1
|
Jacinto JGP, Letko A, Häfliger IM, Akyürek EE, Sacchetto R, Gentile A, Drögemüller C. Whole genome sequencing reveals candidate causal genetic variants for spastic syndrome in Holstein cattle. Sci Rep 2024; 14:31188. [PMID: 39732776 DOI: 10.1038/s41598-024-82446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants. Seven affected unrelated Holstein cattle of both sexes were referred for SS at a mean age of 5.3 years (S.D.±1.1) showing intermittent spasm of the skeletal muscles of the pelvic girdle. Assuming monogenic recessive inheritance, analysis of the WGS data did not reveal any private variants common to all cases. Searching for homozygous rare variants considering each case individually, allowed the identification of a rare recessive likely pathogenic missense variant in TOR3A for one case with an allele frequency of 1.69% in a global Holstein population. In the remaining six SS cases, we identified seven potentially dominant de novo mutations or inherited alleles as private heterozygous, mostly missense, variants of uncertain significance involving seven different NMD candidate genes: MPEG1, LHX8, WHAMM, NGRN, TTN, ATP1A1, PCDH1. All eight candidate causal variants identified were predicted to be deleterious. This study describes for the first time WGS findings in confirmed cases of bovine SS and provides evidence for a heterogeneous genetic cause of SS in cattle.
Collapse
Affiliation(s)
- Joana G P Jacinto
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | - Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (Padua), 35020, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro (Padua), 35020, Italy
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland.
| |
Collapse
|
2
|
Pereira CD, Espadas G, Martins F, Bertrand AT, Servais L, Sabidó E, Chevalier P, da Cruz e Silva OAB, Rebelo S. LAP1 Interactome Profiling Provides New Insights into LAP1's Physiological Functions. Int J Mol Sci 2024; 25:13235. [PMID: 39769001 PMCID: PMC11678445 DOI: 10.3390/ijms252413235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025] Open
Abstract
The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations causing LAP1 deficiency are extremely rare and pathogenic is indicative of its paramount importance to preserving human health, anticipating that LAP1 might have a multifaceted role in the cell. Mapping the LAP1 protein interactome is, thus, imperative to achieve an integrated view of its potential biological properties. To this end, we employed in silico- and mass spectrometry-based approaches to identify candidate LAP1-interacting proteins, whose functional attributes were subsequently characterized using bioinformatics tools. Our results reveal the complex and multifunctional network of protein-protein interactions associated to LAP1, evidencing a strong interconnection between LAP1 and cellular processes as diverse as chromatin and cytoskeleton organization, DNA repair, RNA processing and translation, as well as protein biogenesis and turnover, among others. Novel interactions between LAP1 and DNA repair proteins were additionally validated, strengthening the previously proposed involvement of LAP1 in the maintenance of genomic stability. Overall, this study reaffirms the biological relevance of LAP1 and the need to deepen our knowledge about this NE protein, providing new insights about its potential functional partners that will help guiding future research towards a mechanistic understanding of LAP1's functioning.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (O.A.B.d.C.e.S.)
| | - Guadalupe Espadas
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; (G.E.); (E.S.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Filipa Martins
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (O.A.B.d.C.e.S.)
| | - Anne T. Bertrand
- Centre de Recherche en Myologie, Institut de Myologie, Medicine Faculty—Sorbonne Université, Inserm, 75013 Paris, France;
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford and NIHR Oxford Biomedical Research Center, Oxford OX3 9DU, UK;
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000 Liège, Belgium
| | - Eduard Sabidó
- Center for Genomics Regulation, The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; (G.E.); (E.S.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Philippe Chevalier
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, 69266 Lyon, France;
- Hospices Civils de Lyon, 69677 Lyon, France
| | - Odete A. B. da Cruz e Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (O.A.B.d.C.e.S.)
| | - Sandra Rebelo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (O.A.B.d.C.e.S.)
