, form part of the Kir ATP, sulfonylurea, and phosphoinositide binding sites, and interact with L0, an SUR cytoplasmic loop. Inputs from these elements link to the pore via the interfacial helix, which forms an elbow with the outer pore helix. Mutations that destabilize the interfacial helix increase channel activity, reduce sensitivity to inhibitory ATP and channel inhibitors, glibenclamide and repaglinide, and cause neonatal diabetes. We compared Kir6.x/SUR1 channels carrying the V59G substitution, a cause of the developmental delay, epilepsy, and neonatal diabetes syndrome, with a V59A substitution and the equivalent I60G mutation in the related Kir6.1 subunit from vascular smooth muscle. The substituted channels have increased P(O) values, decreased sensitivity to inhibitors, and impaired stimulation by phosphoinositides but retain sensitivity to Ba(2+)-block. The V59G and V59A channels are either not, or poorly, stimulated by phosphoinositides, respectively. Inhibition by sequestrating phosphatidylinositol 4,5-bisphosphate with neomycin and polylysine is reduced in V59A, and abolished in V59G channels. Stimulation by SUR1 is intact, and increasing the concentration of inhibitory ATP restores the sensitivity of Val-59-substituted channels to glibenclamide. The I60G channels, strongly dependent on SUR stimulation, remain sensitive to sulfonylureas. The results suggest the interfacial helix dynamically links inhibitory inputs from the Kir N terminus to the gate and that sulfonylureas stabilize an inhibitory configuration.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Substitution
- Cell Line
- Developmental Disabilities/genetics
- Developmental Disabilities/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Epilepsy/genetics
- Epilepsy/metabolism
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Humans
- Infant, Newborn
- Ion Channel Gating/drug effects
- Ion Channel Gating/genetics
- KATP Channels
- Muscle, Smooth, Vascular/metabolism
- Mutation, Missense
- Myocytes, Smooth Muscle/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Sulfonylurea Receptors
- Syndrome
Collapse
Affiliation(s)
- Marcus Winkler
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, Tübingen D-72074, Germany
| | | | | | | | | |
Collapse
|
17
|
Wheeler A, Wang C, Yang K, Fang K, Davis K, Styer AM, Mirshahi U, Moreau C, Revilloud J, Vivaudou M, Liu S, Mirshahi T, Chan KW. Coassembly of different sulfonylurea receptor subtypes extends the phenotypic diversity of ATP-sensitive potassium (KATP) channels. Mol Pharmacol 2008; 74:1333-44. [PMID: 18723823 DOI: 10.1124/mol.108.048355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
K(ATP) channels are metabolic sensors and targets of potassium channel openers (KCO; e.g., diazoxide and pinacidil). They comprise four sulfonylurea receptors (SUR) and four potassium channel subunits (Kir6) and are critical in regulating insulin secretion. Different SUR subtypes (SUR1, SUR2A, SUR2B) largely determine the metabolic sensitivities and the pharmacological profiles of K(ATP) channels. SUR1- but not SUR2-containing channels are highly sensitive to metabolic inhibition and diazoxide, whereas SUR2 channels are sensitive to pinacidil. It is generally believed that SUR1 and SUR2 are incompatible in channel coassembly. We used triple tandems, T1 and T2, each containing one SUR (SUR1 or SUR2A) and two Kir6.2Delta26 (last 26 residues are deleted) to examine the coassembly of different SUR. When T1 or T2 was expressed in Xenopus laevis oocytes, small whole-cell currents were activated by metabolic inhibition (induced by azide) plus a KCO (diazoxide for T1, pinacidil for T2). When coexpressed with any SUR subtype, the activated-currents were increased by 2- to 13-fold, indicating that different SUR can coassemble. Consistent with this, heteromeric SUR1+SUR2A channels were sensitive to azide, diazoxide, and pinacidil, and their single-channel burst duration was 2-fold longer than that of the T1 channels. Furthermore, SUR2A was coprecipitated with SUR1. Using whole-cell recording and immunostaining, heteromeric channels could also be detected when T1 and SUR2A were coexpressed in mammalian cells. Finally, the response of the SUR1+SUR2A channels to azide was found to be intermediate to those of the homomeric channels. Therefore, different SUR subtypes can coassemble into K(ATP) channels with distinct metabolic sensitivities and pharmacological profiles.
