1
|
Iwaisako Y, Fujimuro M. The Terminase Complex of Each Human Herpesvirus. Biol Pharm Bull 2024; 47:912-916. [PMID: 38692868 DOI: 10.1248/bpb.b23-00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.
Collapse
Affiliation(s)
- Yuki Iwaisako
- Department of Cell Biology, Kyoto Pharmaceutical University
| | | |
Collapse
|
2
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Muller C, Alain S, Baumert TF, Ligat G, Hantz S. Structures and Divergent Mechanisms in Capsid Maturation and Stabilization Following Genome Packaging of Human Cytomegalovirus and Herpesviruses. Life (Basel) 2021; 11:life11020150. [PMID: 33669389 PMCID: PMC7920273 DOI: 10.3390/life11020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023] Open
Abstract
Herpesviruses are the causative agents of several diseases. Infections are generally mild or asymptomatic in immunocompetent individuals. In contrast, herpesvirus infections continue to contribute to significant morbidity and mortality in immunocompromised patients. Few drugs are available for the treatment of human herpesvirus infections, mainly targeting the viral DNA polymerase. Moreover, no successful therapeutic options are available for the Epstein–Barr virus or human herpesvirus 8. Most licensed drugs share the same mechanism of action of targeting the viral polymerase and thus blocking DNA polymerization. Resistances to antiviral drugs have been observed for human cytomegalovirus, herpes simplex virus and varicella-zoster virus. A new terminase inhibitor, letermovir, recently proved effective against human cytomegalovirus. However, the letermovir has no significant activity against other herpesviruses. New antivirals targeting other replication steps, such as capsid maturation or DNA packaging, and inducing fewer adverse effects are therefore needed. Targeting capsid assembly or DNA packaging provides additional options for the development of new drugs. In this review, we summarize recent findings on capsid assembly and DNA packaging. We also described what is known about the structure and function of capsid and terminase proteins to identify novels targets for the development of new therapeutic options.
Collapse
Affiliation(s)
- Clotilde Muller
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Correspondence: (G.L.); (S.H.)
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
- Correspondence: (G.L.); (S.H.)
| |
Collapse
|
4
|
Piret J, Boivin G. Antiviral Drugs Against Herpesviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:1-30. [PMID: 34258735 DOI: 10.1007/978-981-16-0267-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the nucleoside analogue, acyclovir, represented a milestone in the management of infections caused by herpes simplex virus and varicella-zoster virus. Ganciclovir, another nucleoside analogue, was then used for the management of systemic and organ-specific human cytomegalovirus diseases. The pyrophosphate analogue, foscarnet, and the nucleotide analogue, cidofovir, have been approved subsequently and constitute the second-line antiviral drugs. However, the viral DNA polymerase is the ultimate target of all these antiviral agents with a possible emergence of cross-resistance between these drugs. Recently, letermovir that targets the viral terminase complex was approved for the prophylaxis of human cytomegalovirus infections in hematopoietic stem cell transplant recipients. Other viral targets such as the protein kinase and the helicase-primase complex are also evaluated for the development of novel potent inhibitors against herpesviruses.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Laval University, Quebec City, QC, Canada.
| |
Collapse
|
5
|
Ligat G, Muller C, Alain S, Hantz S. [The terminase complex, a relevant target for the treatment of HCMV infection]. Med Sci (Paris) 2020; 36:367-375. [PMID: 32356713 DOI: 10.1051/medsci/2020063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important ubiquitous opportunistic pathogen that belongs to the betaherpesviridae. Primary HCMV infection is generally asymptomatic in immunocompetent individuals. In contrast, HCMV infection causes serious disease in immunocompromised patients and is the leading cause of congenital viral infection. Although they are effective, the use of conventional molecules is limited by the emergence of resistance and by their toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA packaging is performed by the terminase complex, which cleaves DNA to package the virus genome into the capsid. With no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials. However, its mechanism of action is unclear and it has no significant activity against other herpesvirus or non-human CMV.
Collapse
Affiliation(s)
- Gaëtan Ligat
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France - Adresse actuelle : Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Clotilde Muller
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sophie Alain
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| | - Sébastien Hantz
- Univ. Limoges, Inserm, CHU Limoges, RESINFIT, U1092, 87000 Limoges, France - CHU Limoges, Laboratoire de bactériologie-virologie-hygiène, Centre national de référence des Herpèsvirus (NRCHV), 87000 Limoges, France
| |
Collapse
|
6
|
Yang Y, Yang P, Wang N, Chen Z, Su D, Zhou ZH, Rao Z, Wang X. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell 2020; 11:339-351. [PMID: 32328903 PMCID: PMC7196598 DOI: 10.1007/s13238-020-00710-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023] Open
Abstract
Genome packaging is a fundamental process in a viral life cycle and a prime target of antiviral drugs. Herpesviruses use an ATP-driven packaging motor/terminase complex to translocate and cleave concatemeric dsDNA into procapsids but its molecular architecture and mechanism are unknown. We report atomic structures of a herpesvirus hexameric terminase complex in both the apo and ADP•BeF3-bound states. Each subunit of the hexameric ring comprises three components-the ATPase/terminase pUL15 and two regulator/fixer proteins, pUL28 and pUL33-unlike bacteriophage terminases. Distal to the nuclease domains, six ATPase domains form a central channel with conserved basic-patches conducive to DNA binding and trans-acting arginine fingers are essential to ATP hydrolysis and sequential DNA translocation. Rearrangement of the nuclease domains mediated by regulatory domains converts DNA translocation mode to cleavage mode. Our structures favor a sequential revolution model for DNA translocation and suggest mechanisms for concerted domain rearrangements leading to DNA cleavage.
Collapse
Affiliation(s)
- Yunxiang Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Pan Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghao Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, 300353, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Theiß J, Sung MW, Holzenburg A, Bogner E. Full-length human cytomegalovirus terminase pUL89 adopts a two-domain structure specific for DNA packaging. PLoS Pathog 2019; 15:e1008175. [PMID: 31809525 PMCID: PMC6897398 DOI: 10.1371/journal.ppat.1008175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
A key step in replication of human cytomegalovirus (HCMV) in the host cell is the generation and packaging of unit-length genomes into preformed capsids. The enzymes involved in this process are the terminases. The HCMV terminase complex consists of two terminase subunits, the ATPase pUL56 and the nuclease pUL89. A potential third component pUL51 has been proposed. Even though the terminase subunit pUL89 has been shown to be essential for DNA packaging and interaction with pUL56, it is not known how pUL89 mechanistically achieves sequence-specific DNA binding and nicking. To identify essential domains and invariant amino acids vis-a-vis nuclease activity and DNA binding, alanine substitutions of predicted motifs were analyzed. The analyses indicated that aspartate 463 is an invariant amino acid for the nuclease activity, while argine 544 is an invariant aa for DNA binding. Structural analysis of recombinant protein using electron microscopy in conjunction with single particle analysis revealed a curvilinear monomer with two distinct domains connected by a thinner hinge-like region that agrees well with the predicted structure. These results allow us to model how the terminase subunit pUL89’s structure may mediate its function. HCMV is a member of the herpesvirus family and represents a major human pathogen causing severe disease in newborns and immunocompromised patients for which the development of new non-nucleosidic antiviral agents are highly important. This manuscript focuses on DNA packaging, which is a target for development of new antivirals. The terminase subunit pUL89 is involved in this process. The paper presents the identification of DNA binding and nuclease motifs with invariant amino acids and highlights its first 3-D surface structure at approx. 3 nm resolution. At this resolution, the calculated 3-D surface structure matches well with the predicted structure. In conjunction with earlier studies it was possible to define structure-function relationships for the HCMV terminase subunit pUL89.