| |
Collapse
|
3
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
4
|
Saffari A, Lau T, Tajsharghi H, Karimiani EG, Kariminejad A, Efthymiou S, Zifarelli G, Sultan T, Toosi MB, Sedighzadeh S, Siu VM, Ortigoza-Escobar JD, AlShamsi AM, Ibrahim S, Al-Sannaa NA, Al-Hertani W, Sandra W, Tarnopolsky M, Alavi S, Li C, Day-Salvatore DL, Martínez-González MJ, Levandoski KM, Bedoukian E, Madan-Khetarpal S, Idleburg MJ, Menezes MJ, Siddharth A, Platzer K, Oppermann H, Smitka M, Collins F, Lek M, Shahrooei M, Ghavideldarestani M, Herman I, Rendu J, Faure J, Baker J, Bhambhani V, Calderwood L, Akhondian J, Imannezhad S, Mirzadeh HS, Hashemi N, Doosti M, Safi M, Ahangari N, Torbati PN, Abedini S, Salpietro V, Gulec EY, Eshaghian S, Ghazavi M, Pascher MT, Vogel M, Abicht A, Moutton S, Bruel AL, Rieubland C, Gallati S, Strom TM, Lochmüller H, Mohammadi MH, Alvi JR, Zackai EH, Keena BA, Skraban CM, Berger SI, Andrew EH, Rahimian E, Morrow MM, Wentzensen IM, Millan F, Henderson LB, Dafsari HS, Jungbluth H, Gomez-Ospina N, McRae A, Peter M, Veltra D, Marinakis NM, Sofocleous C, Ashrafzadeh F, Pehlivan D, Lemke JR, Melki J, Benezit A, Bauer P, Weis D, Lupski JR, Senderek J, Christodoulou J, Chung WK, Goodchild R, Offiah AC, Moreno-De-Luca A, Suri M, Ebrahimi-Fakhari D, Houlden H, Maroofian R. The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders. Brain 2023; 146:3273-3288. [PMID: 36757831 PMCID: PMC10393417 DOI: 10.1093/brain/awad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Tracy Lau
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Homa Tajsharghi
- School of Health Sciences, Division of Biomedicine, University of Skovde, Skovde, Sweden
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Tipu Sultan
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- KaryoGen, Isfahan, Iran
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Aisha M AlShamsi
- Genetic Division, Pediatrics Department, Tawam Hospital, Al Ain, UAE
| | - Shahnaz Ibrahim
- Department of pediatrics and child Health, Aga Khan University, Karachi, Pakistan
| | | | - Walla Al-Hertani
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Whalen Sandra
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Mark Tarnopolsky
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Chumei Li
- Department of Pediatrics (MT – Neuromuscular and Neurometabolics, CL – Medical Genetics), McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debra-Lynn Day-Salvatore
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | | | - Kristin M Levandoski
- The Department of Medical Genetics and Genomic Medicine at Saint Peter's University Hospital, New Brunswick, NJ, USA
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Suneeta Madan-Khetarpal
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michaela J Idleburg
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Minal Juliet Menezes
- Department of Anaesthesia, the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Aishwarya Siddharth
- Harvard Medical School, Boston Children's Hospital, Department of Pediatrics, Division of Genetics and Genomics, Boston, MA, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Smitka
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Felicity Collins
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohmmad Shahrooei
- Medical Laboratory of Dr. Shahrooei, Tehran, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | | | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Division of Pediatric Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Julien Faure
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Janice Baker
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Vikas Bhambhani
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Laurel Calderwood
- Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Sadat Mirzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Mojtaba Safi
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Innovative medical research centre, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | | | - Soheila Abedini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Elif Yilmaz Gulec
- Istanbul Medeniyet University Medical School, Department of Medical Genetics, Istanbul, Turkey
| | | | - Mohammadreza Ghazavi
- Department of Pediatric Neurology, Imam Hossein Children's Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael T Pascher
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Marina Vogel
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Medizinisch Genetisches Zentrum, Munich, German
| | - Sébastien Moutton
- Multidisciplinary Center for Prenatal Diagnosis, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence, France
| | - Ange-Line Bruel
- Équipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Claudine Rieubland
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Switzerland
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | | | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and the University of Child Health Sciences, Lahore, Pakistan
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Beth A Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Seth I Berger
- Children's National Research Institute, Washington DC, USA
| | - Erin H Andrew
