1
|
Polito MP, Romaldini A, Tagliazucchi L, Marini G, Radice F, Gozza GA, Bergamini G, Costi MP, Enzo E. Biochemical characterization of the feedforward loop between CDK1 and FOXM1 in epidermal stem cells. Biol Direct 2024; 19:91. [PMID: 39396994 PMCID: PMC11472434 DOI: 10.1186/s13062-024-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
The complex network governing self-renewal in epidermal stem cells (EPSCs) is only partially defined. FOXM1 is one of the main players in this network, but the upstream signals regulating its activity remain to be elucidated. In this study, we identify cyclin-dependent kinase 1 (CDK1) as the principal kinase controlling FOXM1 activity in human primary keratinocytes. Mass spectrometry identified CDK1 as a key hub in a stem cell-associated protein network, showing its upregulation and interaction with essential self renewal-related markers. CDK1 phosphorylates FOXM1 at specific residues, stabilizing the protein and enhancing its nuclear localization and transcriptional activity, promoting self-renewal. Additionally, FOXM1 binds to the CDK1 promoter, inducing its expression.We identify the CDK1-FOXM1 feedforward loop as a critical axis sustaining EPSCs during in vitro cultivation. Understanding the upstream regulators of FOXM1 activity offers new insights into the biochemical mechanisms underlying self-renewal and differentiation in human primary keratinocytes.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Grazia Marini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Federica Radice
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Gaia Andrea Gozza
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Giulia Bergamini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Science, University of Modena and Reggio Emilia, Via Glauco Gottardi 100, Modena, Italy.
| |
Collapse
|
2
|
Liu Y, Ji J, Zheng S, Wei A, Li D, Shi B, Han X, Chen X. Senescent lung-resident mesenchymal stem cells drive pulmonary fibrogenesis through FGF-4/FOXM1 axis. Stem Cell Res Ther 2024; 15:309. [PMID: 39289765 PMCID: PMC11409797 DOI: 10.1186/s13287-024-03866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF. METHODS Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR. RESULTS We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis. CONCLUSION These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.
Collapse
Affiliation(s)
- Yuxin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ji
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shudan Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ai Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Shi
- Pulmonary and Critical Care Medicine, Suqian People's Hospital of Nanjing Gulou Hospital Group, Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian, Jiangsu, 223800, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Suo S, Fang C, Liu W, Liu Q, Zhang Z, Chang J, Li G. FOXM1 c.1205 C > A mutation is associated with unilateral Moyamoya disease and inhibits angiogenesis in human brain endothelial cells. Hum Genet 2024; 143:939-953. [PMID: 38969938 DOI: 10.1007/s00439-024-02685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.
Collapse
Affiliation(s)
- Sen Suo
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wenting Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingan Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
4
|
Mouery BL, Baker EM, Mei L, Wolff SC, Mills CA, Fleifel D, Mulugeta N, Herring LE, Cook JG. APC/C prevents a noncanonical order of cyclin/CDK activity to maintain CDK4/6 inhibitor-induced arrest. Proc Natl Acad Sci U S A 2024; 121:e2319574121. [PMID: 39024113 PMCID: PMC11287123 DOI: 10.1073/pnas.2319574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase anaphasepromoting complex/cyclosome (APC/C), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear whether APC/C maintains all types of arrest. Here, by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves CDKs acting in an atypical order to inactivate retinoblastoma-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
Collapse
Affiliation(s)
- Brandon L. Mouery
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Eliyambuya M. Baker
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10021
| | - Liu Mei
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Samuel C. Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christine A. Mills
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nebyou Mulugeta
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
5
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Thangavel S, Alobaisi K, Diaz R, Begum R, Haqawi W, Al‐Sobhi SS, Al‐Dayel F, Al‐Kuraya KS. PLK1 and FoxM1 expressions positively correlate in papillary thyroid carcinoma and their combined inhibition results in synergistic anti-tumor effects. Mol Oncol 2024; 18:691-706. [PMID: 38361222 PMCID: PMC10920088 DOI: 10.1002/1878-0261.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Polo-like kinase 1 (PLK1; also known as serine/threonine-protein kinase PLK1) serves as a central player in cell proliferation, exerting critical regulatory roles in mitotic processes and cell survival. We conducted an analysis of PLK1 protein expression in a large cohort of samples from papillary thyroid carcinoma (PTC) patients and examined its functional significance in PTC cell lines, both in vitro and in vivo. PLK1 overexpression was noted in 54.2% of all PTC and was significantly associated with aggressive clinicopathological parameters; it was also found to be an independent prognostic marker for shorter recurrence-free survival. Given the significant association between PLK1 and forkhead box protein M1 (FoxM1), and their concomitant overexpression in a large proportion of PTC samples, we explored their correlation and their combined inhibitions in PTC in vitro and in vivo. Inhibition of PLK1 expression indeed suppressed cell proliferation, leading to cell cycle arrest and apoptosis in PTC cell lines. Significantly, the downregulation of PLK1 reduced the self-renewal capability of spheroids formed from PTC cells. Immunoprecipitation analysis shows that PLK1 binds to FoxM1 and vice versa in vitro. Mechanistically, PLK1 knockdown suppresses FoxM1 expression, whereas inhibition of FoxM1 does not affect PLK1 expression, which suggests that PLK1 acts through the FoxM1 pathway. The combined treatment of a PLK1 inhibitor (volasertib) and a FoxM1 inhibitor (thiostrepton) demonstrated a synergistic effect in reducing PTC cell growth in vitro and delaying tumor growth in vivo. This study highlights the important role of PLK1 in PTC tumorigenesis and prognosis. It also highlights the synergistic therapeutic potential of dual-targeting PLK1 and FoxM1 in PTC, unveiling a potential innovative therapeutic strategy for managing aggressive forms of PTC.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Abdul K. Siraj
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Divya Padmaja
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | | | - Saravanan Thangavel
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Khadija Alobaisi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Roxanne Diaz
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Rafia Begum
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Saif S. Al‐Sobhi
- Department of SurgeryKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Fouad Al‐Dayel
- Department of PathologyKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Khawla S. Al‐Kuraya
- Human Cancer Genomic ResearchKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| |
Collapse
|
7
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
8
|
Mouery BL, Baker EM, Mills CA, Herring LE, Fleifel D, Cook JG. APC/C prevents non-canonical order of cyclin/CDK activity to maintain CDK4/6 inhibitor-induced arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566394. [PMID: 37986787 PMCID: PMC10659421 DOI: 10.1101/2023.11.09.566394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase APC/C (anaphase promoting complex/cyclosome), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear if APC/C maintains all types of arrest. Here by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological CDK4/6 inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves cyclin-dependent kinases acting in an atypical order to inactivate RB-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
Collapse
Affiliation(s)
- Brandon L Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Eliyambuya M Baker
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| |
Collapse
|
9
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Massacci G, Perfetto L, Sacco F. The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br J Cancer 2023; 129:1707-1716. [PMID: 37898722 PMCID: PMC10667339 DOI: 10.1038/s41416-023-02468-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
The Cyclin-dependent kinase 1, as a serine/threonine protein kinase, is more than a cell cycle regulator as it was originally identified. During the last decade, it has been shown to carry out versatile functions during the last decade. From cell cycle control to gene expression regulation and apoptosis, CDK1 is intimately involved in many cellular events that are vital for cell survival. Here, we provide a comprehensive catalogue of the CDK1 upstream regulators and substrates, describing how this kinase is implicated in the control of key 'cell cycle-unrelated' biological processes. Finally, we describe how deregulation of CDK1 expression and activation has been closely associated with cancer progression and drug resistance.