Collapse
Affiliation(s)
- Adam Wheeler
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Farzaneh T, Tinker A. Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits. Cardiovasc Res 2008; 79:621-31. [PMID: 18522960 DOI: 10.1093/cvr/cvn138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS ATP sensitive K(+) channels (K(ATP)) sense adenine nucleotide concentrations and thus couple the metabolic state of the cell to membrane potential. The hetero-octameric complex of a sulphonylurea receptor (SUR2B) and an inwardly rectifying K(+) channel (Kir6.1) and the corresponding native channel in smooth muscle are relatively insensitive to variations in intracellular ATP. Activation of these channels in blood vessels during hypoxia/ischaemia is thought to be mediated via hormonal regulation such as cellular adenosine release or the release of mediators from the endothelium. In contrast, intracellular ATP prominently inhibits Kir6.2 containing complexes, such as those present in cardiac myocytes. Thus, we investigated differences in the mechanism of metabolic regulation of Kir6.1 and Kir6.2 containing K(ATP) channels. METHODS AND RESULTS We have heterologously expressed K(ATP) channel subunits in HEK293 and CHO cells and studied their function using (86)Rb efflux and patch clamping. We show that rodent Kir6.1/SUR2B has direct intrinsic metabolic sensitivity independent of any regulation by protein kinase A. In contrast to Kir6.2 containing complexes, this was not endowed by the ATP sensitivity of the pore forming subunit but was instead a property of the SUR2B subunit. Mutagenesis of key residues within the nucleotide-binding domains (NBD) implicated both domains in governing the metabolic sensitivity. CONCLUSION Kir6.1\SUR2B has intrinsic sensitivity to metabolism endowed by the likely processing of adenine nucleotides at the NBD of SUR2B.
Collapse
Affiliation(s)
- Tabasum Farzaneh
- BHF Laboratories, Department of Medicine, The Rayne Institute, University College London, Room 107, 5 University Street, London WC1E 6JJ, UK
| | | |
Collapse
|
19
|
Babenko AP. A novel ABCC8 (SUR1)-dependent mechanism of metabolism-excitation uncoupling. J Biol Chem 2008; 283:8778-82. [PMID: 18281290 PMCID: PMC2276369 DOI: 10.1074/jbc.c700243200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/13/2008] [Indexed: 11/06/2022] Open
Abstract
ATP/ADP-sensing (sulfonylurea receptor (SUR)/K(IR)6)(4) K(ATP) channels regulate the excitability of our insulin secreting and other vital cells via the differential MgATP/ADP-dependent stimulatory actions of their tissue-specific ATP-binding cassette regulatory subunits (sulfonylurea receptors), which counterbalance the nearly constant inhibitory action of ATP on the K(+) inwardly rectifying pore. Mutations in SUR1 that abolish its stimulation have been found in infants persistently releasing insulin. Activating mutations in SUR1 have been shown to cause neonatal diabetes. Here, analyses of K(IR)6.2-based channels with diabetogenic receptors reveal that MgATP-dependent hyper-stimulation of mutant SUR can compromise the ability of K(ATP) channels to function as metabolic sensors. I demonstrate that the channel hyperactivity rises exponentially with the number of hyperstimulating subunits, so small subpopulations of channels with more than two mutant SUR can dominate hyperpolarizing currents in heterozygous patients. I uncovered an attenuated tolbutamide inhibition of the hyperstimulated mutant, which is normally sensitive to the drug under non-stimulatory conditions. These findings show the key role of SUR in sensing the metabolic index in humans and urge others to (re)test mutant SUR/K(IR)6 channels from probands in physiologic MgATP.