- Children's National Research Institute, Washington DC, USA
| | | | | | | | | | | | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing and CECAD, Cologne, Germany
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | | | - Anne McRae
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Merlene Peter
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Danai Veltra
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, Athens, Greece
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, 94276, Paris, France
| | - Audrey Benezit
- Neurologie et réanimation pédiatrique, Hôpital Raymond Poincaré, APHP, Garches, France
| | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, Johann Kepler University, Linz, Austria
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Senderek
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - John Christodoulou
- Discipline of Child and Adolescent Health, and Specialty of Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Melbourne and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University New York, NY, USA
| | - Rose Goodchild
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Laboratory for Dystonia Research, Leuven, Belgium
| | - Amaka C Offiah
- Department of Oncology & Metabolism, University of Sheffield, UK
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, MA, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Mackels L, Liu X, Bonne G, Servais L. TOR1AIP1-Associated Nuclear Envelopathies. Int J Mol Sci 2023; 24:ijms24086911. [PMID: 37108075 PMCID: PMC10138496 DOI: 10.3390/ijms24086911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Human TOR1AIP1 encodes LAP1, a nuclear envelope protein expressed in most human tissues, which has been linked to various biological processes and human diseases. The clinical spectrum of diseases related to mutations in TOR1AIP1 is broad, including muscular dystrophy, congenital myasthenic syndrome, cardiomyopathy, and multisystemic disease with or without progeroid features. Although rare, these recessively inherited disorders often lead to early death or considerable functional impairment. Developing a better understanding of the roles of LAP1 and mutant TOR1AIP1-associated phenotypes is paramount to allow therapeutic development. To facilitate further studies, this review provides an overview of the known interactions of LAP1 and summarizes the evidence for the function of this protein in human health. We then review the mutations in the TOR1AIP1 gene and the clinical and pathological characteristics of subjects with these mutations. Lastly, we discuss challenges to be addressed in the future.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
- Adult Neurology Department, Citadelle Hospital, 4000 Liège, Belgium
| | - Xincheng Liu
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Gisèle Bonne
- Sorbonne University, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Laurent Servais
- Neuromuscular Center, Division of Paediatrics, University Hospital of Liège, University of Liège, 4000 Liège, Belgium
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
6
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Salazar Leon LE, Sillitoe RV. Potential Interactions Between Cerebellar Dysfunction and Sleep Disturbances in Dystonia. DYSTONIA 2022; 1. [PMID: 37065094 PMCID: PMC10099477 DOI: 10.3389/dyst.2022.10691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a “dystonia circuit” that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
- Address correspondence to: Dr. Roy V. Sillitoe, Tel: 832-824-8913, Fax: 832-825-1251,
| |
Collapse
|
8
|
Kamikawa Y, Saito A, Imaizumi K. Impact of Nuclear Envelope Stress on Physiological and Pathological Processes in Central Nervous System. Neurochem Res 2022; 47:2478-2487. [PMID: 35486254 DOI: 10.1007/s11064-022-03608-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
The nuclear envelope (NE) separates genomic DNA from the cytoplasm and provides the molecular platforms for nucleocytoplasmic transport, higher-order chromatin organization, and physical links between the nucleus and cytoskeleton. Recent studies have shown that the NE is often damaged by various stresses termed "NE stress", leading to critical cellular dysfunction. Accumulating evidence has revealed the crucial roles of NE stress in the pathology of a broad spectrum of diseases. In the central nervous system (CNS), NE dysfunction impairs neural development and is associated with several neurological disorders, such as Alzheimer's disease and autosomal dominant leukodystrophy. In this review, the structure and functions of the NE are summarized, and the concepts of NE stress and NE stress responses are introduced. Additionally, the significant roles of the NE in the development of CNS and the mechanistic connections between NE stress and neurological disorders are described.
Collapse
Affiliation(s)
- Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
9
|
Prophet SM, Naughton BS, Schlieker C. p97/UBXD1 Generate Ubiquitylated Proteins That Are Sequestered into Nuclear Envelope Herniations in Torsin-Deficient Cells. Int J Mol Sci 2022; 23:4627. [PMID: 35563018 PMCID: PMC9100061 DOI: 10.3390/ijms23094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.