Collapse
Affiliation(s)
- Giorgia Massacci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Livia Perfetto
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
11
|
Benada J, Bulanova D, Azzoni V, Petrosius V, Ghazanfar S, Wennerberg K, Sørensen C. Synthetic lethal interaction between WEE1 and PKMYT1 is a target for multiple low-dose treatment of high-grade serous ovarian carcinoma. NAR Cancer 2023; 5:zcad029. [PMID: 37325550 PMCID: PMC10262308 DOI: 10.1093/narcan/zcad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Ovarian cancer is driven by genetic alterations that necessitate protective DNA damage and replication stress responses through cell cycle control and genome maintenance. This creates specific vulnerabilities that may be exploited therapeutically. WEE1 kinase is a key cell cycle control kinase, and it has emerged as a promising cancer therapy target. However, adverse effects have limited its clinical progress, especially when tested in combination with chemotherapies. A strong genetic interaction between WEE1 and PKMYT1 led us to hypothesize that a multiple low-dose approach utilizing joint WEE1 and PKMYT1 inhibition would allow exploitation of the synthetic lethality. We found that the combination of WEE1 and PKMYT1 inhibition exhibited synergistic effects in eradicating ovarian cancer cells and organoid models at a low dose. The WEE1 and PKMYT1 inhibition synergistically promoted CDK activation. Furthermore, the combined treatment exacerbated DNA replication stress and replication catastrophe, leading to increase of the genomic instability and inflammatory STAT1 signalling activation. These findings suggest a new multiple low-dose approach to harness the potency of WEE1 inhibition through the synthetic lethal interaction with PKMYT1 that may contribute to the development of new treatments for ovarian cancer.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Daria Bulanova
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Violette Azzoni
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Valdemaras Petrosius
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kgs Lyngby, Denmark
| | - Saba Ghazanfar
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Krister Wennerberg
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Cheng H, Yuan J, Pei C, Ouyang M, Bu H, Chen Y, Huang X, Zhang Z, Yu L, Tan Y. The development of an anti-cancer peptide M1-21 targeting transcription factor FOXM1. Cell Biosci 2023; 13:114. [PMID: 37344857 DOI: 10.1186/s13578-023-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated. METHODS FOXM1 C-terminus-binding peptides are screened by in silico protocols from the peptide library of FOXM1 (1-138aa) and confirmed by cellular experiments. The selected peptide is synthesized into its D-retro-inverso (DRI) form by fusing a TAT cell-penetrating sequence. Anti-cancer activities are evaluated in vitro and in vivo with tumor-grafted nude mice, spontaneous breast cancer mice, and wild-type metastasis-tracing mice. Anti-cancer mechanisms are analyzed. Distribution and safety profiles in mice are evaluated. RESULTS With improved stability and cell inhibitory activity compared to the parent peptide, M1-21 binds to multiple regions of FOXM1 and interferes with protein-protein interactions between FOXM1 and its various known partner proteins, including PLK1, LIN9 and B-MYB of the MuvB complex, and β-catenin. Consequently, M1-21 inhibits FOXM1-related transcriptional activities and FOXM1-mediated nuclear importation of β-catenin and β-catenin transcriptional activities. M1-21 inhibits multiple types of cancer (20 µM in vitro or 30 mg/kg in vivo) by preventing proliferation, migration, and WNT signaling. Distribution and safety profiles of M1-21 are favorable (broad distribution and > 15 h stability in mice) and the tested non-severely toxic dose reaches 200 mg/kg in mice. M1-21 also has low hemolytic toxicity and immunogenicity in mice. CONCLUSIONS M1-21 is a promising interfering peptide targeting FOXM1 for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Haojie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Zhenwang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, 437000, Xianning, Hubei, China.
