1
|
Zachos NC, Vaughan H, Sarker R, Est-Witte S, Chakraborty M, Baetz NW, Yu H, Yarov-Yarovoy V, McNamara G, Green JJ, Tse CM, Donowitz M. A Novel Peptide Prevents Enterotoxin- and Inflammation-Induced Intestinal Fluid Secretion by Stimulating Sodium-Hydrogen Exchanger 3 Activity. Gastroenterology 2023; 165:986-998.e11. [PMID: 37429363 PMCID: PMC11283679 DOI: 10.1053/j.gastro.2023.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND & AIMS Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Hannah Vaughan
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiquel Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Savannah Est-Witte
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Molee Chakraborty
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas W Baetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongzhe Yu
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California; Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California
| | - George McNamara
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jordan J Green
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
3
|
Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, Fuchs I, Melancon S, Uhlig HH, Travis S, Marinier E, Perisic V, Ristic N, Gerner P, Booth IW, Wedenoja S, Baumgartner N, Vodopiutz J, Frechette-Duval MC, De Lafollie J, Persad R, Warner N, Tse CM, Sud K, Zachos NC, Sarker R, Zhu X, Muise AM, Zimmer KP, Witt H, Zoller H, Donowitz M, Müller T. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 2015; 24:6614-23. [PMID: 26358773 DOI: 10.1093/hmg/ddv367] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023] Open
Abstract
Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients.
Collapse
Affiliation(s)
| | | | - Jianyi Yin
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel 24105, Germany
| | | | | | - Serge Melancon
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada H3H 1P3
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Children's Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Simon Travis
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Children's Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Evelyne Marinier
- Service des maladies digestives et respiratoires de l'enfant, Centre de référence des maladies digestives rares, Hôpital R Debré, Paris 75935, France
| | - Vojislav Perisic
- Department of Hepatology and GI Endoscopy, University Children's Hospital, Belgrade 11000, Serbia
| | - Nina Ristic
- Department of Hepatology and GI Endoscopy, University Children's Hospital, Belgrade 11000, Serbia
| | - Patrick Gerner
- Zentrum für Kinder-und Jugendmedizin, Universitätsklinikum, Freiburg 79106, Germany
| | - Ian W Booth
- Paediatrics and Child Health, University of Birmingham, Birmingham B4 6NH, UK
| | - Satu Wedenoja
- Department of Medical Genetics, University of Helsinki, Helsinki 00014, Finland
| | - Nadja Baumgartner
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Wien 1090, Austria
| | | | - Jan De Lafollie
- Abteilung Allgemeine Pädiatrie & Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen 35392, Germany
| | - Rabindranath Persad
- Stollery Children's Hospital, University of Alberta, Edmonton, Canada T6G 2B7
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - C Ming Tse
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Karan Sud
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas C Zachos
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rafiquel Sarker
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xinjun Zhu
- Department of Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8, Department of Biochemistry, Department of IMS, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Toronto, Toronto, ON, Canada M5G 1X8 and
| | - Klaus-Peter Zimmer
- Abteilung Allgemeine Pädiatrie & Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen 35392, Germany
| | - Heiko Witt
- Pädiatrische Ernährungsmedizin, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan 85350, Germany
| | - Heinz Zoller
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Mark Donowitz
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
4
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Skelton LA, Boron WF. Effect of acute acid-base disturbances on the phosphorylation of phospholipase C-γ1 and Erk1/2 in the renal proximal tubule. Physiol Rep 2015; 3:e12280. [PMID: 25780091 PMCID: PMC4393148 DOI: 10.14814/phy2.12280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
The renal proximal tubule (PT) plays a major role in whole-body pH homeostasis by secreting H(+) into the tubule lumen. Previous work demonstrated that PTs respond to basolateral changes in [CO2] and [HCO3-] by appropriately altering H(+) secretion-responses blocked by the ErbB inhibitor PD168393, or by eliminating signaling through AT1 angiotensin receptors. In the present study, we analyze phosphorylation of three downstream targets of both ErbBs and AT1: phospholipase C-γ1 (PLC-γ1), extracellular-regulated kinase 1 (Erk1), and Erk2. We expose rabbit PT suspensions for 5 and 20 min to our control (Ctrl) condition (5% CO2, 22 mmol/L HCO3-, pH 7.40) or one of several conditions that mimic acid-base disturbances. We found that each disturbance produces characteristic phosphorylation patterns in the three enzymes. For example, respiratory acidosis (elevated [CO2], normal [HCO3-]) at 20 min decreases PLC-γ1 phosphorylation at tyrosine-783 (relative to Ctrl). Metabolic acidosis (normal [CO2], decreased [HCO3-]) for 5 min increases Erk1 phosphorylation (p-Erk1) but not p-Erk2, whereas metabolic alkalosis (normal [CO2], elevated [HCO3-]) for 5 min decreases p-Erk1 and p-Erk2. In the presence of CO2/HCO3-, PD168393 blocks only two of eight induced decreases in phosphorylation. In two cases in which disturbances have no remarkable effects on phosphorylation, PD168393 unmasks decreases and in two others, increases. These drug effects provide insight into the roles of PD168393-sensitive kinases. Our results indicate that PLC-γ1.pY783, p-Erk1, and p-Erk2 in the PT change in characteristic ways in response to acute acid-base disturbances, and thus presumably contribute to the transduction of acid-base signals.