Collapse
Affiliation(s)
- Sarah M. Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Brigitte S. Naughton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Abstract
The nuclear envelope is composed of the nuclear membranes, nuclear lamina, and nuclear pore complexes. Laminopathies are diseases caused by mutations in genes encoding protein components of the lamina and these other nuclear envelope substructures. Mutations in the single gene encoding lamin A and C, which are expressed in most differentiated somatic cells, cause diseases affecting striated muscle, adipose tissue, peripheral nerve, and multiple systems with features of accelerated aging. Mutations in genes encoding other nuclear envelope proteins also cause an array of diseases that selectively affect different tissues or organs. In some instances, the molecular and cellular consequences of laminopathy-causing mutations are known. However, even when these are understood, mechanisms explaining specific tissue or organ pathology remain enigmatic. Current mechanistic hypotheses focus on how alterations in the nuclear envelope may affect gene expression, including via the regulation of signaling pathways, or cellular mechanics, including responses to mechanical stress.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
12
|
Structural Glycoprotein E2 of Classical Swine Fever Virus Critically Interacts with Host Protein Torsin-1A during the Virus Infectious Cycle. J Virol 2021; 95:JVI.00314-21. [PMID: 33827941 DOI: 10.1128/jvi.00314-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
The classical swine fever virus (CSFV) glycoprotein E2 is the major structural component of the virus particle. E2 is involved in several functions, such as virus adsorption to the cell, the elicitation of protective immune responses, and virus virulence in swine. Using a yeast two-hybrid system, we previously identified the swine host protein Torsin-1A, an ATPase protein residing in the endoplasmic reticulum and inner nucleus membrane of the cell, as a specific binding partner for E2. The interaction between Torsin-1A and E2 proteins was confirmed to occur in CSFV-infected swine cells using three independent methods: coimmunoprecipitation, confocal microscopy, and proximity ligation assay (PLA). Furthermore, the E2 residue critical to mediate the protein-protein interaction with Torsin-1A was identified by a reverse yeast two-hybrid assay using a randomly mutated E2 library. A recombinant CSFV E2 mutant protein with a Q316L substitution failed to bind swine Torsin-1A in the yeast two-hybrid model. In addition, a CSFV infectious clone harboring the E2 Q316L substitution, although expressing substantial levels of E2 protein, repetitively failed to produce virus progeny when the corresponding RNA was transfected into susceptible SK6 cells. Importantly, PLA analysis of the transfected cells demonstrated an abolishment of the interaction between E2 Q316L and Torsin-1A, indicating a critical role for that interaction during CSFV replication.IMPORTANCE Structural glycoprotein E2 is an important structural component of the CSFV particle. E2 is involved in several virus functions, particularly virus-host interactions. Here, we characterized the interaction between CSFV E2 and swine protein Torsin-1A during virus infection. The critical amino acid residue in E2 mediating the interaction with Torsin-1A was identified and the effect of disrupting the E2-Torsin-1A protein-protein interaction was studied using reverse genetics. It is shown that the amino acid substitution abrogating E2-Torsin-1A interaction constitutes a lethal mutation, demonstrating that this virus-host protein-protein interaction is a critical factor during CSFV replication. This highlights the potential importance of the E2-Torsin-1A protein-protein interaction during CSFV replication and provides a potential pathway toward blocking virus replication, an important step toward the potential development of novel virus countermeasures.
Collapse
|
13
|
Li J, Levin DS, Kim AJ, Pappas SS, Dauer WT. TorsinA restoration in a mouse model identifies a critical therapeutic window for DYT1 dystonia. J Clin Invest 2021; 131:139606. [PMID: 33529159 DOI: 10.1172/jci139606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
In inherited neurodevelopmental diseases, pathogenic processes unique to critical periods during early brain development may preclude the effectiveness of gene modification therapies applied later in life. We explored this question in a mouse model of DYT1 dystonia, a neurodevelopmental disease caused by a loss-of-function mutation in the TOR1A gene encoding torsinA. To define the temporal requirements for torsinA in normal motor function and gene replacement therapy, we developed a mouse line enabling spatiotemporal control of the endogenous torsinA allele. Suppressing torsinA during embryogenesis caused dystonia-mimicking behavioral and neuropathological phenotypes. Suppressing torsinA during adulthood, however, elicited no discernible abnormalities, establishing an essential requirement for torsinA during a developmental critical period. The developing CNS exhibited a parallel "therapeutic critical period" for torsinA repletion. Although restoring torsinA in juvenile DYT1 mice rescued motor phenotypes, there was no benefit from adult torsinA repletion. These data establish a unique requirement for torsinA in the developing nervous system and demonstrate that the critical period genetic insult provokes permanent pathophysiology mechanistically delinked from torsinA function. These findings imply that to be effective, torsinA-based therapeutic strategies must be employed early in the course of DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program.,Cellular and Molecular Biology Graduate Program