Collapse
Affiliation(s)
- Andrey P Babenko
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| |
Collapse
|
20
|
Shi Y, Cui N, Shi W, Jiang C. A short motif in Kir6.1 consisting of four phosphorylation repeats underlies the vascular KATP channel inhibition by protein kinase C. J Biol Chem 2007; 283:2488-94. [PMID: 18048350 DOI: 10.1074/jbc.m708769200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular ATP-sensitive K(+) channels are inhibited by multiple vasoconstricting hormones via the protein kinase C (PKC) pathway. However, the molecular substrates for PKC phosphorylation remain unknown. To identify the PKC sites, Kir6.1/SUR2B and Kir6.2/SUR2B were expressed in HEK293 cells. Following channel activation by pinacidil, the catalytic fragment of PKC inhibited the Kir6.1/SUR2B currents but not the Kir6.2/SUR2B currents. Phorbol 12-myristate 13-acetate (a PKC activator) had similar effects. Using Kir6.1-Kir6.2 chimeras, two critical protein domains for the PKC-dependent channel inhibition were identified. The proximal N terminus of Kir6.1 was necessary for channel inhibition. Because there was no PKC phosphorylation site in the N-terminal region, our results suggest its potential involvement in channel gating. The distal C terminus of Kir6.1 was crucial where there are several consensus PKC sites. Mutation of Ser-354, Ser-379, Ser-385, Ser-391, or Ser-397 to nonphosphorylatable alanine reduced PKC inhibition moderately but significantly. Combined mutations of these residues had greater effects. The channel inhibition was almost completely abolished when 5 of them were jointly mutated. In vitro phosphorylation assay showed that 4 of the serine residues were necessary for the PKC-dependent (32)P incorporation into the distal C-terminal peptides. Thus, a motif containing four phosphorylation repeats is identified in the Kir6.1 subunit underlying the PKC-dependent inhibition of the Kir6.1/SUR2B channel. The presence of the phosphorylation motif in Kir6.1, but not in its close relative Kir6.2, suggests that the vascular K(ATP) channel may have undergone evolutionary optimization, allowing it to be regulated by a variety of vasoconstricting hormones and neurotransmitters.
Collapse
Affiliation(s)
- Yun Shi
- Department of Biology, Georgia State University, 33 Gilmer Street, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
21
|
Lee TM, Lin MS, Tsai CH, Huang CL, Chang NC. Effects of sulfonylureas on left ventricular mass in type 2 diabetic patients. Am J Physiol Heart Circ Physiol 2007; 292:H608-13. [PMID: 16936007 DOI: 10.1152/ajpheart.00516.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial ATP-sensitive potassium (KATP) channels have been implicated in attenuating cardiac hypertrophy by modulating endothelin-1 concentrations. Sulfonylureas differ in their affinity for cardiac KATPchannels and therefore may vary in their effects on left ventricular (LV) mass. We sought to determine the differential effects of sulfonylureas on LV mass in type 2 diabetic patients. All patients had been taking glibenclamide for more than 3 mo before being randomized to either switch to an equipotent dose of gliclazide or continue glibenclamide. A total of consecutive 240 diabetic patients were randomized into glibenclamide, gliclazide, a combination of glibenclamide and nicorandil, or gliclazide and nicorandil for 6 mo. In the gliclazide-treated group, the LV mass index was significantly decreased compared with that in the glibenclamide-treated groups. Nicorandil administration significantly reduced LV mass in glibenclamide-treated patients compared with patients treated with glibenclamide alone. Measurements of endothelin-1 concentrations mirrored the functional status of KATPchannel. Multivariate analysis revealed that regression of LV mass was significantly correlated only with the changes in endothelin-1 ( P < 0.0001). Our results show that KATPchannels may play a pathogenetic role, probably through an endothelin-1-dependent pathway, in diabetes mellitus-related ventricular hypertrophy. Patients treated with gliclazide may have a beneficial effect in attenuating ventricular mass.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Dept. of Medicine, Taipei Medical Univ. and Hospital, 252 Wu-Hsing St., Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Pan NH, Lee TM, Lin MS, Huang CL, Chang NC. Association of gliclazide and left ventricular mass in type 2 diabetic patients. Diabetes Res Clin Pract 2006; 74:121-8. [PMID: 16631274 DOI: 10.1016/j.diabres.2006.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/15/2006] [Indexed: 11/15/2022]
Abstract