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
| |
Collapse
|
13
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
14
|
Lin TC, Chung PJ, Shen CA, Nguyen TMH, Lin YS, Lin SC, Hsiao SC, Chiu WT. Depletion of intracellular Ca 2+ induces FOXM1 SUMOylation and accumulation on the inner nuclear membrane and accelerates G2/M cell cycle transition. Eur J Cell Biol 2023; 102:151332. [PMID: 37302175 DOI: 10.1016/j.ejcb.2023.151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023] Open
Abstract
Intracellular calcium (Ca2+) has been reported to regulate transcription factor activity and cancer development, but how it affects the function of Forkhead box protein M1 (FOXM1), a crucial transcription factor and key oncogene participating in tumorigenesis, remains unclear. Here, we investigated the regulatory role of Ca2+ on FOXM1 and found that Ca2+ depletion caused the distribution of FOXM1 to aggregate on the nuclear envelope, which was also observed in many cell lines. Further experiments revealed that sequestrated FOXM1 colocalized with lamin B in the inner nuclear membrane (INM) and was affected by the activity of nuclear export protein exportin 1 (XPO1). To investigate how intracellular Ca2+ affects FOXM1, we found that among the posttranscriptional modifications, only SUMOylation of FOXM1 showed a pronounced increase under reduced Ca2+, and suppressed SUMOylation rescued FOXM1 sequestration. In addition, Ca2+-dependent SUMOylated FOXM1 appeared to enhance the G2/M transition of the cell cycle and decrease cell apoptosis. In conclusion, our findings provide a molecular basis for the relationship between Ca2+ signaling and FOXM1 regulation, and we look to elucidate Ca2+-dependent FOXM1 SUMOylation-related biological functions in the future.
Collapse
Affiliation(s)
- Tzu-Chien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ping-Jung Chung
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chen-An Shen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shih-Chuan Hsiao
- Department of Hematology & Oncology, Saint Martin de Porres Hospital, Chiayi 600, Taiwan.
| | - Wen-Tai Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
15
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J Enzyme Inhib Med Chem 2023; 38:118-137. [PMID: 36305290 PMCID: PMC9635472 DOI: 10.1080/14756366.2022.2136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of novel ciprofloxacin (CP) derivatives substituted at the N-4 position with biologically active moieties were designed and synthesised. 14 compounds were 1.02- to 8.66-fold more potent than doxorubicin against T-24 cancer cells. Ten compounds were 1.2- to 7.1-fold more potent than doxorubicin against PC-3 cancer cells. The most potent compounds 6, 7a, 7b, 8a, 9a, and 10c showed significant Topo II inhibitory activity (83-90% at 100 μM concentration). Compounds 6, 8a, and 10c were 1.01- to 2.32-fold more potent than doxorubicin. Compounds 6 and 8a induced apoptosis in T-24 (16.8- and 20.1-fold, respectively compared to control). This evidence was supported by an increase in the level of apoptotic caspase-3 (5.23- and 7.6-fold, sequentially). Both compounds arrested the cell cycle in the S phase in T-24 cancer cells while in PC-3 cancer cells the two compounds arrested the cell cycle in the G1 phase. Molecular docking simulations of compounds 6 and 8a into the Topo II active site rationalised their remarkable Topo II inhibitory activity.
Collapse
Affiliation(s)
- Hadeer K. Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo, Egypt
| | - Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy and Pharmaceutical Industries, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salwa E. Elmeligie
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M, Liu C. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res 2022; 12:3644-3661. [PMID: 36119839 PMCID: PMC9442023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023] Open
Abstract
Deubiquitinating enzyme dysregulation has been linked to the development of a variety of human malignancies, including breast cancer. However, the exact involvement of the deubiquitinating enzyme USP39 in the progression of breast cancer is yet unknown. Cell viability and colony formation analysis was used to assess the effects of USP39 knockdown on breast cancer cells in this study. The interaction between USP39 and FOXM1 was investigated using co-immunoprecipitation (co-IP) and in vitro deubiquitination analysis. The expression of USP39 and FOXM1 in breast cancer tissues was studied using the TCGA database. According to our findings, USP39 deubiquitinates and stabilizes FOXM1, promoting breast cancer cell proliferation, colony formation, and tumor growth in vivo. Furthermore, elevated USP39 expression lowers FOXM1 ubiquitination, resulting in increased transcriptional activity. In addition, the high expression of USP39 reduces the ubiquitination of FOXM1, thereby enhancing the transcriptional activity of FOXM1 and regulating the expression of downstream genes Cdc25b and Plk1. USP39 is positively correlated with the expression level of FOXM1 in breast cancer cells. In general, our research revealed the USP39-FOXM1 axis as a critical driver of breast cancer cell proliferation and provided a theoretical foundation for targeting the USP39-FOXM1 axis for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Wu Liu
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Xiajun Bao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Tian Sun
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Jiawei Wang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| | - Mengxi Li
- Science and Technology Industry Management Office, Hubei University of Science and TechnologyXianning 437000, Hubei, China
| | - Chao Liu
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and TechnologyXianning 437000, Hubei, China
- Hubei University of Science and Technology of Medicine, Xianning Medical CollegeXianning 437000, Hubei, China
| |
Collapse
|
19
|
Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam AB, Frolov MV, Merrill BJ, Raychaudhuri P. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer. Cancer Res 2022; 82:2458-2471. [PMID: 35583996 PMCID: PMC9258028 DOI: 10.1158/0008-5472.can-22-0410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eilidh O’Brien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria P. Zappia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B.M.M.K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: Pradip Raychaudhuri, 900 S. Ashland Ave, Chicago, Il, 60607, Phone number: 312-413-0255;
| |
Collapse
|
20
|
Chand V, Liao X, Guzman G, Benevolenskaya E, Raychaudhuri P. Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene 2022; 41:3778-3790. [PMID: 35761036 PMCID: PMC9329203 DOI: 10.1038/s41388-022-02394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Elizaveta Benevolenskaya
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA. .,Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Fan W, Ma H, Jin B. Expression of FOXM1 and PLK1 predicts prognosis of patients with hepatocellular carcinoma. Oncol Lett 2022; 23:146. [PMID: 35350587 PMCID: PMC8941521 DOI: 10.3892/ol.2022.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently encountered malignant tumor types and to improve its treatment, effective prognostic biomarkers are urgently required. Cell cycle dysregulation is a significant feature of cancer progression. The aim of the present study was to estimate the expression levels of forkhead box protein M1 (FOXM1) and polo-like kinase 1 (PLK1), both of which have essential roles in cell cycle regulation, and determine their prognostic value in HCC. To this end, FOXM1 and PLK1 expression levels were assessed in The Cancer Genome Atlas and International Cancer Genome Consortium Japan HCC cohorts, and the associations between their co-expression were determined via Pearson's correlation analysis. Furthermore, the overall survival and disease-free survival in these cohorts for different FOXM1 and PLK1 expression statuses were analyzed. In vitro knockdown experiments were also performed using Huh7 cells. The results obtained indicated overexpression of FOXM1 and PLK1 in HCC tumor tissues as well as a positive correlation between FOXM1 and PLK1 expression. The results also suggested that both FOXM1 and PLK1 are required for HCC cell proliferation. In addition, upregulation of FOXM1 and PLK1 was indicated to be associated with poor prognosis of patients with HCC. However, only their coordinated overexpression was identified as an independent prognostic factor for HCC.