| | - Daniel S Levin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Li J, Kim S, Pappas SS, Dauer WT. CNS critical periods: implications for dystonia and other neurodevelopmental disorders. JCI Insight 2021; 6:142483. [PMID: 33616084 PMCID: PMC7934928 DOI: 10.1172/jci.insight.142483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Critical periods are discrete developmental stages when the nervous system is especially sensitive to stimuli that facilitate circuit maturation. The distinctive landscapes assumed by the developing CNS create analogous periods of susceptibility to pathogenic insults and responsiveness to therapy. Here, we review critical periods in nervous system development and disease, with an emphasis on the neurodevelopmental disorder DYT1 dystonia. We highlight clinical and laboratory observations supporting the existence of a critical period during which the DYT1 mutation is uniquely harmful, and the implications for future therapeutic development.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
16
|
Liu Y, Xing H, Wilkes BJ, Yokoi F, Chen H, Vaillancourt DE, Li Y. The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia. Brain Res Bull 2020; 165:14-22. [PMID: 32976982 PMCID: PMC7674218 DOI: 10.1016/j.brainresbull.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
DYT1 dystonia is an inherited movement disorder caused by a heterozygous trinucleotide (GAG) deletion in DYT1/TOR1A, coding for torsinA. Growing evidence suggests that the cerebellum plays a role in the pathogenesis of dystonia. Brain imaging of both DYT1 dystonia patients and animal models show abnormal activity in the cerebellum. The cerebellum-specific knockdown of torsinA in adult mice leads to dystonia-like behavior. Dyt1 ΔGAG heterozygous knock-in mouse model exhibits impaired corticostriatal long-term depression, abnormal muscle co-contraction, and motor deficits. We and others previously reported altered dendritic structures in Purkinje cells in Dyt1 knock-in mouse models. However, whether there are any electrophysiological alterations of the Purkinje cells in Dyt1 knock-in mice is not known. We used the patch-clamp recording in brain slices and in acutely dissociated Purkinje cells to identify specific alterations of Purkinje cells firing. We found abnormal firing of non-tonic type of Purkinje cells in the Dyt1 knock-in mice. Furthermore, the large-conductance calcium-activated potassium (BK) current and the BK channel protein levels were significantly increased in the Dyt1 knock-in mice. Our results support a role of the cerebellum in the pathogenesis of DYT1 dystonia. Manipulating the Purkinje cell firing and cerebellar output may show great promise for treating DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Huanxin Chen
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Decreased mechanotransduction prevents nuclear collapse in a Caenorhabditis elegans laminopathy. Proc Natl Acad Sci U S A 2020; 117:31301-31308. [PMID: 33229589 PMCID: PMC7733798 DOI: 10.1073/pnas.2015050117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelopathies are a complex group of human diseases caused by mutations in nuclear envelope proteins, including progeria, myopathy, and dystonia. Here, we used the Caenorhabditis elegans germline as a model system to investigate the function of the OOC-5/torsinA AAA+ ATPase, which localizes to the nuclear envelope and is mutated in early-onset DYT1 dystonia in humans. We show that OOC-5/torsinA promotes the function of the LINC complex, which spans the nuclear envelope and transmits forces to the nuclear lamina. Remarkably, decreasing the function of OOC-5/torsinA or the LINC complex prevents nuclear collapse in the absence of a functional nuclear lamina. Therapeutics targeting torsinA or the LINC complex might prevent nuclear damage from endogenous forces in certain nuclear envelopathies. The function of the nucleus depends on the integrity of the nuclear lamina, an intermediate filament network associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex. The LINC complex spans the nuclear envelope and mediates nuclear mechanotransduction, the process by which mechanical signals and forces are transmitted across the nuclear envelope. In turn, the AAA+ ATPase torsinA is thought to regulate force transmission from the cytoskeleton to the nucleus. In humans, mutations affecting nuclear envelope-associated proteins cause laminopathies, including progeria, myopathy, and dystonia, though the extent to which endogenous mechanical stresses contribute to these pathologies is unclear. Here, we use the Caenorhabditis elegans germline as a model to investigate mechanisms that maintain nuclear integrity as germ cell nuclei progress through meiotic development and migrate for gametogenesis—processes that require LINC complex function. We report that decreasing the function of the C. elegans torsinA homolog, OOC-5, rescues the sterility and premature aging caused by a null mutation in the single worm lamin homolog. We show that decreasing OOC-5/torsinA activity prevents nuclear collapse in lamin mutants by disrupting the function of the LINC complex. At a mechanistic level, OOC-5/torsinA promotes the assembly or maintenance of the lamin-associated LINC complex and this activity is also important for interphase nuclear pore complex insertion into growing germline nuclei. These results demonstrate that LINC complex-transmitted forces damage nuclei with a compromised nuclear lamina. Thus, the torsinA–LINC complex nexus might comprise a therapeutic target for certain laminopathies by preventing damage from endogenous cellular forces.