Collapse
Affiliation(s)
- Janine Theiß
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Min Woo Sung
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Andreas Holzenburg
- Department of Molecular Science, School of Medicine, The University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas, United States of America
| | - Elke Bogner
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
8
|
Highlighting of a LAGLIDADG and a Zing Finger Motifs Located in the pUL56 Sequence Crucial for HCMV Replication. Viruses 2019; 11:v11121093. [PMID: 31779110 PMCID: PMC6950143 DOI: 10.3390/v11121093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) terminase complex is part of DNA-packaging machinery that delivers a unit-length genome into a procapsid. Sequence comparison of herpesvirus homologs allowed us to identify a potential LATLNDIERFL and zinc finger pattern in N-terminal part of pUL56. Recombinant viruses were generated with specific serine or alanine substitutions in these putative patterns. We identified a LATLNDIERFL pattern characteristic of LAGLIDADG homing endonucleases and a metal-binding pattern involving the cysteine and histidine residues C191-X2-C194-X22-C217-X-H219 (CCCH) close to the region conferring letermovir resistance. These patterns are crucial for viral replication, suggesting that they are essential for pUL56 structure and function. Thus, these patterns represent potential targets for the development of new antivirals such as small molecules or peptides and may allow to better understand the letermovir mechanism of action.
Collapse
|
9
|
Komatsu TE, Hodowanec AC, Colberg-Poley AM, Pikis A, Singer ME, O'Rear JJ, Donaldson EF. In-depth genomic analyses identified novel letermovir resistance-associated substitutions in the cytomegalovirus UL56 and UL89 gene products. Antiviral Res 2019; 169:104549. [DOI: 10.1016/j.antiviral.2019.104549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
|
10
|
Yang L, Yang Q, Wang M, Jia R, Chen S, Zhu D, Liu M, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Cheng A. Terminase Large Subunit Provides a New Drug Target for Herpesvirus Treatment. Viruses 2019; 11:v11030219. [PMID: 30841485 PMCID: PMC6466031 DOI: 10.3390/v11030219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Herpesvirus infection is an orderly, regulated process. Among these viruses, the encapsidation of viral DNA is a noteworthy link; the entire process requires a powered motor that binds to viral DNA and carries it into the preformed capsid. Studies have shown that this power motor is a complex composed of a large subunit, a small subunit, and a third subunit, which are collectively known as terminase. The terminase large subunit is highly conserved in herpesvirus. It mainly includes two domains: the C-terminal nuclease domain, which cuts the viral concatemeric DNA into a monomeric genome, and the N-terminal ATPase domain, which hydrolyzes ATP to provide energy for the genome cutting and transfer activities. Because this process is not present in eukaryotic cells, it provides a reliable theoretical basis for the development of safe and effective anti-herpesvirus drugs. This article reviews the genetic characteristics, protein structure, and function of the herpesvirus terminase large subunit, as well as the antiviral drugs that target the terminase large subunit. We hope to provide a theoretical basis for the prevention and treatment of herpesvirus.
Collapse
Affiliation(s)
- Linlin Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| |
Collapse
|
11
|
Piret J, Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral Res 2019; 163:91-105. [PMID: 30690043 DOI: 10.1016/j.antiviral.2019.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/28/2023]
Abstract
The prevention and treatment of human cytomegalovirus (HCMV) infections is based on the use of antiviral agents that currently target the viral DNA polymerase and that may cause serious side effects. The search for novel inhibitors against HCMV infection led to the discovery of new molecular targets, the viral terminase complex and the viral pUL97 kinase. The most advanced compounds consist of letermovir (LMV) and maribavir (MBV). LMV inhibits the cleavage of viral DNA and its packaging into capsids by targeting the HCMV terminase complex. LMV is safe and well tolerated and exhibits pharmacokinetic properties that allow once daily dosing. LMV showed efficacy in a phase III prophylaxis study in hematopoietic stem cell transplant (HSCT) recipients seropositive for HCMV. LMV was recently approved under the trade name Prevymis™ for prophylaxis of HCMV infection in adult seropositive recipients of an allogeneic HSCT. Amino acid substitutions conferring resistance to LMV selected in vitro map primarily to the pUL56 and rarely to the pUL89 and pUL51 subunits of the HCMV terminase complex. MBV is an inhibitor of the viral pUL97 kinase activity and interferes with the morphogenesis and nuclear egress of nascent viral particles. MBV is safe and well tolerated and has an excellent oral bioavailability. MBV was effective for the treatment of HCMV infections (including those that are refractory or drug-resistant) in transplant recipients in two phase II studies and is further evaluated in two phase III trials. Mutations conferring resistance to MBV map to the UL97 gene and can cause cross-resistance to ganciclovir. MBV-resistant mutations also emerged in the UL27 gene in vitro and could compensate for the inhibition of pUL97 kinase activity by MBV. Thus, LMV and probably MBV will broaden the armamentarium of antiviral drugs available for the prevention and treatment of HCMV infections.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
12
|
Ligat G, Cazal R, Hantz S, Alain S. The human cytomegalovirus terminase complex as an antiviral target: a close-up view. FEMS Microbiol Rev 2018; 42:137-145. [PMID: 29361041 PMCID: PMC5972660 DOI: 10.1093/femsre/fuy004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 01/17/2018] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for life-threatening infections in immunocompromised individuals and can cause serious congenital malformations. Available antivirals target the viral polymerase but are subject to cross-resistance and toxicity. New antivirals targeting other replication steps and inducing fewer adverse effects are therefore needed. During HCMV replication, DNA maturation and packaging are performed by the terminase complex, which cleaves DNA to package the genome into the capsid. Identified in herpesviruses and bacteriophages, and with no counterpart in mammalian cells, these terminase proteins are ideal targets for highly specific antivirals. A new terminase inhibitor, letermovir, recently proved effective against HCMV in phase III clinical trials, but the mechanism of action is unclear. Letermovir has no significant activity against other herpesvirus or non-human CMV. This review focuses on the highly conserved mechanism of HCMV DNA-packaging and the potential of the terminase complex to serve as an antiviral target. We describe the intrinsic mechanism of DNA-packaging, highlighting the structure-function relationship of HCMV terminase complex components.
Collapse
Affiliation(s)
- G Ligat
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - R Cazal
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - S Hantz
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| | - S Alain
- Université Limoges, INSERM, CHU Limoges, UMR 1092, 2 rue Dr Marcland, 87000 Limoges, France.,CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRHV), 2 avenue Martin Luther King, 87000 Limoges, France
| |
Collapse
|
13
|
Gentry BG, Bogner E, Drach JC. Targeting the terminase: An important step forward in the treatment and prophylaxis of human cytomegalovirus infections. Antiviral Res 2018; 161:116-124. [PMID: 30472161 DOI: 10.1016/j.antiviral.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
A key step in the replication of human cytomegalovirus (HCMV) in the host cell is the generation and packaging of unit-length genomes into preformed capsids. Enzymes required for this process are so-called terminases, first described for double-stranded DNA bacteriophages. The HCMV terminase consists of the two subunits, the ATPase pUL56 and the nuclease pUL89, and a potential third component pUL51. The terminase subunits are essential for virus replication and are highly conserved throughout the Herpesviridae family. Together with the portal protein pUL104 they form a powerful biological nanomotor. It has been shown for tailed dsDNA bacteriophages that DNA translocation into preformed capsid needs an extraordinary amount of energy. The HCMV terminase subunit pUL56 provides the required ATP hydrolyzing activity. The necessary nuclease activity to cleave the concatemers into unit-length genomes is mediated by the terminase subunit pUL89. Whether this cleavage is mediated by site-specific duplex nicking has not been demonstrated, however, it is required for packaging. Binding to the portal is a prerequisite for DNA translocation. To date, it is a common view that during translocation the terminase moves along some domains of the DNA by a binding and release mechanism. These critical structures have proven to be outstanding targets for drugs to treat HCMV infections because corresponding structures do not exist in mammalian cells. Herein we examine the HCMV terminase as a target for drugs and review several inhibitors discovered by both lead-directed medicinal chemistry and by target-specific design. In addition to producing clinically active compounds the research also has furthered the understanding of the role and function of the terminase itself.