Collapse
Affiliation(s)
- Weiqiang Fan
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Ma
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Jin
- Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Yu C, Chen H, Zhao Y, Zhang Y. Forkhead Box Protein M1 Promotes Nasopharyngeal Carcinoma Cell Tumorigenesis Possibly via the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2021; 27:e931970. [PMID: 34911926 PMCID: PMC8690047 DOI: 10.12659/msm.931970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Forkhead box protein M1 (FoxM1) is an important transcription factor involved in the development and progression of various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains largely unknown. This study aimed to assess the effect of FoxM1 on NPC cell tumorigenesis as well as the underlying mechanism. MATERIAL AND METHODS NPC cell lines CNE-1 and CNE-2 were treated with vehicle and FoxM1 inhibitor thiostrepton or transfected with small interfering RNA. CCK-8 assay, flow cytometric assay, and Hoechst 33258 staining were performed to assess the viability, apoptosis and nuclear morphological impairment, and cell cycle, respectively. The expression of apoptosis-related caspase-3 and caspase-9 was detected by western blot analysis The tumor growth in the mouse xenograft model of NPC treated with thiostrepton or control was assessed. The expression of Wnt/ß-catenin signaling proteins p27, FoxM1, S phase kinase-associated protein 2 (SKP2), and Cyclin D1 were determined both in cells and xenograft tissues by western blot analysis. RESULTS Inhibition of FoxM1 by thiostrepton significantly suppressed NPC cell viability, induced apoptosis, increased cell cycle arrest, impaired nuclear morphology, and reduced NPC cell-derived tumor xenograft growth. Mechanistically, inhibition or knockdown of FoxM1 inactivated the Wnt/ß-catenin signaling pathway, as demonstrated by altered expression of Wnt/ß-catenin signaling-related genes, including p27, SKP2, and cyclin D1, in both NPC cells and xenograft tissues. CONCLUSIONS We identified FoxM1 as a novel regulator of NPC cell tumorigenesis in vitro and in vivo. Targeting FoxM1 could be a promising therapeutic strategy against NPC.
Collapse
Affiliation(s)
- Chao Yu
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Hongyan Chen
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yanli Zhao
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Yuedong Zhang
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| |
Collapse
|
23
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
24
|
Pal-Ghosh R, Xue D, Warburton R, Hill N, Polgar P, Wilson JL. CDC2 Is an Important Driver of Vascular Smooth Muscle Cell Proliferation via FOXM1 and PLK1 in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:6943. [PMID: 34203295 PMCID: PMC8268698 DOI: 10.3390/ijms22136943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear. Herein, we identify cyclin-dependent kinase 1 (CDK1), also termed cell division cycle protein 2 (CDC2), as having a primary role in promoting progress of the cell cycle leading to proliferation in HPASMC. HPASMC obtained from PAH patients and pulmonary arteries from Sugen/hypoxia rats were investigated for their expression of CDC2. Protein levels of CDC2 were much higher in PAH than in cells from normal donors. Knocking down FOXM1 or PLK1 protein expression with siRNA or pharmacological inhibitors lowered the cellular expression of CDC2 considerably. However, knockdown of CDC2 with siRNA or inhibiting its activity with RO-3306 did not reduce the protein expression of FOXM1 or PLK1. Expression of CDC2 and FOXM1 reached its maximum at G1/S, while PLK1 reached its maximum at G2/M phase of the cell cycle. The expression of other CDKs such as CDK2, CDK4, CDK6, CDK7, and CDK9 did not change in PAH HPASMC. Moreover, inhibition via Wee1 inhibitor adavosertib or siRNAs targeting Wee1, Myt1, CDC25A, CDC25B, or CDC25C led to dramatic decreases in CDC2 protein expression. Lastly, we found CDC2 expression at the RNA and protein level to be upregulated in pulmonary arteries during disease progression Sugen/hypoxia rats. In sum, our present results illustrate that the increased expression of FOXM1 and PLK1 in PAH leads directly to increased expression of CDC2 resulting in potentiated growth hyperactivity of PASMC from patients with pulmonary hypertension. Our results further suggest that the regulation of CDC2, or associated regulatory proteins, will prove beneficial in the treatment of this disease.
Collapse
Affiliation(s)
- Ruma Pal-Ghosh
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Danfeng Xue
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rod Warburton
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Nicholas Hill
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Peter Polgar
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| | - Jamie L. Wilson
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA; (R.P.-G.); (D.X.); (R.W.); (N.H.); (P.P.)
| |
Collapse
|
25
|
Liu C, Barger CJ, Karpf AR. FOXM1: A Multifunctional Oncoprotein and Emerging Therapeutic Target in Ovarian Cancer. Cancers (Basel) 2021; 13:3065. [PMID: 34205406 PMCID: PMC8235333 DOI: 10.3390/cancers13123065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Forkhead box M1 (FOXM1) is a member of the conserved forkhead box (FOX) transcription factor family. Over the last two decades, FOXM1 has emerged as a multifunctional oncoprotein and a robust biomarker of poor prognosis in many human malignancies. In this review article, we address the current knowledge regarding the mechanisms of regulation and oncogenic functions of FOXM1, particularly in the context of ovarian cancer. FOXM1 and its associated oncogenic transcriptional signature are enriched in >85% of ovarian cancer cases and FOXM1 expression and activity can be enhanced by a plethora of genomic, transcriptional, post-transcriptional, and post-translational mechanisms. As a master transcriptional regulator, FOXM1 promotes critical oncogenic phenotypes in ovarian cancer, including: (1) cell proliferation, (2) invasion and metastasis, (3) chemotherapy resistance, (4) cancer stem cell (CSC) properties, (5) genomic instability, and (6) altered cellular metabolism. We additionally discuss the evidence for FOXM1 as a cancer biomarker, describe the rationale for FOXM1 as a cancer therapeutic target, and provide an overview of therapeutic strategies used to target FOXM1 for cancer treatment.