Collapse
|
18
|
Li J, Liang CC, Pappas SS, Dauer WT. TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models. eLife 2020; 9:e54285. [PMID: 32202496 PMCID: PMC7141835 DOI: 10.7554/elife.54285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic redundancy can be exploited to identify therapeutic targets for inherited disorders. We explored this possibility in DYT1 dystonia, a neurodevelopmental movement disorder caused by a loss-of-function (LOF) mutation in the TOR1A gene encoding torsinA. Prior work demonstrates that torsinA and its paralog torsinB have conserved functions at the nuclear envelope. This work established that low neuronal levels of torsinB dictate the neuronal selective phenotype of nuclear membrane budding. Here, we examined whether torsinB expression levels impact the onset or severity of abnormal movements or neuropathological features in DYT1 mouse models. We demonstrate that torsinB levels bidirectionally regulate these phenotypes. Reducing torsinB levels causes a dose-dependent worsening whereas torsinB overexpression rescues torsinA LOF-mediated abnormal movements and neurodegeneration. These findings identify torsinB as a potent modifier of torsinA LOF phenotypes and suggest that augmentation of torsinB expression may retard or prevent symptom development in DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of MichiganAnn ArborUnited States
- Cellular and Molecular Biology Graduate Program, University of MichiganAnn ArborUnited States
| | - Chun-Chi Liang
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| | - William T Dauer
- Department of Neurology, University of MichiganAnn ArborUnited States
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| |
Collapse
|
19
|
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease. Biomolecules 2020; 10:biom10030468. [PMID: 32204310 PMCID: PMC7175109 DOI: 10.3390/biom10030468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.
Collapse
|
20
|
The AAA + ATPase TorsinA polymerizes into hollow helical tubes with 8.5 subunits per turn. Nat Commun 2019; 10:3262. [PMID: 31332180 PMCID: PMC6646356 DOI: 10.1038/s41467-019-11194-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 01/25/2023] Open
Abstract
TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.
Collapse
|
21
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
22
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Chalfant M, Barber KW, Borah S, Thaller D, Lusk CP. Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components. Mol Biol Cell 2019; 30:530-541. [PMID: 30625036 PMCID: PMC6589686 DOI: 10.1091/mbc.e18-09-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.
Collapse
Affiliation(s)
| | - Karl W. Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520
- Systems Biology Institute, Yale University, West Haven, CT 06477
| | - Sapan Borah
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - David Thaller
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
24
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
25
|
Salawu EO. The Impairment of TorsinA's Binding to and Interactions With Its Activator: An Atomistic Molecular Dynamics Study of Primary Dystonia. Front Mol Biosci 2018; 5:64. [PMID: 30042949 PMCID: PMC6048259 DOI: 10.3389/fmolb.2018.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/23/2023] Open
Abstract
Primary dystonia's prolonged muscle contractions and the associated abnormal postures and twisting movements remain incurable. Genetic mutation/deletion of GAG from TorsonA's gene resulting in ΔE303 (which weakens the binding between TorsinA and its activator, such as LULL1) primarily cause this neurodegenerative disorder. We studied TorsinA-LULL1 (or TorsinAΔE303-LULL1) bindings and interactions. For the first time, we show the atomic details of TorsinA-LULL1 dynamic interactions and TorsinAΔE303-LULL1 dynamic interactions and their binding affinities. Our results show extensive effects of ΔE303 on TorsinAΔE303-LULL1 interactions, and suggest that the differences between TorsinA-LULL1 interactions and TorsinAΔE303-LULL1 interactions are non-subtle. ΔE303 significantly weakens TorsinAΔE303-LULL1's binding affinity. We present pieces of evidence proving that the effects of ΔE303 (on the differences between TorsinA-LULL1 interactions and TorsinAΔE303-LULL1 interactions) are more pronounced than previously suggested, and that the nanobody used for achieving the X-ray crystallization in the previous study attenuated the differences between TorsinA-LULL1 and TorsinAΔE303-LULL1 interactions. Our accounts of the dynamic interactions between “TorsinA and LULL1” and between “TorsinAΔE303 and LULL1” and the detailed effects of ΔE303 on TorsinA-/TorsinAΔE303-LULL1 build on previous findings and offer new insights for a better understanding of the molecular basis of Primary Dystonia. Our results have long-term potentials of guiding the development of medications for the disease.