Diabetes is a state of increased oxidant stress and there is evidence that oxidation may play a role in the genesis of higher left ventricular mass. Gliclazide has been shown to possess free radical scavenging properties. We assessed whether gliclazide may have a beneficial effect on left ventricular mass via reducing 8-iso-prostaglandin F(2alpha) concentrations, a reliable marker of oxidant injury. A total of 41 patients were randomized into two groups. All patients had been taking glibenclamide for more than 3 months before being randomized to switch either an equipotent dose of gliclazide (n=21) or to continue on glibenclamide (n=20). Baseline characteristics were similar in both groups. At 6 months, gliclazide-treated patients showed a significant regression in left ventricular mass index compared with the glibenclamide-treated group (-16% versus 3%, P=0.003). Gliclazide patients had significantly lower plasma 8-iso-prostaglandin F(2alpha) compared with baseline (299+/-101 pg/ml versus 400+/-112 pg/ml, P=0.001) and the glibenclamide-treated patients (299+/-101 pg/ml versus 388+/-114 pg/ml, P=0.01) after 6-month therapy. The magnitude of left ventricular mass index regression correlated univariately with the magnitude of inhibition of 8-iso-prostaglandin F(2alpha) formation (r=0.74, P<0.0001). Multivariate analysis revealed that regression of left ventricular mass index significantly correlated with the changes of 8-iso-prostaglandin F(2alpha) (P<0.0001, adjusted R(2)=0.55). Our findings demonstrated for the first time that in addition to its primary hypoglycemia, gliclazide may have an additional effect on reducing left ventricular mass, possibly through attenuation of free radical formation.
Collapse
Affiliation(s)
- Nan-Hung Pan
- Cardiology Section, Department of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006; 355:456-66. [PMID: 16885549 DOI: 10.1056/nejmoa055068] [Citation(s) in RCA: 480] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.2, which closes the channel, and activated by nucleotide binding or hydrolysis on SUR1, which opens the channel. The balance of these opposing actions determines the low open-channel probability, P(O), which controls the excitability of pancreatic beta cells. We hypothesized that activating mutations in ABCC8, which encodes SUR1, cause neonatal diabetes. METHODS We screened the 39 exons of ABCC8 in 34 patients with permanent or transient neonatal diabetes of unknown origin. We assayed the electrophysiologic activity of mutant and wild-type K(ATP) channels. RESULTS We identified seven missense mutations in nine patients. Four mutations were familial and showed vertical transmission with neonatal and adult-onset diabetes; the remaining mutations were not transmitted and not found in more than 300 patients without diabetes or with early-onset diabetes of similar genetic background. Mutant channels in intact cells and in physiologic concentrations of magnesium ATP had a markedly higher P(O) than did wild-type channels. These overactive channels remained sensitive to sulfonylurea, and treatment with sulfonylureas resulted in euglycemia. CONCLUSIONS Dominant mutations in ABCC8 accounted for 12 percent of cases of neonatal diabetes in the study group. Diabetes results from a newly discovered mechanism whereby the basal magnesium-nucleotide-dependent stimulatory action of SUR1 on the Kir pore is elevated and blockade by sulfonylureas is preserved.
Collapse
Affiliation(s)
- Andrey P Babenko
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jawa AA, Fonseca VA. Role of insulin secretagogues and insulin sensitizing agents in the prevention of cardiovascular disease in patients who have diabetes. Cardiol Clin 2005; 23:119-38. [PMID: 15694742 DOI: 10.1016/j.ccl.2004.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the absence of clinical trial evidence to compare the secretagogues with sensitizers, it is difficult to make recommendations about which class of drug is more important to prescribe for the prevention of cardiovascular disease in diabetes mellitus. Epidemiologic data supports insulin resistance as a major factor in cardiovascular disease through a variety of mechanisms. Because sensitizers improve insulin sensitivity and correct many of the vascular abnormalities that are associated with insulin resistance, it is tempting to suggest that they may be superior for this purpose. Conversely, meeting the goals that are recommended for glycemia also are important and achieving them may not be always possible with sensitizers, particularly in the later stages of the disease when insulin levels are not high,despite insulin resistance. In such situations,combination therapy may be needed with both types of drugs. No data are available on the cardiovascular effects of such combinations;some retrospective data suggest a possibility of increased events with the combination of sulfonylureas and metformin. Thus, further prospective studies in this area are necessary.