Collapse
Affiliation(s)
| | | | - Adam R. Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68918-6805, USA; (C.L.); (C.J.B.)
| |
Collapse
|
26
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
27
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) associated with high-risk human papilloma virus (HPV) infection is a growing clinical problem. The WEE1 kinase inhibitor AZD1775 (WEE1i) overrides cell cycle checkpoints and is being studied in HNSCC regimens. We show that the HPV16 E6/E7 oncoproteins sensitize HNSCC cells to single-agent WEE1i treatment through activation of a FOXM1-CDK1 circuit that drives mitotic gene expression and DNA damage. An isogenic cell system indicated that E6 largely accounts for these phenotypes in ways that extend beyond p53 inactivation. A targeted genomic analysis implicated FOXM1 signaling downstream of E6/E7 expression and analyses of primary tumors and The Cancer Genome Atlas (TCGA) data revealed an activated FOXM1-directed promitotic transcriptional signature in HPV+ versus HPV- HNSCCs. Finally, we demonstrate the causality of FOXM1 in driving WEE1i sensitivity. These data suggest that elevated basal FOXM1 activity predisposes HPV+ HNSCC to WEE1i-induced toxicity and provide mechanistic insights into WEE1i and HPV+ HNSCC therapies.
Collapse
|
28
|
Roßwag S, Thiede G, Sleeman JP, Thaler S. RASSF1A Suppresses Estrogen-Dependent Breast Cancer Cell Growth through Inhibition of the Yes-Associated Protein 1 (YAP1), Inhibition of the Forkhead Box Protein M1 (FOXM1), and Activation of Forkhead Box Transcription Factor 3A (FOXO3A). Cancers (Basel) 2020; 12:cancers12092689. [PMID: 32967092 PMCID: PMC7566002 DOI: 10.3390/cancers12092689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
The estrogen receptor alpha (ERα) is expressed by the majority of breast cancers and plays an important role in breast cancer development and tumor outgrowth. Although ERα is well known to be a specific and efficient therapeutic target, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast cancer initiation and progression are complex and not completely elucidated. In previous work, we have demonstrated that the tumor suppressor RASSF1A inhibits ERα expression and function in ERα-positive breast cancer cells through an AKT-dependent mechanism. Transcriptional activators such as forkhead box protein M1 (FOXM1) and forkhead transcription factor 3A (FOXO3A) and signaling pathways such as the Hippo pathway are also known to modulate ERα expression and activity. Here we report that RASSF1A acts as an inhibitor of ERα-driven breast cancer cell growth through a complex, hierarchically organized network that initially involves suppression of the Hippo effector Yes-associated protein 1 (YAP1), which is followed by inhibition of AKT1 activity, increased FOXO3A activity as well as a blockade of FOXM1 and ERα expression. Together our findings provide important new mechanistic insights into how the loss of RASSF1A contributes to ERα+ breast cancer initiation and progression.
Collapse
Affiliation(s)
- Sven Roßwag
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
| | - Gitta Thiede
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
| | - Jonathan P. Sleeman
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
- KIT Campus Nord, Institute for Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Sonja Thaler
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
- Correspondence: ; Tel.: +49-621-383-71599; Fax: +49-621-383-71451
| |
Collapse
|
29
|
Juric V, Murphy B. Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:48-62. [PMID: 35582046 PMCID: PMC9094053 DOI: 10.20517/cdr.2019.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases (CDKs) are important regulatory enzymes in the normal physiological processes that drive cell-cycle transitions and regulate transcription. Virtually all cancers harbour genomic alterations that lead to the constitutive activation of CDKs, resulting in the proliferation of cancer cells. CDK inhibitors (CKIs) are currently in clinical use for the treatment of breast cancer, combined with endocrine therapy. In this review, we describe the potential of CKIs for the treatment of cancer with specific focus on glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. Despite intense effort to combat GBM with surgery, radiation and temozolomide chemotherapy, the median survival for patients is 15 months and the majority of patients experience disease recurrence within 6-8 months of treatment onset. Novel therapeutic approaches are urgently needed for both newly diagnosed and recurrent GBM patients. In this review, we summarise the current preclinical and clinical findings emphasising that CKIs could represent an exciting novel approach for GBM treatment.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Brona Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| |
Collapse
|
30
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
31
|
A Cdh1-FoxM1-Apc axis controls muscle development and regeneration. Cell Death Dis 2020; 11:180. [PMID: 32152291 PMCID: PMC7062904 DOI: 10.1038/s41419-020-2375-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Forkhead box M1 (FoxM1) transcriptional factor has a principal role in regulating cell proliferation, self-renewal, and tumorigenesis. However, whether FoxM1 regulates endogenous muscle development and regeneration remains unclear. Here we found that loss of FoxM1 in muscle satellite cells (SCs) resulted in muscle atrophy and defective muscle regeneration. FoxM1 functioned as a direct transcription activator of adenomatous polyposis coli (Apc), preventing hyperactivation of wnt/β-catenin signaling during muscle regeneration. FoxM1 overexpression in SCs promoted myogenesis but impaired muscle regeneration as a result of spontaneous activation and exhaustion of SCs by transcriptional regulation of Cyclin B1 (Ccnb1). The E3 ubiquitin ligase Cdh1 (also termed Fzr1) was required for FoxM1 ubiquitylation and subsequent degradation. Loss of Cdh1 promoted quiescent SCs to enter into the cell cycle and the SC pool was depleted by serial muscle injuries. Haploinsufficiency of FoxM1 ameliorated muscle regeneration of Cdh1 knock-out mice. These data demonstrate that the Cdh1–FoxM1–Apc axis functions as a key regulator of muscle development and regeneration.