Collapse
Affiliation(s)
- Lara A Skelton
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Zachos NC, Alamelumangpuram B, Lee LJ, Wang P, Kovbasnjuk O. Carbachol-mediated endocytosis of NHE3 involves a clathrin-independent mechanism requiring lipid rafts and Cdc42. Cell Physiol Biochem 2014; 33:869-81. [PMID: 24713550 PMCID: PMC4052452 DOI: 10.1159/000358659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In intestinal epithelial cells, acute regulation of the brush border Na(+)/H(+) exchanger, NHE3, usually occurs by changes in endocytosis and/or exocytosis. Constitutive NHE3 endocytosis involves clathrin. Carbachol (CCH), which elevates intracellular Ca(2+) ([Ca(2+)]i), decreases NHE3 activity and stimulates endocytosis; however, the mechanism involved in calcium-mediated endocytosis of NHE3 is unclear. A pool of NHE3 resides in lipid rafts, which contributes to basal, but not cAMP-mediated, NHE3 trafficking, suggesting that an alternative mechanism exists for NHE3 endocytosis. Cdc42 was demonstrated to play an integral role in some cases of cholesterol-sensitive, clathrin-independent endocytosis. Therefore, the current study was designed to test the hypotheses that (1) clathrin-mediated endocytosis (CME) is involved in constitutive, but not CCH-mediated, endocytosis of NHE3, and (2) CCH-mediated endocytosis of NHE3 occurs through a lipid raft, activated Cdc42-dependent pathway that does not involve clathrin. METHODS The role of Cdc42 and lipid rafts on NHE3 activity and endocytosis were investigated in polarized Caco-2/BBe cells using pharmacological and shRNA knockdown approaches. RESULTS Basal NHE3 activity was increased in the presence of CME blockers (chlorpromazine; K(+) depletion) supporting previous reports that constitutive NHE3 endocytosis is clathrin dependent. In contrast, CCH-inhibition of NHE3 activity was abolished in Caco-2/BBe cells treated with MβCD (to disrupt lipid rafts) as well as in Cdc42 knockdown cells but was unaffected by CME blockers. CONCLUSION CCH-mediated inhibition of NHE3 activity is not dependent on clathrin and involves lipid rafts and requires Cdc42.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine/Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
7
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Zachos NC, Lee LJ, Kovbasnjuk O, Li X, Donowitz M. PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells. Am J Physiol Cell Physiol 2013; 305:C266-75. [PMID: 23703528 DOI: 10.1152/ajpcell.00277.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine/Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
9
|
Liu T, Jose PA. Gastrin induces sodium-hydrogen exchanger 3 phosphorylation and mTOR activation via a phosphoinositide 3-kinase-/protein kinase C-dependent but AKT-independent pathway in renal proximal tubule cells derived from a normotensive male human. Endocrinology 2013; 154:865-75. [PMID: 23275470 PMCID: PMC3548178 DOI: 10.1210/en.2012-1813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gastrin is natriuretic, but its renal molecular targets and signal transduction pathways are not fully known. In this study, we confirmed the existence of CCKBR (a gastrin receptor) in male human renal proximal tubule cells and discovered that gastrin induced S6 phosphorylation, a downstream component of the phosphatidylinositol 3 kinase (PI3 kinase)-mammalian target of rapamycin pathway. Gastrin also increased the phosphorylation of sodium-hydrogen exchanger 3 (NHE3) at serine 552, caused its internalization, and decreased its expression at the cell surface and NHE activity. The phosphorylation of NHE3 and S6 was dependent on PI3 kinases because it was blocked by 2 different PI3-kinase inhibitors, wortmannin and LY294,002. The phosphorylation of NHE3 and S6 was not affected by the protein kinase A inhibitor H-89 but was blocked by a pan-PKC (chelerythrine) and a conventional PKC (cPKC) inhibitor (Gö6976) (10 μM) and an intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, suggesting the importance of cPKC and intracellular calcium in the gastrin signaling pathway. The cPKC involved was probably PKCα because it was phosphorylated by gastrin. The gastrin-mediated phosphorylation of NHE3, S6, and PKCα was via phospholipase C because it was blocked by a phospholipase C inhibitor, U73122 (10 μM). The phosphorylation (activation) of AKT, which is usually upstream of mammalian target of rapamycin in the classic PI3 kinase-AKT-p70S6K signaling pathway, was not affected, suggesting that the gastrin-induced phosphorylation of NHE3 and S6 is dependent on both PI3 kinase and PKCα but not AKT.
Collapse
Affiliation(s)
- Tianbing Liu
- Center for Molecular Physiology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, Washington, DC 20010, USA.
| | | |
Collapse
|
10
|
Zizak M, Chen T, Bartonicek D, Sarker R, Zachos NC, Cha B, Kovbasnjuk O, Korac J, Mohan S, Cole R, Chen Y, Tse CM, Donowitz M. Calmodulin kinase II constitutively binds, phosphorylates, and inhibits brush border Na+/H+ exchanger 3 (NHE3) by a NHERF2 protein-dependent process. J Biol Chem 2012; 287:13442-56. [PMID: 22371496 DOI: 10.1074/jbc.m111.307256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.