Collapse
Affiliation(s)
- Brian G Gentry
- Drake University College of Pharmacy and Health Sciences, 2507 University Ave., Des Moines, 50311, IA, USA.
| | - Elke Bogner
- Institute of Virology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - John C Drach
- University of Michigan School of Dentistry, 1101 N. University Ave., Ann Arbor, 48109, MI, USA.
| |
Collapse
|
14
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
15
|
Neuber S, Wagner K, Messerle M, Borst EM. The C-terminal part of the human cytomegalovirus terminase subunit pUL51 is central for terminase complex assembly. J Gen Virol 2018; 99:119-134. [DOI: 10.1099/jgv.0.000984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Sebastian Neuber
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Ligat G, Jacquet C, Chou S, Couvreux A, Alain S, Hantz S. Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit. Sci Rep 2017; 7:8796. [PMID: 28821882 PMCID: PMC5562894 DOI: 10.1038/s41598-017-09469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The human cytomegalovirus (HCMV) terminase complex consists of several components acting together to cleave viral DNA into unit length genomes and translocate them into capsids, a critical process in the production of infectious virions subsequent to DNA replication. Previous studies suggest that the carboxyl-terminal portion of the pUL56 subunit interacts with the pUL89 subunit. However, the specific interacting residues of pUL56 remain unknown. We identified a conserved sequence in the C-terminal moiety of pUL56 (671WMVVKYMGFF680). Overrepresentation of conserved aromatic amino acids through 20 herpesviruses homologues of pUL56 suggests an involvement of this short peptide into the interaction between the larger pUL56 terminase subunit and the smaller pUL89 subunit. Use of Alpha technology highlighted an interaction between pUL56 and pUL89 driven through the peptide 671WMVVKYMGFF680. A deletion of these residues blocks viral replication. We hypothesize that it is the consequence of the disruption of the pUL56-pUL89 interaction. These results show that this motif is essential for HCMV replication and could be a target for development of new small antiviral drugs or peptidomimetics.
Collapse
Affiliation(s)
- G Ligat
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Cytomegaloviruses (NRC), Limoges, France
| | - C Jacquet
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Cytomegaloviruses (NRC), Limoges, France
| | - S Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA and Research Service, VA Portland Health Care System, Portland, Oregon, USA
| | - A Couvreux
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - S Alain
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Cytomegaloviruses (NRC), Limoges, France
| | - S Hantz
- Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France.
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Cytomegaloviruses (NRC), Limoges, France.
| |
Collapse
|
17
|
Mutual Interplay between the Human Cytomegalovirus Terminase Subunits pUL51, pUL56, and pUL89 Promotes Terminase Complex Formation. J Virol 2017; 91:JVI.02384-16. [PMID: 28356534 DOI: 10.1128/jvi.02384-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/17/2017] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) genome encapsidation requires several essential viral proteins, among them pUL56, pUL89, and the recently described pUL51, which constitute the viral terminase. To gain insight into terminase complex assembly, we investigated interactions between the individual subunits. For analysis in the viral context, HCMV bacterial artificial chromosomes carrying deletions in the open reading frames encoding the terminase proteins were used. These experiments were complemented by transient-transfection assays with plasmids expressing the terminase components. We found that if one terminase protein was missing, the levels of the other terminase proteins were markedly diminished, which could be overcome by proteasome inhibition or providing the missing subunit in trans These data imply that sequestration of the individual subunits within the terminase complex protects them from proteasomal turnover. The finding that efficient interactions among the terminase proteins occurred only when all three were present together is reminiscent of a folding-upon-binding principle leading to cooperative stability. Furthermore, whereas pUL56 was translocated into the nucleus on its own, correct nuclear localization of pUL51 and pUL89 again required all three terminase constituents. Altogether, these features point to a model of the HCMV terminase as a multiprotein complex in which the three players regulate each other concerning stability, subcellular localization, and assembly into the functional tripartite holoenzyme.IMPORTANCE HCMV is a major risk factor in immunocompromised individuals, and congenital CMV infection is the leading viral cause for long-term sequelae, including deafness and mental retardation. The current treatment of CMV disease is based on drugs sharing the same mechanism, namely, inhibiting viral DNA replication, and often results in adverse side effects and the appearance of resistant virus strains. Recently, the HCMV terminase has emerged as an auspicious target for novel antiviral drugs. A new drug candidate inhibiting the HCMV terminase, Letermovir, displayed excellent potency in clinical trials; however, its precise mode of action is not understood yet. Here, we describe the mutual dependence of the HCMV terminase constituents for their assembly into a functional terminase complex. Besides providing new basic insights into terminase formation, these results will be valuable when studying the mechanism of action for drugs targeting the HCMV terminase and developing additional substances interfering with viral genome encapsidation.
Collapse
|
18
|
Bowman LJ, Melaragno JI, Brennan DC. Letermovir for the management of cytomegalovirus infection. Expert Opin Investig Drugs 2016; 26:235-241. [PMID: 27998189 DOI: 10.1080/13543784.2017.1274733] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a major cause of morbidity and mortality in immunocompromised patients. Available antivirals are fraught with adverse effects and risk for the development of CMV resistance. Letermovir is a novel antiviral in the late stages of drug development for the treatment and prevention of CMV. Areas covered: A MEDLINE search of the MeSH terms 'letermovir,' 'cytomegalovirus,' 'hematopoietic stem cell transplant,' and 'solid organ transplant,' was last conducted on 15 August 2016. Articles were selected on the basis of their contribution to current knowledge about letermovir. Expert opinion: Letermovir's mechanism of action, pharmacokinetic and pharmacodynamic profile, and favorable efficacy and safety make it an attractive option for both the prevention and treatment of CMV in immunocompromised patients. The lack of cross-resistance with other antivirals and the absence of myelosuppression are two prominent characteristics of letermovir that could support broad use of this product following FDA-approval. One major limitation is its lack of activity against other herpesviruses, which are commonly seen in immunocompromised hosts. We believe that with additional clinical efficacy data, this medication could emerge as a primary option for the prevention and treatment of CMV in the immunocompromised patient population.
Collapse
Affiliation(s)
- Lyndsey J Bowman
- a Department of Pharmacy , Tampa General Hospital , Tampa , FL , USA
| | | | - Daniel C Brennan
- c Division of Nephrology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
19
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93. J Virol 2016; 90:5876-5885. [PMID: 27053556 DOI: 10.1128/jvi.00351-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. IMPORTANCE We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL89 and another postulated packaging protein, pUL93, in infected, as well as transfected, cells.
Collapse
|
21
|
Melendez DP, Razonable RR. Letermovir and inhibitors of the terminase complex: a promising new class of investigational antiviral drugs against human cytomegalovirus. Infect Drug Resist 2015; 8:269-77. [PMID: 26345608 PMCID: PMC4531042 DOI: 10.2147/idr.s79131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection with cytomegalovirus is prevalent in immunosuppressed patients. In solid organ transplant and hematopoietic stem cell transplant recipients, cytomegalovirus infection is associated with high morbidity and preventable mortality. Prevention and treatment of cytomegalovirus with currently approved antiviral drugs is often associated with side effects that sometimes preclude their use. Moreover, cytomegalovirus has developed mutations that confer resistance to standard antiviral drugs. During the last decade, there have been calls to develop novel antiviral drugs that could provide better options for prevention and treatment of cytomegalovirus. Letermovir (AIC246) is a highly specific antiviral drug that is currently undergoing clinical development for the management of cytomegalovirus infection. It acts by inhibiting the viral terminase complex. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. Herein, we present a comprehensive review on letermovir, from its postulated novel mechanism of action to the results of most recent clinical studies.
Collapse
Affiliation(s)
- Dante P Melendez
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA ; William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA ; William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
De-Donatis GM, Zhao Z, Wang S, Huang LP, Schwartz C, Tsodikov OV, Zhang H, Haque F, Guo P. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size. Cell Biosci 2014; 4:30. [PMID: 24940480 PMCID: PMC4060578 DOI: 10.1186/2045-3701-4-30] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 12/03/2022] Open
Abstract
Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion.
Collapse
Affiliation(s)
- Gian Marco De-Donatis
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhengyi Zhao
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Shaoying Wang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Lisa P Huang
- Current address: Institute for Biomarker Research, Medical Diagnostic Laboratories, L.L.C., Hamilton, NJ 08690, USA
| | - Chad Schwartz
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hui Zhang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Farzin Haque
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Peixuan Guo
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,William Farish Endowed Chair in Nanobiotechnology, School of Pharmacy, University of Kentucky, 565 Biopharmaceutical Complex, 789 S. Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
23
|
Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol 2014; 88:4962-75. [PMID: 24554665 DOI: 10.1128/jvi.00063-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg(2+), Mn(2+), and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions. IMPORTANCE Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.