Collapse
|
32
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Design and Synthesis of C-19 Isosteviol Derivatives as Potent and Highly Selective Antiproliferative Agents. Molecules 2018; 24:molecules24010121. [PMID: 30598028 PMCID: PMC6337650 DOI: 10.3390/molecules24010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022] Open
Abstract
Six series of novel isosteviol derivatives; modified in the C-19 position; were synthesized; and their antiproliferative activity was evaluated against three human cancer cell lines (HCT-116; BEL-7402; HepG2) and the human L02 normal cell line in vitro. Most of the derivatives tested here exhibited improved antiproliferative activity with high selectivity when compared with the parent compound isosteviol and the positive control drug 5-fluorouracil. Among these derivatives; compound 5d exhibited the most potent antiproliferative activity and commendable selectivity between cancer and normal cells. In addition; compound 5d inhibited the colony formation of HCT-116 cells in a concentration-dependent manner. Further studies revealed that compound 5d arrested the HCT-116 cell cycle in the S phase; and western blot analysis demonstrated the mechanism may be correlated with a change in the expression of cyclin A; cyclin B1; and cyclin E1. Furthermore; the results of a docking study that involved placing compound 5d into the CDK2/cyclin A binding site revealed that its mode of action was possibly as a CDK2/cyclin A inhibitor.
Collapse
|
34
|
Blane A, Dirr HW, Fanucchi S. A Phosphomimetic Study Implicates Ser557 in Regulation of FOXP2 DNA Binding. Protein J 2018; 37:311-323. [PMID: 29845391 DOI: 10.1007/s10930-018-9777-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
FOXP2 is a transcription factor expressed in multiple tissues during embryonic development. FOXP2 regulates transcription by binding to DNA at its DNA binding domain, the forkhead domain (FHD) through the recognition helix. Ser557 is a residue located within the recognition helix that has the potential to become phosphorylated posttranslationally. In this study we investigated whether phosphorylation of Ser557 can influence the structure and DNA binding of the FOXP2 FHD. We did this by constructing S557E, a phosphomimetic mutant, and comparing its behaviour to the wild type. The mutation did not affect the secondary or tertiary structure of the protein although it did decrease the propensity of the FOXP2 FHD to form dimers. Most notably, the mutation showed significantly reduced DNA binding compared to the wild type as detected using electrophoretic mobility shift assays. Molecular docking was also performed in which the wild type, phosphomimetic mutant and phosphorylated wild-type were docked to DNA and their interactions with DNA were compared. These results indicated that the wild type forms more interactions with the DNA and that the phosphomimetic mutant as well as the phosphorylated wild type did not associate as favourably with the DNA. This indicates that phosphorylation of Ser557 could disrupt DNA binding likely due to electrostatic and steric hindrance. This suggests that phosphorylation of Ser557 in the FOXP2 FHD could act as a control mechanism for FOXP2 and ultimately could be involved in regulation of transcription.
Collapse
Affiliation(s)
- Ashleigh Blane
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
35
|
García-Reyes B, Kretz AL, Ruff JP, von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The Emerging Role of Cyclin-Dependent Kinases (CDKs) in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2018; 19:E3219. [PMID: 30340359 PMCID: PMC6214075 DOI: 10.3390/ijms19103219] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The family of cyclin-dependent kinases (CDKs) has critical functions in cell cycle regulation and controlling of transcriptional elongation. Moreover, dysregulated CDKs have been linked to cancer initiation and progression. Pharmacological CDK inhibition has recently emerged as a novel and promising approach in cancer therapy. This idea is of particular interest to combat pancreatic ductal adenocarcinoma (PDAC), a cancer entity with a dismal prognosis which is owed mainly to PDAC's resistance to conventional therapies. Here, we review the current knowledge of CDK biology, its role in cancer and the therapeutic potential to target CDKs as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Jan-Philipp Ruff
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
37
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 2018; 16:57. [PMID: 30208972 PMCID: PMC6134757 DOI: 10.1186/s12964-018-0266-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
FOXM1 (forkhead box protein M1) is a critical proliferation-associated transcription factor that is widely spatiotemporally expressed during the cell cycle. It is closely involved with the processes of cell proliferation, self-renewal, and tumorigenesis. In most human cancers, FOXM1 is overexpressed, and this indicates a poor prognosis for cancer patients. FOXM1 maintains cancer hallmarks by regulating the expression of target genes at the transcriptional level. Due to its potential role as molecular target in cancer therapy, FOXM1 was named the Molecule of the Year in 2010. However, the mechanism of FOXM1 dysregulation remains indistinct. A comprehensive understanding of FOXM1 regulation will provide novel insight for cancer and other diseases in which FOXM1 plays a major role. Here, we summarize the transcriptional regulation, post-transcriptional regulation and post-translational modifications of FOXM1, which will provide extremely important implications for novel strategies targeting FOXM1.
Collapse
Affiliation(s)
- Guo-Bin Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Jian-Ying Bai
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| |
Collapse
|
38
|
Toxico-pharmacological evaluations of the small-molecule LQFM166: Inducer of apoptosis and MDM2 antagonist. Chem Biol Interact 2018; 293:20-27. [DOI: 10.1016/j.cbi.2018.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
|
39
|
Saldivar JC, Hamperl S, Bocek MJ, Chung M, Bass TE, Cisneros-Soberanis F, Samejima K, Xie L, Paulson JR, Earnshaw WC, Cortez D, Meyer T, Cimprich KA. An intrinsic S/G 2 checkpoint enforced by ATR. Science 2018; 361:806-810. [PMID: 30139873 PMCID: PMC6365305 DOI: 10.1126/science.aap9346] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/07/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)-directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Stephan Hamperl
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Thomas E Bass
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México; Insituto Nacional de Cancerología, México City 14080, Mexico
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
40
|
Jing L, Tang Y, Goto M, Lee KH, Xiao Z. SAR study on N2, N4-disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents. RSC Adv 2018; 8:11871-11885. [PMID: 29682280 PMCID: PMC5890689 DOI: 10.1039/c8ra01440j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal kinases in cell cycle transition and gene transcription. A series of N2,N4-diphenylpyrimidine-2,4-diamines were previously identified as potent CDK2/CDK9 inhibitors. To explore the SAR of this structural prototype, twenty-four novel N2,N4-disubstituted pyrimidine-2,4-diamines were designed and synthesized. Among them, twenty-one compounds exhibited potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems, and the most potent CDK2 and CDK9 inhibitors, 3g and 3c, showed IC50 values of 83 nM and 65 nM respectively. Most of these compounds displayed significant inhibition against the tested tumor cell lines in the SRB assay, and in particular, remained active against the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Flow cytometer analysis of compounds 2a, 2d and 3b in MDA-MB-231 cells indicated that these compounds induced cell cycle arrest in G2/M phase. Docking studies on compound 3g were performed, which provided conducive clues for further molecular optimization.