Collapse
Affiliation(s)
- Ali A Jawa
- Department of Medicine, Section of Endocrinology, Tulane University Medical Center, SL-53, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | | |
Collapse
|
25
|
Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 2004; 53 Suppl 3:S104-12. [PMID: 15561897 DOI: 10.2337/diabetes.53.suppl_3.s104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
26
|
van Bever L, Poitry S, Faure C, Norman RI, Roatti A, Baertschi AJ. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2004; 287:H850-9. [PMID: 15044189 DOI: 10.1152/ajpheart.00054.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiomyocytes express mRNA for all major subunits of ATP-sensitive potassium (K(ATP)) channels: KIR6.1, KIR6.2, SUR1A, SUR2A, and SUR2B. It has remained controversial as to whether KIR6.1 may associate with KIR6.2 to form the tetrameric pore of K(ATP) channels in cardiomyocytes. To explore this possibility, cultured rat cardiomyocytes were examined for an inhibition of K(ATP) current by overexpression of pore loop-mutated (inactive) KIR6.x. Bicistronic plasmids were constructed encoding loop-mutated (AFA or SFG for GFG) rat KIR6.x followed by EGFP. In ventricular myocytes, the overexpression of KIR6.1SFG-pIRES(2)-EGFP or KIR6.2AFA-pIRES(2)-EGFP DNA caused, after 72 h, a major decrease of K(ATP) current density of 85.8% and 82.7%, respectively (P < 0.01), relative to EGFP controls (59 +/- 9 pA/pF). In atrial myocytes, overexpression of these pore-mutated KIR6.x by 6.0-fold and 10.6-fold, as assessed by quantitative immunohistochemistry, caused a decrease of K(ATP) current density of 73.7% and 58.5%, respectively (P < 0.01). Expression of wild-type rat KIR6.2 increased the ventricular and atrial K(ATP) current density by 58.3% and 42.9%, respectively (P < 0.01), relative to corresponding EGFP controls, indicating a reserve of SUR to accommodate increased KIR6.x trafficking to the sarcolemma. The results favor the view that KIR6.1 may associate with KIR6.2 to form heterotetrameric pores of native K(ATP) channels in cardiomyocytes.
Collapse
Affiliation(s)
- Laurianne van Bever
- Department of Physiology, Centre Médical Universitarie, Geneva 1204, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Dabrowski M, Tarasov A, Ashcroft FM. Mapping the architecture of the ATP-binding site of the KATP channel subunit Kir6.2. J Physiol 2004; 557:347-54. [PMID: 15004210 PMCID: PMC1665110 DOI: 10.1113/jphysiol.2003.059105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels comprise Kir6.2 and SUR subunits. The site at which ATP binds to mediate K(ATP) channel inhibition lies on Kir6.2, but the potency of block is enhanced by coexpression with SUR1. To assess the structure of the ATP-binding site on Kir6.2, we used a range of adenine nucleotides as molecular measuring sticks to map the internal dimensions of the binding site. We compared their efficacy on Kir6.2-SUR1, and on a truncated Kir6.2 (Kir6.2DeltaC) that expresses in the absence of SUR. We show here that SUR1 modifies the ATP-binding pocket of Kir6.2, by increasing the width of the groove that binds the phosphate tail of ATP, without changing the length of the groove, and by enhancing interaction with the adenine ring.
Collapse
|
28
|
Kuniyasu A, Kaneko K, Kawahara K, Nakayama H. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts. FEBS Lett 2003; 552:259-63. [PMID: 14527696 DOI: 10.1016/s0014-5793(03)00936-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.