Collapse
|
24
|
Borst EM, Kleine-Albers J, Gabaev I, Babić M, Wagner K, Binz A, Degenhardt I, Kalesse M, Jonjić S, Bauerfeind R, Messerle M. The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol 2013; 87:1720-32. [PMID: 23175377 PMCID: PMC3554196 DOI: 10.1128/jvi.01955-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/16/2012] [Indexed: 01/19/2023] Open
Abstract
Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle.
Collapse
Affiliation(s)
| | | | | | - Marina Babić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | - Inga Degenhardt
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany, and Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany, and Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Rudolf Bauerfeind
- Institute for Cell Biology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
25
|
Wang JB, Zhu Y, McVoy MA, Parris DS. Changes in subcellular localization reveal interactions between human cytomegalovirus terminase subunits. Virol J 2012; 9:315. [PMID: 23259714 PMCID: PMC3547700 DOI: 10.1186/1743-422x-9-315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/14/2012] [Indexed: 11/15/2022] Open
Abstract
Background During herpesvirus replication, terminase packages viral DNA into capsids. The subunits of herpes simplex virus terminase, UL15, UL28, and UL33, assemble in the cytoplasm prior to nuclear import of the complex. Methods To detect similar interactions between human cytomegalovirus terminase subunits, the orthologous proteins UL89, UL56, and UL51 were expressed in HEK-293 T cells (via transfection) or insect cells (via baculovirus infection) and subcellular localizations were detected by cellular fractionation and confocal microscopy. Results In both cell types, UL56 and UL89 expressed alone were exclusively cytoplasmic, whereas UL51 was ~50% nuclear. Both UL89 and UL56 became ~50% nuclear when expressed together, as did UL56 when expressed with UL51. Nuclear localization of each protein was greatest when all three proteins were co-expressed. Conclusions These results support inclusion of UL51 as an HCMV terminase subunit and suggest that nuclear import of human cytomegalovirus terminase may involve nuclear import signals that form cooperatively upon subunit associations.
Collapse
Affiliation(s)
- Jian Ben Wang
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298-0163, USA
| | | | | | | |
Collapse
|
26
|
A leucine zipper motif of a tegument protein triggers final envelopment of human cytomegalovirus. J Virol 2011; 86:3370-82. [PMID: 22205740 DOI: 10.1128/jvi.06556-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The product of the human cytomegalovirus (HCMV) UL71 gene is conserved throughout the herpesvirus family. During HCMV infection, protein pUL71 is required for efficient virion egress and is involved in the final steps of secondary envelopment leading to infectious viral particles. We found strong indications for oligomerization of pUL71 under native conditions when recombinant pUL71 was negatively stained and analyzed by electron microscopy. Oligomerization of pUL71 during infection was further verified by native and reducing polyacrylamide gel electrophoresis (PAGE). By in silico analyses of the pUL71 sequence, we noticed a basic leucine zipper (bZIP)-like domain, which might serve as an oligomerization domain. We demonstrated the requirement of the bZIP-like domain for pUL71 oligomerization by coimmunoprecipitation and bimolecular fluorescence complementation using a panel of pUL71 mutants. These studies revealed that the mutation of two leucine residues is sufficient to abrogate oligomerization but that intracellular localization of pUL71 was unaffected. To investigate the relevance of the bZIP domain in the viral context, recombinant viruses carrying mutations identical to those in the panel of pUL71 mutants were generated. bZIP-defective viral mutants showed impaired viral growth, a small-plaque phenotype, and an ultrastructural phenotype similar to that of the previously described UL71 stop mutant virus. The majority of virus particles within the viral assembly compartment exhibited various stages of incomplete envelopment, which is consistent with the growth defect for the bZIP mutants. From these data we conclude that the bZIP-like domain is required for oligomerization of pUL71, which seems to be essential for correct envelopment of HCMV.
Collapse
|
27
|
Meissner CS, Köppen-Rung P, Dittmer A, Lapp S, Bogner E. A "coiled-coil" motif is important for oligomerization and DNA binding properties of human cytomegalovirus protein UL77. PLoS One 2011; 6:e25115. [PMID: 21998635 PMCID: PMC3187746 DOI: 10.1371/journal.pone.0025115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0 ± 0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2 ± 0.41 and 4.9 ± 0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner.
Collapse
Affiliation(s)
| | - Pánja Köppen-Rung
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Dittmer
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Lapp
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Bogner
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
Thoma C, Bogner E. Short hairpin RNAs specific to human cytomegalovirus terminase subunit pUL89 prevent viral maturation. Antivir Ther 2010; 15:391-400. [PMID: 20516558 DOI: 10.3851/imp1536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In order to define the role of the human cytomegalovirus (HCMV) small terminase subunit pUL89, analysis by RNA interference was applied. METHODS Cell lines expressing pUL89-specific short hairpin RNAs (shRNAs) were constructed by transduction of shRNAs via infection with retroviral vectors. These cell lines were infected with HCMV AD169 and were analysed for pUL89 expression, viral yield, plaque reduction, amount of viral DNA and particle formation. RESULTS After infection of the cell lines with HCMV, the expression of pUL89 was reduced by up to 86% for shRNA_A and 84% for shRNA_B at the later time points of infection. Cell lines expressing shRNA_C and the control had no effect on the pUL89 expression level. In addition, the inhibitory effect corresponded to a decrease in viral growth kinetics, viral DNA and plaque formation. Analysis by electron microscopy demonstrated that infection of cells expressing pUL89-specific shRNA_A and shRNA_B resulted in a complete inhibition of viral particle formation. CONCLUSIONS HCMV is a serious life-threatening opportunistic pathogen in immunocompromised patients. Because of multiple problems caused by the current available drugs, development of new strategies are needed. Our data clearly demonstrate that pUL89-specific shRNAs mediated the inhibition of formation of replicative infectious particles and therefore represent a new promising mechanism for antiviral therapy against HCMV infection.
Collapse
Affiliation(s)
- Corina Thoma
- Institute of Virology, Charité Universitâtsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
29
|
Bogner E. Human cytomegalovirus packaging: an update on structure–function relationships. Future Virol 2010. [DOI: 10.2217/fvl.10.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA packaging of human cytomegalovirus is a key step in viral replication. Enzymes required for this process are the terminase subunits pUL56 and pUL89. Together with the portal protein, pUL104, they form a powerful biological nanomotor. It has been demonstrated that for tailed dsDNA bacteriophages, DNA translocation into preformed capsid needs an extraordinary amount of energy. The terminase subunit pUL56 provides the required ATP-hydrolyzing activity for DNA packaging. The necessary nuclease activity to process the concatemers into unit-length genomes is mediated by the terminase subunit pUL89. The ring-like structure of both terminase subunits is in concordance with their function as DNA-metabolizing proteins. Binding to the portal is a prerequisite for DNA translocation into the capsid. The latest models suggest that the terminase moves along some domains of the DNA by a binding and release mechanism.
Collapse
Affiliation(s)
- Elke Bogner
- Institute of Virology, Helmut-Ruska-Haus, Charité Campus Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
30
|
Couvreux A, Hantz S, Marquant R, Champier G, Alain S, Morellet N, Bouaziz S. Insight into the structure of the pUL89 C-terminal domain of the human cytomegalovirus terminase complex. Proteins 2010; 78:1520-30. [PMID: 20099308 DOI: 10.1002/prot.22669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In a previous study, we identified 12 conserved domains within pUL89, the small terminase subunit of the human cytomegalovirus. A latter study showed that the fragment pUL89(580-600) plays an important role in the formation of the terminase complex by interacting with the large terminase subunit pUL56. In this study, analysis was performed to solve the structure of pUL89(568-635) in 50% H2O/50% acetonitrile (v/v). We showed that pUL89(568-635) consists of four alpha helices, but we did not identify any tertiary structure. The fragment 580-600 formed an amphipathic alpha helix, which had a hydrophobic side highly conserved among herpesviral homologs of pUL89; this was not observed for its hydrophilic side. The modeling of pUL89(457-612) using the recognition fold method allowed us to position pUL89(580-600) within this domain. The theoretical structure highlighted three important features. First, we identified a metal-binding pocket containing residues Asp(463), Glu(534), and Glu(588), which are highly conserved among pUL89 homologs. Second, the model predicted a positively charged surface able to interact with the DNA duplex during the nicking event. Third, a hydrophobic patch on the top of the catalytic site suggested that this may constitute part of the pUL89 site recognized by pUL56 potentially involved in DNA binding.