Collapse
Affiliation(s)
- Liandong Jing
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China. Tel: +86-10- 63189228;
| | - Yanbo Tang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China. Tel: +86-10- 63189228;
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China. Tel: +86-10- 63189228;
| |
Collapse
|
41
|
Iwahori S, Kalejta RF. Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology 2017; 512:95-103. [PMID: 28946006 DOI: 10.1016/j.virol.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle.
Collapse
Affiliation(s)
- Satoko Iwahori
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
42
|
Yang L, He K, Yan S, Yang Y, Gao X, Zhang M, Xia Z, Huang Z, Huang S, Zhang N. Metadherin/Astrocyte elevated gene-1 positively regulates the stability and function of forkhead box M1 during tumorigenesis. Neuro Oncol 2017; 19:352-363. [PMID: 27923917 PMCID: PMC5464332 DOI: 10.1093/neuonc/now229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Forkhead box M1 (FOXM1) is overexpressed and activates numerous oncoproteins in tumors. However, the mechanism by which the FOXM1 protein aberrantly accumulates in human cancer remains uncertain. This study was designed to clarify the upstream signaling pathway(s) that regulate FOXM1 protein stability and transcriptional activity. Methods Mass spectrometry and immunoprecipitation were performed to identify the FOXM-metadherin (MTDH) interaction. In vivo and in vitro ubiquitination assays were conducted to test the effect of MTDH on FOXM1 stability. Chromatin immunoprecipitation assays were used to determine the involvement of MTDH in FOXM1 transcriptional activity. Cell invasion assays, tube formation assays, and in vivo tumor formation assays were performed to evaluate the cooperative activities of FOXM1 and MTDH during tumorigenesis. Results MTDH directly interacts with FOXM1 via the N-terminal inhibitory domain of MTDH, and this interaction disrupted the binding of cadherin-1 to FOXM1, thus protecting FOXM1 from subsequent proteasomal degradation. Deleting the MTDH-binding sites of FOXM1 abolished the MTDH overexpression-mediated stabilization of FOXM1. MTDH also bound to FOXM1 target gene promoters and enhanced FOXM1 transcriptional activity. MTDH knockdown destabilized FOXM1 and attenuated its transcriptional activity, consequently inhibiting cell cycle progression, angiogenesis, and cancer cell invasion in vitro and in vivo; these effects were abolished via forced overexpression of a stabilized mutant form of FOXM1. Thus, MTDH stabilized FOXM1 and supported the sustained activation of FOXM1 target genes. Conclusion These findings highlight a novel MTDH-regulated mechanism of FOXM1 stabilization and provide profound insight into the tumorigenic events simultaneously mediated by FOXM1 and MTDH.
Collapse
Affiliation(s)
- Lixuan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kejun He
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sheng Yan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yibing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinya Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhibo Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhengsong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
43
|
Kalra S, Joshi G, Munshi A, Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur J Med Chem 2017; 142:424-458. [PMID: 28911822 DOI: 10.1016/j.ejmech.2017.08.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Collapse
Affiliation(s)
- Sourav Kalra
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gaurav Joshi
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Raj Kumar
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
44
|
Minute Virus of Mice Inhibits Transcription of the Cyclin B1 Gene during Infection. J Virol 2017; 91:JVI.00428-17. [PMID: 28446681 DOI: 10.1128/jvi.00428-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
Replication of minute virus of mice (MVM) induces a sustained cellular DNA damage response (DDR) which the virus then exploits to prepare the nuclear environment for effective parvovirus takeover. An essential aspect of the MVM-induced DDR is the establishment of a potent premitotic block, which we previously found to be independent of activated p21 and ATR/Chk1 signaling. This arrest, unlike others reported previously, depends upon a significant, specific depletion of cyclin B1 and its encoding RNA, which precludes cyclin B1/CDK1 complex function, thus preventing mitotic entry. We show here that while the stability of cyclin B1 RNA was not affected by MVM infection, the production of nascent cyclin B1 RNA was substantially diminished at late times postinfection. Ectopic expression of NS1 alone did not reduce cyclin B1 expression. MVM infection also reduced the levels of cyclin B1 protein, and RNA levels normally increased in response to DNA-damaging reagents. We demonstrated that at times of reduced cyclin B1 expression during infection, there was a significantly reduced occupancy of RNA polymerase II and the essential mitotic transcription factor FoxM1 on the cyclin B1 gene promoter. Additionally, while total FoxM1 levels remained constant, there was a significant decrease of the phosphorylated, likely active, forms of FoxM1. Targeting of a constitutively active FoxM1 construct or the activation domain of FoxM1 to the cyclin B1 gene promoter via clustered regularly interspaced short palindromic repeats (CRISPR)-enzymatically inactive Cas9 in MVM-infected cells increased both cyclin B1 protein and RNA levels, implicating FoxM1 as a critical target for cyclin B1 inhibition during MVM infection.IMPORTANCE Replication of the parvovirus minute virus of mice (MVM) induces a sustained cellular DNA damage response (DDR) which the virus exploits to prepare the nuclear environment for effective takeover. An essential aspect of the MVM-induced DDR is establishment of a potent premitotic block. This block depends upon a significant, specific depletion of cyclin B1 and its encoding RNA that precludes cyclin B1/CDK1 complex functions necessary for mitotic entry. We show that reduced cyclin B1 expression is controlled primarily at the level of transcription initiation. Additionally, the essential mitotic transcription factor FoxM1 and RNA polymerase II were found to occupy the cyclin B1 gene promoter at reduced levels during infection. Recruiting a constitutively active FoxM1 construct or the activation domain of FoxM1 to the cyclin B1 gene promoter via CRISPR-catalytically inactive Cas9 (dCas9) in MVM-infected cells increased expression of both cyclin B1 protein and RNA, implicating FoxM1 as a critical target mediating MVM-induced cyclin B1 inhibition.