Collapse
Affiliation(s)
- Akihiko Kuniyasu
- Department of Molecular Cell Function, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Ohe-Honmachi, 862-0973 Kumamoto, Japan
| | | | | | | |
Collapse
|
29
|
Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem 2003; 278:41577-80. [PMID: 12941953 DOI: 10.1074/jbc.c300363200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs. Several competing models for SUR/KIR coupling exist. We show that SUR TMD0, the N-terminal bundle of five transmembrane helices, specifically associates with KIR6.2, forcing nearly silent pores to burst like native KATP channels and enhancing surface expression. Inclusion of adjacent submembrane residues of L0, the linker between TMD0 and the stimulatory nucleotide- and drug-binding ABC core, generates constitutively active channels, whereas additional cytoplasmic residues counterbalance this activation establishing a relationship between the mean open and burst times of intact pores. SUR fragments, lacking TMD0, fail to modulate KIR. TMD0 is thus the domain that anchors SUR to the KIR pore. Consistent with data on chimeric ABCC/KIRs and a modeled channel structure, we propose that interactions of TMD0-L0 with the outer helix and N terminus of KIR bidirectionally modulate gating. The results explain and predict pathologies associated with alteration of the 5' ends of clustered ABCC8 (9)/KCNJ11 (8) genes.
Collapse
Affiliation(s)
- Andrey P Babenko
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza 112C, Houston, TX 77030, USA.
| | | |
Collapse
|
30
|
Abstract
Diabetic patients are more prone to develop postinfarction complications. It remained unclear whether diabetes mellitus- or sulfonylureas-associated changes of ATP-sensitive potassium (K(ATP)) channels, an integral player in ischemic preconditioning, are responsible for the increased mortality. The purpose of this study was to determine the impact of diabetes mellitus per se and different sulfonylurea administration on cardioprotective effects in diabetic patients undergoing coronary angioplasty. Myocardial ischemia after coronary angioplasty was evaluated in 20 nondiabetic and 23 diabetic patients chronically taking either glibenclamide or glimepiride. Nondiabetic patients treated with glimepiride significantly lowered the ischemic burden assessed by an ST-segment shift, chest pain score, and myocardial lactate extraction ratios compared with the glibenclamide-treated patients, implying that acute administration of glimepiride did not abolish cardioprotection. In the diabetic glibenclamide-treated group, the reduction in the ST-segment shift afforded by nicorandil in the first inflation (-58% vs. the first inflation in the glibenclamide group alone) was similar to that afforded by preconditioning (-59% during the second vs. the first inflation). In glimepiride-treated groups, the magnitude of attenuated lactate production was less in diabetes than that in nondiabetes at the second inflation, suggesting that diabetes mellitus per se plays a role in determining lactate production. Our results show that both diabetes mellitus and sulfonylureas can act in synergism to inhibit activation of K(ATP) channels in patients undergoing coronary angioplasty. The degree of inhibition assessed by metabolic and electrocardiographic parameters is less severe during treatment with glimepiride than with glibenclamide. Restitution of a preconditioning response in glimepiride-treated patients may be the potential beneficial mechanism.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- National Taiwan University College of Medicine, Department of Internal Medicine, Cardiology Section, National Taiwan University Hospital, Taipei, Taiwan 10002.
| | | |
Collapse
|
31
|
Abstract
ATP-sensitive potassium channels (K(ATP)) of vascular smooth muscle cells represent potential therapeutic targets for control of abnormal vascular contractility. The biophysical properties, regulation and pharmacology of these channels have received intense scrutiny during the past twenty years, however, the molecular basis of vascular K(ATP) channels remains ill-defined. This review summarizes the recent advancements made in our understanding of the molecular composition of vascular K(ATP) channels with a focus on the evidence that hetero-octameric complexes of Kir6.1 and SUR2B subunits constitute the vascular K(ATP) subtype responsible for control of arterial diameter by vasoactive agonists.