Collapse
Affiliation(s)
- A Couvreux
- Université Paris Descartes, Inserm U, CNRS UMR, UFR des Sciences Pharmaceutiques et Biologiques, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Susceptibilities of human cytomegalovirus clinical isolates and other herpesviruses to new acetylated, tetrahalogenated benzimidazole D-ribonucleosides. Antimicrob Agents Chemother 2009; 53:5095-101. [PMID: 19786605 DOI: 10.1128/aac.00809-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently we characterized two inhibitors targeting the human cytomegalovirus (HCMV) terminase, 2-bromo-4,5,6-trichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) benzimidazole (BTCRB) and 2,4,5,6-tetrachloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) benzimidazole (Cl(4)RB). The terminase consists of the ATP-hydrolyzing subunit pUL56 and the subunit pUL89 required for duplex nicking. Because mammalian cell DNA replication does not involve cleavage of concatemeric DNA by a terminase, these compounds represent attractive alternative HCMV antivirals. We now have tested these previously identified benzimidazole ribonucleosides in order to determine if they are active against HCMV clinical isolates as well as those of herpes simplex virus type 1, mouse cytomegalovirus, rat cytomegalovirus (RCMV), and varicella-zoster virus (VZV). Antiviral activity was quantified by measurement of viral plaque formation (plaque reduction) and by viral growth kinetics. Interestingly, both BTCRB and Cl(4)RB had an inhibitory effect in ganciclovir (GCV)-sensitive and GCV-resistant clinical isolates, with the best effect produced by Cl(4)RB. Electron microscopy revealed that in cells infected with GCV-sensitive or GCV-resistant isolates, B capsids and dense bodies were formed mainly. Furthermore, pulsed-field gel electrophoresis showed that cleavage of concatenated DNA was inhibited in clinical isolates. In addition, the antiviral effect on other herpesviruses was determined. Interestingly, in plaque reduction assays, BTCRB was active against all tested herpesviruses. The best effects were observed on VZV- and RCMV-infected cells. These results demonstrate that the new compounds are highly active against GCV-resistant and GCV-sensitive clinical isolates and slightly active against other herpesviruses.
Collapse
|
32
|
Holzenburg A, Dittmer A, Bogner E. Assembly of monomeric human cytomegalovirus pUL104 into portal structures. J Gen Virol 2009; 90:2381-2385. [PMID: 19587135 DOI: 10.1099/vir.0.013292-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order for human cytomegalovirus (HCMV) to replicate, concatemeric DNA has to be cleaved into unit-length genomes and packaged into preformed capsids. For packaging to take place and DNA to be translocated, a channel is required in the capsid. Viral capsid channels are generally formed by portal proteins. Here, we show by cross-linking, native gel electrophoresis of infected cells and gel permeation chromatography that the HCMV portal candidate protein pUL104 can form dimers and higher order multimers. Electron microscopy of purified monomeric pUL104 after 5 min incubation revealed that the protein had assembled into a multimeric form and that this form closely resembles complete portal assembly. This is the first study to show that pUL104 monomers have the ability to form portal complexes without additional viral proteins.
Collapse
Affiliation(s)
- Andreas Holzenburg
- Microscopy and Imaging Center, Department of Biology and Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843-2257, USA
| | - Alexandra Dittmer
- Institute of Virology, Helmut-Ruska Haus, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| | - Elke Bogner
- Institute of Virology, Helmut-Ruska Haus, Charité Campus Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
33
|
Visalli RJ, Knepper J, Goshorn B, Vanover K, Burnside DM, Irven K, McGauley R, Visalli M. Characterization of the Varicella-zoster virus ORF25 gene product: pORF25 interacts with multiple DNA encapsidation proteins. Virus Res 2009; 144:58-64. [PMID: 19720242 DOI: 10.1016/j.virusres.2009.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/29/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
Abstract
The Herpesviridae contain a group of highly conserved proteins designated the Herpes UL33 Superfamily (pfam03581). The Varicella-zoster virus (VZV) homolog, encoded by the ORF25 gene, was used to generate a GST-ORF25 fusion protein. Purified GST-ORF25 was used to generate a polyclonal rabbit antiserum that detected the 17.5 kDa ORF25 protein (pORF25) in VZV infected cells. In pull-down assays, GST-ORF25 interacted with a number of encapsidation proteins including ORF30, ORF42 (the second exon of ORF45/42) and itself. The self-interaction was confirmed via a yeast two-hybrid assay. Additionally, pORF25 and pORF30 were shown to co-immunoprecipitate from VZV infected cells. Our results suggest that pORF25 is part of the trimeric terminase complex for VZV. However, combined with data from previous studies on HSV-1 and Kaposi's sarcoma associated herpesvirus (KSVH), we hypothesize that VZV pORF25 and the Herpes UL33 Superfamily homologs are not encapsidation proteins per se but instead work to bring viral proteins together to form functional complexes.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biology, Indiana University Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The murine cytomegalovirus (MCMV) M56 is one of three proteins that combine to form the MCMV terminase, required for cleavage and packaging of viral DNA into capsids. Deletion of M56 from a bacterial artificial chromosome (BAC) clone of the MCMV genome was considered lethal, as the mutant BAC failed to reconstitute infectious virus. Reintroduction of M56 at an ectopic locus complemented the deletion, allowing reconstitution of a virus that replicated with wild-type efficiency. However, neither the reintroduction of M56 sequences encoding an N-terminal epitope fusion nor a mutation targeting a region in M56 implicated as an ATPase active site was capable of restoring virus viability. In contrast, a frame shift mutation in M56a, a putative open reading frame that overlaps M56, had no effect on viral replication. We conclude that M56a is dispensable, whereas M56 residues comprising the proposed ATPase active site are critical for terminase function and viral replication.
Collapse
Affiliation(s)
- Jian Ben Wang
- Department of Pediatrics, Medical College of Virginia campus of Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298-0163, USA
| | - Michael A McVoy
- Department of Pediatrics, Medical College of Virginia campus of Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298-0163, USA
| |
Collapse
|
35
|
Xiao F, Zhang H, Guo P. Novel mechanism of hexamer ring assembly in protein/RNA interactions revealed by single molecule imaging. Nucleic Acids Res 2008; 36:6620-32. [PMID: 18940870 PMCID: PMC2582624 DOI: 10.1093/nar/gkn669] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many nucleic acid-binding proteins and the AAA+ family form hexameric rings, but the mechanism of hexamer assembly is unclear. It is generally believed that the specificity in protein/RNA interaction relies on molecular contact through a surface charge or 3D structure matching via conformational capture or induced fit. The pRNA of bacteriophage phi29 DNA-packaging motor also forms a ring, but whether the pRNA ring is a hexamer or a pentamer is under debate. Here, single molecule studies elucidated a mechanism suggesting the specificity and affinity in protein/RNA interaction relies on pRNA static ring formation. A combined pRNA ring-forming group was very specific for motor binding, but the isolated individual members of the ring-forming group bind to the motor nonspecifically. pRNA did not form a ring prior to motor binding. Only those RNAs that formed a static ring, via the interlocking loops, stayed on the motor. Single interlocking loop interruption resulted in pRNA detachment. Extension or reduction of the ring circumference failed in motor binding. This new mechanism was tested by redesigning two artificial RNAs that formed hexamer and packaged DNA. The results confirmed the stoichiometry of pRNA on the motor was the common multiple of two and three, thus, a hexamer.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Biomedical Engineering, College of Engineering/College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | |
Collapse
|
36
|
Champier G, Couvreux A, Hantz S, Rametti A, Mazeron MC, Bouaziz S, Denis F, Alain S. Putative Functional Domains of Human Cytomegalovirus pUL56 Involved in Dimerization and Benzimidazole D-Ribonucleoside Activity. Antivir Ther 2008. [DOI: 10.1177/135965350801300504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Benzimidazole d-ribonucleosides inhibit DNA packaging during human cytomegalovirus (HCMV) replication. Although they have been shown to target pUL56 and pUL89 (the large and small subunits of the HCMV terminase, respectively) their mechanism of action is not yet fully understood. We aimed here to better understand HCMV DNA maturation and the mechanism of action of benzimidazole derivatives. Methods The HCMV pUL56 protein was studied by sequence analysis of the HCMV UL56 gene and herpesvirus counterparts combined with primary structure analysis of the corresponding amino acid sequences. Results The UL56 sequence analysis of 45 HCMV strains and counterparts among herpesviruses allowed the identification of 12 conserved regions. Moreover, comparison with the product of gene 49 (gp49) of bacteriophage T4 suggested that the pUL56 zinc finger is localized close to the dimerization site of pUL56, providing a spatial organization of the catalytic site that allows recognition and cleavage of DNA. Conclusions This study provides a basis to investigate the mechanism of concatemeric DNA cleavage and a biochemical basis for DNA packaging inhibition by benzimidazole derivatives.