Collapse
Affiliation(s)
- Mirza Zizak
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, Hattori S. Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 2011; 22:1824-35. [PMID: 21471003 PMCID: PMC3103399 DOI: 10.1091/mbc.e10-12-0929] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The surface expression and channel activation of transient receptor potential canonical 6 (TRPC6) were regulated by tyrosine phosphorylation and resultant binding with stimulatory PLC-γ1 and inhibitory nephrin. Disease-causing mutations made the TRPC6s insensitive to nephrin suppression, suggesting that the cell-type–specific regulation of TRPC6 might be involved in the pathogenesis. Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6–PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type–specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity.
Collapse
Affiliation(s)
- Shoichiro Kanda
- Division of Cellular Proteomics (BML), Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Banday AA, Lokhandwala MF. Oxidative Stress Causes Renal Angiotensin II Type 1 Receptor Upregulation, Na
+
/H
+
Exchanger 3 Overstimulation, and Hypertension. Hypertension 2011; 57:452-9. [DOI: 10.1161/hypertensionaha.110.162339] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anees A. Banday
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX
| | - Mustafa F. Lokhandwala
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX
| |
Collapse
|
13
|
Sarker R, Valkhoff VE, Zachos NC, Lin R, Cha B, Chen TE, Guggino S, Zizak M, de Jonge H, Hogema B, Donowitz M. NHERF1 and NHERF2 are necessary for multiple but usually separate aspects of basal and acute regulation of NHE3 activity. Am J Physiol Cell Physiol 2010; 300:C771-82. [PMID: 21191106 DOI: 10.1152/ajpcell.00119.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Gastroenterology and Hepatology Division, Department of Medicine, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205-2195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong Y, Kang J, Lee D, van Rossum DB. Adaptive GDDA-BLAST: fast and efficient algorithm for protein sequence embedding. PLoS One 2010; 5:e13596. [PMID: 21042584 PMCID: PMC2962639 DOI: 10.1371/journal.pone.0013596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/28/2010] [Indexed: 11/28/2022] Open
Abstract
A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity). Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments and for incorporation thereof into high-performance PSSM-based alignment profiles.
Collapse
Affiliation(s)
- Yoojin Hong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Korea
- Department of Biostatistics, College of Medicine, Korea University, Seoul, Korea
| | - Dongwon Lee
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Damian B. van Rossum
- Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
15
|
Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol 2010; 2010:238080. [PMID: 20011065 PMCID: PMC2789519 DOI: 10.1155/2010/238080] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/11/2009] [Indexed: 01/25/2023] Open
Abstract
A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract.
Collapse
|
16
|
Xing J, Strange K. Phosphatidylinositol 4,5-bisphosphate and loss of PLCgamma activity inhibit TRPM channels required for oscillatory Ca2+ signaling. Am J Physiol Cell Physiol 2009; 298:C274-82. [PMID: 19923421 DOI: 10.1152/ajpcell.00394.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Caenorhabditis elegans intestinal epithelium generates rhythmic inositol 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) oscillations that control muscle contractions required for defecation. Two highly Ca(2+)-selective transient receptor potential (TRP) melastatin (TRPM) channels, GON-2 and GTL-1, function with PLCgamma in a common signaling pathway that regulates IP(3)-dependent intracellular Ca(2+) release. A second PLC, PLCbeta, is also required for IP(3)-dependent Ca(2+) oscillations, but functions in an independent signaling mechanism. PLCgamma generates IP(3) that regulates IP(3) receptor activity. We demonstrate here that PLCgamma via hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) also regulates GON-2/GTL-1 function. Knockdown of PLCgamma but not PLCbeta activity by RNA interference (RNAi) inhibits channel activity approximately 80%. Inhibition is fully reversed by agents that deplete PIP(2) levels. PIP(2) added to the patch pipette has no effect on channel activity in PLCgamma RNAi cells. However, in control cells, 10 microM PIP(2) inhibits whole cell current approximately 80%. Channel inhibition by phospholipids is selective for PIP(2) with an IC(50) value of 2.6 microM. Elevated PIP(2) levels have no effect on channel voltage and Ca(2+) sensitivity and likely inhibit by reducing channel open probability, single-channel conductance, and/or trafficking. We conclude that hydrolysis of PIP(2) by PLCgamma functions in the activation of both the IP(3) receptor and GON-2/GTL-1 channels. GON-2/GTL-1 functions as the major intestinal cell Ca(2+) influx pathway. Calcium influx through the channel feedback regulates its activity and likely functions to modulate IP(3) receptor function. PIP(2)-dependent regulation of GON-2/GTL-1 may provide a mechanism to coordinate plasma membrane Ca(2+) influx with PLCgamma and IP(3) receptor activity as well as intracellular Ca(2+) store depletion.
Collapse
Affiliation(s)
- Juan Xing
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|