Collapse
|
45
|
Mukhopadhyay NK, Chand V, Pandey A, Kopanja D, Carr JR, Chen YJ, Liao X, Raychaudhuri P. Plk1 Regulates the Repressor Function of FoxM1b by inhibiting its Interaction with the Retinoblastoma Protein. Sci Rep 2017; 7:46017. [PMID: 28387346 PMCID: PMC5384083 DOI: 10.1038/srep46017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression.
Collapse
Affiliation(s)
- Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Janai R. Carr
- Department of Hematology/Oncology, University of California, Los Angeles, CA, USA
| | - Yi-Ju Chen
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
- Jesse Brown VA Medical Center, 820 S. Damen Ave., Chicago, IL-60612, USA
| |
Collapse
|
46
|
Youn M, Wang N, LaVasseur C, Bibikova E, Kam S, Glader B, Sakamoto KM, Narla A. Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors. Haematologica 2017; 102:826-834. [PMID: 28154085 PMCID: PMC5477601 DOI: 10.3324/haematol.2016.156257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
Forkhead box M1 (FOXM1) belongs to the forkhead/winged-helix family of transcription factors and regulates a network of proliferation-associated genes. Its abnormal upregulation has been shown to be a key driver of cancer progression and an initiating factor in oncogenesis. FOXM1 is also highly expressed in stem/progenitor cells and inhibits their differentiation, suggesting that FOXM1 plays a role in the maintenance of multipotency. However, the exact molecular mechanisms by which FOXM1 regulates human stem/progenitor cells are still uncharacterized. To understand the role of FOXM1 in normal hematopoiesis, human cord blood CD34+ cells were transduced with FOXM1 short hairpin ribonucleic acid (shRNA) lentivirus. Knockdown of FOXM1 resulted in a 2-fold increase in erythroid cells compared to myeloid cells. Additionally, knockdown of FOXM1 increased bromodeoxyuridine (BrdU) incorporation in erythroid cells, suggesting greater proliferation of erythroid progenitors. We also observed that the defective phosphorylation of FOXM1 by checkpoint kinase 2 (CHK2) or cyclin-dependent kinases 1/2 (CDK1/2) increased the erythroid population in a manner similar to knockdown of FOXM1. Finally, we found that an inhibitor of FOXM1, forkhead domain inhibitor-6 (FDI-6), increased red blood cell numbers through increased proliferation of erythroid precursors. Overall, our data suggest a novel function of FOXM1 in normal human hematopoiesis.
Collapse
Affiliation(s)
- Minyoung Youn
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Corinne LaVasseur
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Elena Bibikova
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Sharon Kam
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Bertil Glader
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | | | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| |
Collapse
|
47
|
Ismail NS, Ali GM, Ibrahim DA, Elmetwali AM. Medicinal attributes of pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2016. [DOI: 10.1016/j.fjps.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
48
|
Krishnan A, K D, Babu P.S S, Jagadeeshan S, Prasad M, Nair SA. Oncogenic Actions of SKP2 Involves Deregulation of CDK1 Turnover Mediated by FOXM1. J Cell Biochem 2016; 118:797-807. [DOI: 10.1002/jcb.25754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 09/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Anand Krishnan
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Dhanya K
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Saneesh Babu P.S
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Sankar Jagadeeshan
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - Manu Prasad
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - S. Asha Nair
- Cancer Research Program; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| |
Collapse
|
49
|
Kwok CTD, Leung MH, Qin J, Qin Y, Wang J, Lee YL, Yao KM. The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Res 2016; 16:651-61. [PMID: 27062359 DOI: 10.1016/j.scr.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/05/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
Human embryonic stem cells (hESCs) exhibit unique cell cycle structure, self-renewal and pluripotency. The Forkhead box transcription factor M1 (FOXM1) is critically required for the maintenance of pluripotency in mouse embryonic stem cells and mouse embryonal carcinoma cells, but its role in hESCs remains unclear. Here, we show that FOXM1 expression was enriched in undifferentiated hESCs and was regulated in a cell cycle-dependent manner with peak levels detected at the G2/M phase. Expression of FOXM1 did not correlate with OCT4 and NANOG during in vitro differentiation of hESCs. Importantly, knockdown of FOXM1 expression led to aberrant cell cycle distribution with impairment in mitotic progression but showed no profound effect on the undifferentiated state. Interestingly, FOXM1 depletion sensitized hESCs to oxidative stress. Moreover, genome-wide analysis of FOXM1 targets by ChIP-seq identified genes important for M phase including CCNB1 and CDK1, which were subsequently confirmed by ChIP and RNA interference analyses. Further peak set comparison against a differentiating hESC line and a cancer cell line revealed a substantial difference in the genomic binding profile of FOXM1 in hESCs. Taken together, our findings provide the first evidence to support FOXM1 as an important regulator of cell cycle progression and defense against oxidative stress in hESCs.
Collapse
Affiliation(s)
- C T D Kwok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - M H Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - J Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Y Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - J Wang
- Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Y L Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - K-M Yao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Wei Z, Song X, Shaikh ZA. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation. Toxicol Appl Pharmacol 2015; 289:98-108. [PMID: 26385184 DOI: 10.1016/j.taap.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1-0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lack estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process.
Collapse
Affiliation(s)
- Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Xiulong Song
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|