Collapse
Affiliation(s)
- Gaël Champier
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Anthony Couvreux
- Unité de Pharmacologie Chimique et Génétique; CNRS, UMR 8151, Paris, F-75270 Cedex 06, France
- Inserm, U 640, Paris, F-75270 Cedex 06, France
- Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 Cedex 06, France
| | - Sébastien Hantz
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Armelle Rametti
- EA 3842 Homéostasie Cellulaire et Pathologie, Faculté de Médecine de Limoges, France
| | - Marie-Christine Mazeron
- Service de Bactériologie-Virologie, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Centre National de Référence Cytomegalovirus Associate Laboratory, Paris, France
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique; CNRS, UMR 8151, Paris, F-75270 Cedex 06, France
- Inserm, U 640, Paris, F-75270 Cedex 06, France
- Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 Cedex 06, France
| | - François Denis
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| | - Sophie Alain
- Université de Limoges, Faculté de Médecine, Centre Hospitalier Universitaire Dupuytren, EA 3175, Laboratoire de Bactériologie-Virologie-Hygiène, Centre National de Référence Cytomégalovirus, Limoges, France
| |
Collapse
|
37
|
Borst EM, Wagner K, Binz A, Sodeik B, Messerle M. The essential human cytomegalovirus gene UL52 is required for cleavage-packaging of the viral genome. J Virol 2008; 82:2065-78. [PMID: 18077717 PMCID: PMC2258901 DOI: 10.1128/jvi.01967-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/03/2007] [Indexed: 11/20/2022] Open
Abstract
Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a DeltaUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the DeltaUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in DeltaUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of DeltaUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.
Collapse
Affiliation(s)
- Eva Maria Borst
- Hannover Medical School, Department of Virology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Comparative Pathobiology and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
39
|
Visalli RJ, Nicolosi DM, Irven KL, Goshorn B, Khan T, Visalli MA. The Varicella-zoster virus DNA encapsidation genes: Identification and characterization of the putative terminase subunits. Virus Res 2007; 129:200-11. [PMID: 17868947 PMCID: PMC2669082 DOI: 10.1016/j.virusres.2007.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
The putative DNA encapsidation genes encoded by open reading frames (ORFs) 25, 26, 30, 34, 43, 45/42 and 54 were cloned from Varicella-zoster virus (VZV) strain Ellen. Sequencing revealed that the Ellen ORFs were highly conserved at the amino acid level when compared to those of 19 previously published VZV isolates. Additionally, RT-PCR provided the first evidence that ORF45/42 was expressed as a spliced transcript in VZV-infected cells. All seven ORFs were expressed in vitro and full length products were identified using a C-terminal V5 epitope tag. The in vitro products of the putative VZV terminase subunits encoded by ORFs 30 and 45/42 proved useful in protein-protein interaction assays. Previous studies have reported the formation of a heterodimeric terminase complex involved in DNA encapsidation for both herpes simplex virus-type 1 (HSV-1) and human cytomegalovirus (HCMV). Here we report that the C-terminal portion of exon II of ORF45/42 (ORF42-C269) interacted in GST-pull down experiments with in vitro synthesized ORF30 and ORF45/42. The interactions were maintained in the presence of anionic detergents and in buffers of increasing ionic strength. Cells transiently transfected with epitope tagged ORF45/42 or ORF30 showed primarily cytoplasmic staining. In contrast, an antiserum directed to the N-terminal portion of ORF45 showed nearly exclusive nuclear localization of the ORF45/42 gene product in infected cells. An ORF30 specific antiserum detected an 87 kDa protein in both the cytoplasmic and nuclear fractions of VZV infected cells. The results were consistent with the localization and function of herpesviral terminase subunits. This is the first study aimed at the identification and characterization of the VZV DNA encapsidation gene products.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biology, Indiana University Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hwang JS, Kregler O, Schilf R, Bannert N, Drach JC, Townsend LB, Bogner E. Identification of acetylated, tetrahalogenated benzimidazole D-ribonucleosides with enhanced activity against human cytomegalovirus. J Virol 2007; 81:11604-11. [PMID: 17728228 PMCID: PMC2168816 DOI: 10.1128/jvi.01130-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA packaging is the key step in viral maturation and involves binding and cleavage of viral DNA containing specific DNA-packaging motifs. This process is mediated by a group of specific enzymes called terminases. We previously demonstrated that the human cytomegalovirus (HCMV) terminase is composed of the large subunit pUL56 and the small subunit pUL89. While the large subunit mediates sequence-specific DNA binding and ATP hydrolysis, pUL89 is required only for duplex nicking. An excellent inhibitor targeting HCMV terminase is 2-bromo-5,6-dichloro-1-(beta-d-ribofuranosyl)benzimidazole (BDCRB), but it was not developed as an antiviral drug due to its metabolic cleavage in experimental animals. We now have tested several new benzimidazole d-ribonucleosides in order to determine whether these compounds represent new, potent inhibitors. Analysis by bioluminometric ATPase activity assays identified two of the new compounds with a high inhibitory effect, 2-bromo-4,5,6-trichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) benzimidazole (BTCRB) and 2,4,5,6-tetrachloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl benzimidazole (Cl(4)RB). By using viral plaque formation, viral yield, and viral growth kinetics, we demonstrated that the two compounds BTCRB and Cl(4)RB had antiviral activities similar to that of BDCRB. Interestingly, BTCRB retained its inhibitory activity after preincubation with HFF cells. By use of electron microscopy, we observed an increase of B capsids and a lack of cytoplasmic capsids in the presence of the compounds that correlated with the virus yield. Furthermore, cleavage of concatenated DNA was inhibited by both compounds, and inhibition by BTCRB was shown to be dose dependent. These results demonstrate that the new compounds are highly active against HCMV and act by mechanisms similar but not identical to those of BDCRB.
Collapse
Affiliation(s)
- Jae-Seon Hwang
- Institut für Virologie, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee TJ, Guo P. Interaction of gp16 with pRNA and DNA for Genome Packaging by the Motor of Bacterial Virus phi29. J Mol Biol 2006; 356:589-99. [PMID: 16376938 DOI: 10.1016/j.jmb.2005.10.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components have been well elucidated; however, studies on the role of gp16 have been seriously hampered by its hydrophobicity and self-aggregation. Such problems caused by insolubility also occur in the study of other viral DNA-packaging motors. Contradictory data have been published regarding the role and stoichiometry of gp16, which has been reported to bind every motor component, including pRNA, DNA, gp3, DNA-gp3, connector, pRNA-free procapsid, and procapsid/pRNA complex. Such conflicting data from a binding assay could be due to the self-aggregation of gp16. Our recent advance to produce soluble and highly active gp16 has enabled further studies on gp16. It was demonstrated in this report that gp16 bound to DNA non-specifically. gp16 bound to the pRNA-containing procapsid much more strongly than to the pRNA-free procapsid. The domain of pRNA for gp16 interaction was the 5'/3' paired helical region. The C18C19A20 bulge that is essential for DNA packaging was found to be dispensable for gp16 binding. This result confirms the published model that pRNA binds to the procapsid with its central domain and extends its 5'/3' DNA-packaging domain for gp16 binding. It suggests that gp16 serves as a linkage between pRNA and DNA, and as an essential DNA-contacting component during DNA translocation. The data also imply that, with the exception of the C18C19A20 bulge, the main role of the 5'/3' helical double-stranded region of pRNA is not for procapsid binding but for binding to gp16.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Pathobiology, Weldon School of Biomedical Engineering, and Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
42
|
Dittmer A, Drach JC, Townsend LB, Fischer A, Bogner E. Interaction of the putative human cytomegalovirus portal protein pUL104 with the large terminase subunit pUL56 and its inhibition by benzimidazole-D-ribonucleosides. J Virol 2006; 79:14660-7. [PMID: 16282466 PMCID: PMC1287559 DOI: 10.1128/jvi.79.23.14660-14667.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus DNA replication leads to unit length genomes that are translocated into preformed procapsids through a unique portal vertex. The translocation is performed by the terminase that cleaves the DNA and powers the insertion by its ATPase activity. Recently, we demonstrated that the putative human cytomegalovirus (HCMV) portal protein, pUL104, also forms high-molecular-weight complexes. Analyses now have been performed to determine the intracellular localization and identification of interaction partners of pUL104. In infected cells, HCMV pUL104 was found to be predominantly localized throughout the nucleus as well as in cytoplasmic clusters at late times of infection. The latter localization was abolished by phosphonoacetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL104 colocalized with pUL56, the large subunit of the HCMV terminase. Specific association of in vitro translated pUL104 with the carboxy-terminal half of GST-UL56C was detected. By using coimmunoprecipitations a direct interaction with pUL56 was confirmed. In addition, this interaction was no longer detected when the benzimidazole-D-nucleosides BDCRB or Cl4RB were added, thus indicating that these HCMV inhibitors block the insertion of the DNA into the capsid by preventing a necessary interaction of pUL56 with the portal. Electron microscopy revealed that in the presence of Cl4RB DNA is not packaged into capsids and these capsids failed to egress from the nucleus. Furthermore, pulsed-field gel electrophoresis showed that DNA concatemers synthesized in the presence of the compound failed to be processed.