Collapse
Affiliation(s)
- William C Cole
- The Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
32
|
Babenko AP, Bryan J. SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J Biol Chem 2002; 277:43997-4004. [PMID: 12213829 DOI: 10.1074/jbc.m208085200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ntp and Ctp, synthetic peptides based on the N- and C-terminal sequences of K(IR)6.0, respectively, were used to probe gating of K(IR)6.0/SUR K(ATP) channels. Micromolar Ntp dose-dependently increased the mean open channel probability in ligand-free solution (P(O(max))) and attenuated the ATP inhibition of K(IR)6.2/SUR1, but had no effect on homomeric K(IR)6.2 channels. Ntp (up to approximately 10(-4) m) did not affect significantly the mean open or "fast," K(+) driving force-dependent, intraburst closed times, verifying that Ntp selectively modulates the ratio of mean burst to interburst times. Ctp and Rnp, a randomized Ntp, had no effect, indicating that the effects of Ntp are structure specific. Ntp opened K(IR)6.1/SUR1 channels normally silent in the absence of stimulatory Mg(-) nucleotide(s) and attenuated the coupling of high-affinity sulfonylurea binding with K(ATP) pore closure. These effects resemble those seen with N-terminal deletions (DeltaN) of K(IR)6.0, and application of Ntp to DeltaNK(ATP) channels decreased their P(O(max)) and apparent IC(50) for ATP in the absence of Mg(2+). The results are consistent with a competition between Ntp and the endogenous N terminus for a site of interaction on the cytoplasmic face of the channel or with partial replacement of the deleted N terminus by Ntp, respectively. The K(IR) N terminus and the TMD0-L0 segment of SUR1 are known to control the P(O(max)). The L0 linker has been reported to be required for glibenclamide binding, and DeltaNK(IR)6.2/SUR1 channels exhibit reduced labeling of K(IR) with (125)I-azidoglibenclamide, implying that the K(IR) N terminus and L0 of SUR1 are in proximity. We hypothesize that L0 interacts with the K(IR) N terminus in ligand-inhibited K(ATP) channels and put forward a model, based on the architecture of BtuCD, MsbA, and the KcsA channel, in which TMD0-L0 links the MDR-like core of SUR with the K(IR) pore.
Collapse
Affiliation(s)
- Andrey P Babenko
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
33
|
Guggino W. ABC proteins as transport modifiers. Kidney Int 2002. [DOI: 10.1046/j.1523-1755.2002.t01-7-00644.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Skatchkov SN, Rojas L, Eaton MJ, Orkand RK, Biedermann B, Bringmann A, Pannicke T, Veh RW, Reichenbach A. Functional expression of Kir 6.1/SUR1-K(ATP) channels in frog retinal Müller glial cells. Glia 2002; 38:256-67. [PMID: 11968063 DOI: 10.1002/glia.10073] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The retinae and brains of larval and adult amphibians survive long-lasting anoxia; this finding suggests the presence of functional K(ATP) channels. We have previously shown with immunocytochemistry studies that retinal glial (Müller) cells in adult frogs express the K(ATP) channel and receptor proteins, Kir6.1 and SUR1, while retinal neurons display Kir6.2 and SUR2A/B (Skatchkov et al., 2001a: NeuroReport 12:1437-1441; Eaton et al., in press: NeuroReport). Using both immunocytochemistry and electrophysiology, we demonstrate the expression of Kir6.1/SUR1 (K(ATP)) channels in adult frog and tadpole Müller cells. Using conditions favoring the activation of K(ATP) channels (i.e., ATP- and spermine-free cytoplasm-dialyzing solution containing gluconate) in Müller cells isolated from both adult frogs and tadpoles, we demonstrate the following. First, using the patch-clamp technique in whole-cell recordings, tolbutamide, a blocker of K(ATP) channels, blocks nearly 100% of the transient and about 30% of the steady-state inward currents and depolarizes the cell membrane by 5-12 mV. Second, inside-out membrane patches display a single-channel inward current induced by gluconate (40 mM) and blocked by ATP (200 microM) at the cytoplasmic side. The channels apparently show two sublevels (each of approximately 27-32 pS) with a total of 85-pS maximal conductance at -80 mV; the open probability follows a two-exponential mechanism. Thus, functional K(ATP) channels, composed of Kir6.1/SUR1, are present in frog Müller cells and contribute a significant part to the whole-cell K+ inward currents in the absence of ATP. Other inwardly rectifying channels, such as Kir4.1 or Kir2.1, may mediate the remaining currents. K(ATP) channels may help maintain glial cell functions during ATP deficiency.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- CMBN, Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|