Collapse
Affiliation(s)
- Alexandra Dittmer
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
43
|
McVoy MA, Nixon DE. Impact of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole riboside and inhibitors of DNA, RNA, and protein synthesis on human cytomegalovirus genome maturation. J Virol 2005; 79:11115-27. [PMID: 16103162 PMCID: PMC1193602 DOI: 10.1128/jvi.79.17.11115-11127.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genome maturation is a complex process in which concatemeric DNA molecules are translocated into capsids and cleaved at specific sequences to produce encapsidated-unit genomes. Bacteriophage studies further suggest that important ancillary processes, such as RNA transcription and DNA synthesis, concerned with repeat duplication, recombination, branch resolution, or damage repair may also be involved with the genome maturation process. To gain insight into the biochemical activities needed for herpesvirus genome maturation, 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) was used to allow the accumulation of human cytomegalovirus concatemeric DNA while the formation of new genomes was being blocked. Genome formation was restored upon BDCRB removal, and addition of various inhibitors during this time window permitted evaluation of their effects on genome maturation. Inhibitors of protein synthesis, RNA transcription, and the viral DNA polymerase only modestly reduced genome formation, demonstrating that these activities are not required for genome maturation. In contrast, drugs that inhibit both viral and host DNA polymerases potently blocked genome formation. Radioisotope incorporation in the presence of a viral DNA polymerase inhibitor further suggested that significant host-mediated DNA synthesis occurs throughout the viral genome. These results indicate a role for host DNA polymerases in genome maturation and are consistent with a need for terminal repeat duplication, debranching, or damage repair concomitant with DNA packaging or cleavage. Similarities to previously reported effects of BDCRB on guinea pig cytomegalovirus were also noted; however, BDCRB induced low-level formation of a supergenomic species called monomer+ DNA that is unique to human cytomegalovirus. Analysis of monomer+ DNA suggested a model for its formation in which BDCRB permits limited packaging of concatemeric DNA but induces skipping of cleavage sites.
Collapse
Affiliation(s)
- Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, 23298-0163, USA.
| | | |
Collapse
|
44
|
Xiao F, Moll WD, Guo S, Guo P. Binding of pRNA to the N-terminal 14 amino acids of connector protein of bacteriophage phi29. Nucleic Acids Res 2005; 33:2640-9. [PMID: 15886394 PMCID: PMC1092275 DOI: 10.1093/nar/gki554] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During assembly, bacterial virus phi29 utilizes a motor to insert genomic DNA into a preformed protein shell called the procapsid. The motor contains one twelve-subunit connector with a 3.6 nm central channel for DNA transportation, six viral-encoded RNA (packaging RNA or pRNA) and a protein, gp16, with unknown stoichiometry. Recent DNA-packaging models proposed that the 5-fold procapsid vertexes and 12-fold connector (or the hexameric pRNA ring) represented a symmetry mismatch enabling production of a force to drive a rotation motor to translocate and compress DNA. There was a discrepancy regarding the location of the foothold for the pRNA. One model [C. Chen and P. Guo (1997) J. Virol., 71, 3864–3871] suggested that the foothold for pRNA was the connector and that the pRNA–connector complex was part of the rotor. However, one other model suggested that the foothold for pRNA was the 5-fold vertex of the capsid protein and that pRNA was the stator. To elucidate the mechanism of phi29 DNA packaging, it is critical to confirm whether pRNA binds to the 5-fold vertex of the capsid protein or to the 12-fold symmetrical connector. Here, we used both purified connector and purified procapsid for binding studies with in vitro transcribed pRNA. Specific binding of pRNA to the connector in the procapsid was found by photoaffinity crosslinking. Removal of the N-terminal 14 amino acids of the gp10 protein by proteolytic cleavage resulted in undetectable binding of pRNA to either the connector or the procapsid, as investigated by agarose gel electrophoresis, SDS–PAGE, sucrose gradient sedimentation and N-terminal peptide sequencing. It is therefore concluded that pRNA bound to the 12-fold symmetrical connector to form a pRNA–connector complex and that the foothold for pRNA is the connector but not the capsid protein.
Collapse
Affiliation(s)
| | | | | | - Peixuan Guo
- To whom correspondence should be addressed. Tel: +1 765 494 7561; Fax: +1 765 496 1795;
| |
Collapse
|
45
|
Adamo JE, Schröer J, Shenk T. Human cytomegalovirus TRS1 protein is required for efficient assembly of DNA-containing capsids. J Virol 2004; 78:10221-9. [PMID: 15367587 PMCID: PMC516402 DOI: 10.1128/jvi.78.19.10221-10229.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human cytomegalovirus tegument protein, pTRS1, appears to function at several discrete stages of the virus replication cycle. We previously demonstrated that pTRS1 acts during the late phase of infection to facilitate the production of infectious virions. We now have more precisely identified the late pTRS1 function by further study of a mutant virus lacking the TRS1 region, ADsubTRS1. We observed a significant reduction in the production of capsids, especially DNA-containing C-capsids, in mutant virus-infected cells. ADsubTRS1 exhibited normal cleavage of DNA concatemers, so the defect in C-capsid production must occur after DNA cleavage and before DNA is stably inserted into a capsid. Further, the normal virus-induced morphological reorganization of the nucleus did not occur after infection with the pTRS1-deficient mutant.
Collapse
Affiliation(s)
- Joan E Adamo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | |
Collapse
|
46
|
Underwood MR, Ferris RG, Selleseth DW, Davis MG, Drach JC, Townsend LB, Biron KK, Boyd FL. Mechanism of action of the ribopyranoside benzimidazole GW275175X against human cytomegalovirus. Antimicrob Agents Chemother 2004; 48:1647-51. [PMID: 15105116 PMCID: PMC400548 DOI: 10.1128/aac.48.5.1647-1651.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/13/2003] [Accepted: 01/21/2004] [Indexed: 12/29/2022] Open
Abstract
New human cytomegalovirus (HCMV) therapies with novel mechanisms of action are needed to treat drug-resistant HCMV that arises during therapy with currently approved agents. 2-Bromo-5,6-dichloro-1-beta-D-ribofuranosyl-1H-benzimidazole (BDCRB) is an effective anti-HCMV agent with a novel mechanism of action, but problems with in vivo stability preclude clinical development. A D-ribopyranosyl derivative of BDCRB, GW275175X, displays similar antiviral activity without the in vivo stability problems. We present an initial description of the activity of GW275175X against HCMV, other herpesviruses, and selected nonherpesviruses. In addition, we show that it acts as a DNA maturation inhibitor like the parent compound, BDCRB, rather than via the mechanisms of action of 1263W94 or any anti-HCMV drugs approved for marketing. GW275175X is a promising candidate for clinical development as an anti-HCMV agent.
Collapse
Affiliation(s)
- Mark R Underwood
- Department of International Clinical Virology, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nixon DE, McVoy MA. Dramatic effects of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole riboside on the genome structure, packaging, and egress of guinea pig cytomegalovirus. J Virol 2004; 78:1623-35. [PMID: 14747528 PMCID: PMC369448 DOI: 10.1128/jvi.78.4.1623-1635.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The halogenated benzimidazoles BDCRB (2-bromo-5,6-dichloro-1-beta-D-riborfuranosyl benzimidazole riboside) and TCRB (2,5,6-trichloro-1-beta-D-riborfuranosyl benzimidazole riboside) were the first compounds shown to inhibit cleavage and packaging of herpesvirus genomes. Both inhibit the formation of unit length human cytomegalovirus (HCMV) genomes by a poorly understood mechanism (M. R. Underwood et al., J. Virol. 72:717-715, 1998; P. M. Krosky et al., J. Virol. 72:4721-4728, 1998). Because the simple genome structure of guinea pig cytomegalovirus (GPCMV) provides a useful model for the study of herpesvirus DNA packaging, we investigated the effects of BDCRB on GPCMV. GPCMV proved to be sensitive to BDCRB (50% inhibitory concentration = 4.7 microM), although somewhat less so than HCMV. In striking contrast to HCMV, however, a dose of BDCRB sufficient to reduce GPCMV titers by 3 logs (50 microM) had no effect on the quantity of GPCMV genomic DNA that was formed in infected cells. Electron microscopy revealed that this DNA was in fact packaged within intranuclear capsids, but these capsids failed to egress from the nucleus and failed to protect the DNA from nuclease digestion. The terminal structure of genomes formed in the presence of BDCRB was also altered. Genomes with ends lacking a terminal repeat at the right end, which normally exist in an equimolar ratio with those having one copy of the repeat at the right end, were selectively eliminated by BDCRB treatment. At the left end, BDCRB treatment appeared to induce heterogeneous truncations such that 2.7 to 4.9 kb of left-end-terminal sequences were missing. These findings suggest that BDCRB induces premature cleavage events that result in truncated genomes packaged within capsids that are permeable to nuclease. Based on these and other observations, we propose a model for duplication of herpesvirus terminal repeats during the cleavage and packaging process that is similar to one proposed for bacteriophage T7 (Y. B. Chung, C. Nardone, and D. C. Hinkle, J. Mol. Biol. 216:939-948, 1990).
Collapse
Affiliation(s)
- Daniel E Nixon
- Department of Medicine, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA
| | | |
Collapse
|
48
|
Huang LP, Guo P. Use of acetone to attain highly active and soluble DNA packaging protein Gp16 of Phi29 for ATPase assay. Virology 2003; 312:449-57. [PMID: 12919749 DOI: 10.1016/s0042-6822(03)00241-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All the well-defined DNA-packaging motors of the dsDNA viruses contain one pair of nonstructural DNA-packaging enzymes. Studies on the mechanism of virus DNA packaging have been seriously hampered by their insolubility. Phi29's DNA-packaging enzyme, gp16, is also hydrophobic, insoluble, and self-aggregating. This article describes approaches to obtain affinity-purified, soluble, and highly active native gp16 with the aid of polyethylene glycol or acetone. The specific activity of this native gp16 was increased 3400-fold when compared with the traditional method. This unique approach made the ATP-gp16 interaction study feasible. Gp16 binds strongly to ATP, binds to ADP with a lower efficiency, and binds very weakly to AMP. The order of gp16-binding efficiency to the four ribonucleotides is, from high to low, ATP, GTP, CTP, and UTP. The ATP concentration level required to produce 50% of maximum virus yield exhibited during in vitro phi29 assembly is around 45 microM, which is close to the gp16 and ATP dissociation constant of 65 microM. Mutation studies revealed that changing only one conserved amino acid, whether R(17), G(24), G(27), G(29), K(30), or I(39), in the predicted Walker-A ATP motif of gp16 caused ATP hydrolysis and viral assembly to cease, while such mutation did not affect gp16's binding to ATP. However, mutation on amino acids G(248) and D(256) did not affect the function of gp16 in DNA packaging.
Collapse
Affiliation(s)
- Lisa P Huang
- Department of Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
49
|
Williams SL, Hartline CB, Kushner NL, Harden EA, Bidanset DJ, Drach JC, Townsend LB, Underwood MR, Biron KK, Kern ER. In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Antimicrob Agents Chemother 2003; 47:2186-92. [PMID: 12821466 PMCID: PMC161863 DOI: 10.1128/aac.47.7.2186-2192.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and human herpesvirus 8 (HHV-8) are responsible for a number of clinical manifestations in both normal and immunocompromised individuals. The parent benzimidazole ribonucleosides evaluated in this series, 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) and maribavir (1263W94), are potent and selective inhibitors of human CMV replication. These nucleosides act by two different mechanisms. BDCRB blocks the processing and maturation of viral DNA, whereas 1263W94 inhibits the viral enzyme pUL97 and interferes with DNA synthesis. In the present study, we have evaluated the in vitro antiviral activity of BDCRB, an analog, GW275175X (175X), and 1263W94 against the replication of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6, and HHV-8. By using various methodologies, significant activity was observed against human CMV and EBV but not against HSV-1, HSV-2, VZV, HHV-6, or HHV-8. Plaque reduction assays performed on a variety of laboratory and clinical isolates of human CMV indicated that all strains, including those resistant to ganciclovir (GCV) and foscarnet, were sensitive to all three benzimidazole ribonucleosides, with mean 50% effective concentration values of about 1 to 5 microM compared to that of GCV at 6 microM. The toxicity of these compounds in tissue culture cells appeared to be similar to that observed with GCV. These results demonstrate that the benzimidazole ribonucleosides are active against human CMV and EBV and suggest that they may be useful for the treatment of infections caused by these herpesviruses.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Benzimidazoles/chemistry
- Benzimidazoles/pharmacology
- Cytomegalovirus/drug effects
- Cytomegalovirus/growth & development
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/growth & development
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/growth & development
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/growth & development
- Herpesvirus 6, Human/drug effects
- Herpesvirus 6, Human/growth & development
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/growth & development
- In Vitro Techniques
- Ribonucleosides/chemistry
- Ribonucleosides/pharmacology
- Virus Replication/drug effects
Collapse
|
50
|
White CA, Stow ND, Patel AH, Hughes M, Preston VG. Herpes simplex virus type 1 portal protein UL6 interacts with the putative terminase subunits UL15 and UL28. J Virol 2003; 77:6351-8. [PMID: 12743292 PMCID: PMC154995 DOI: 10.1128/jvi.77.11.6351-6358.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL6, UL15, and UL28 proteins are essential for cleavage of replicated concatemeric viral DNA into unit length genomes and their packaging into a preformed icosahedral capsid known as the procapsid. The capsid-associated UL6 DNA-packaging protein is located at a single vertex and is thought to form the portal through which the genome enters the procapsid. The UL15 protein interacts with the UL28 protein, and both are strong candidates for subunits of the viral terminase, a key component of the molecular motor that drives the DNA into the capsid. To investigate the association of the UL6 protein with the UL15 and UL28 proteins, the three proteins were produced in large amounts in insect cells with the baculovirus expression system. Interactions between UL6 and UL28 and between UL6 and UL15 were identified by an immunoprecipitation assay. These results were confirmed by transiently expressing wild-type and mutant proteins in mammalian cells and monitoring their distribution by immunofluorescence. In cells expressing the single proteins, UL6 and UL15 were concentrated in the nuclei whereas UL28 was found in the cytoplasm. When the UL6 and UL28 proteins were coexpressed, UL28 was redistributed to the nuclei, where it colocalized with UL6. In cells producing either of two cytoplasmic UL6 mutant proteins and a functional epitope-tagged form of UL15, the UL15 protein was concentrated with the mutant UL6 protein in the cytoplasm. These observed interactions of UL6 with UL15 and UL28 are likely to be of major importance in establishing a functional DNA-packaging complex at the portal vertex of the HSV-1 capsid.
Collapse
Affiliation(s)
- Colleen A White
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | | | | | | | |
Collapse
|