Collapse
Affiliation(s)
- Emmanuel O Salawu
- TIGP Bioinformatics Program, Academia Sinica, Taipei, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,School of Computer Science, University of Hertfordshire, Hertfordshire, United Kingdom.,Bioinformatics Center, Sheridan, WY, United States
| |
Collapse
|
26
|
Zacchi LF, Dittmar JC, Mihalevic MJ, Shewan AM, Schulz BL, Brodsky JL, Bernstein KA. Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinAΔE. Dis Model Mech 2017; 10:1129-1140. [PMID: 28768697 PMCID: PMC5611967 DOI: 10.1242/dmm.029926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Dystonia is the third most common movement disorder, but its diagnosis and treatment remain challenging. One of the most severe types of dystonia is early-onset torsion dystonia (EOTD). The best studied and validated EOTD-associated mutation, torsinAΔE, is a deletion of a C-terminal glutamate residue in the AAA+ ATPase torsinA. TorsinA appears to be an endoplasmic reticulum (ER)/nuclear envelope chaperone with multiple roles in the secretory pathway and in determining subcellular architecture. Many functions are disabled in the torsinAΔE variant, and torsinAΔE is also less stable than wild-type torsinA and is a substrate for ER-associated degradation. Nevertheless, the molecular factors involved in the biogenesis and degradation of torsinA and torsinAΔE have not been fully explored. To identify conserved cellular factors that can alter torsinAΔE protein levels, we designed a new high-throughput, automated, genome-wide screen utilizing our validated Saccharomyces cerevisiae torsinA expression system. By analyzing the yeast non-essential gene deletion collection, we identified 365 deletion strains with altered torsinAΔE steady-state levels. One notable hit was EUG1, which encodes a member of the protein disulfide isomerase family (PDIs). PDIs reside in the ER and catalyze the formation of disulfide bonds, mediate protein quality control and aid in nascent protein folding. We validated the role of select human PDIs in torsinA biogenesis in mammalian cells and found that overexpression of PDIs reduced the levels of torsinA and torsinAΔE. Together, our data report the first genome-wide screen to identify cellular factors that alter expression levels of the EOTD-associated protein torsinAΔE. More generally, the identified hits help in dissecting the cellular machinery involved in folding and degrading a torsinA variant, and constitute potential therapeutic factors for EOTD. This screen can also be readily adapted to identify factors impacting the levels of any protein of interest, considerably expanding the applicability of yeast in both basic and applied research.
Collapse
Affiliation(s)
- Lucía F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John C Dittmar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Chase AR, Laudermilch E, Wang J, Shigematsu H, Yokoyama T, Schlieker C. Dynamic functional assembly of the Torsin AAA+ ATPase and its modulation by LAP1. Mol Biol Cell 2017; 28:2765-2772. [PMID: 28814508 PMCID: PMC5638581 DOI: 10.1091/mbc.e17-05-0281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022] Open
Abstract
Torsins are essential AAA+ proteins of the endoplasmic reticulum and nuclear envelope (NE). We now show that Torsin homo-oligomers are essential for Torsin function at the NE and that Torsin’s oligomeric state is negatively modulated by its cofactors, representing a novel regulation mechanism for AAA+ proteins. TorsinA is an essential AAA+ ATPase requiring LAP1 or LULL1 as cofactors. The dynamics of the Torsin/cofactor system remain poorly understood, with previous models invoking Torsin/cofactor assemblies with fixed stoichiometries. Here we demonstrate that TorsinA assembles into homotypic oligomers in the presence of ATP. Torsin variants mutated at the “back” interface disrupt homo-oligomerization but still show robust ATPase activity in the presence of its cofactors. These Torsin mutants are severely compromised in their ability to rescue nuclear envelope defects in Torsin-deficient cells, suggesting that TorsinA homo-oligomers play a key role in vivo. Engagement of the oligomer by LAP1 triggers ATP hydrolysis and rapid complex disassembly. Thus the Torsin complex is a highly dynamic assembly whose oligomeric state is tightly controlled by distinctively localized cellular cofactors. Our discovery that LAP1 serves as a modulator of the oligomeric state of an AAA+ protein establishes a novel means of regulating this important class of oligomeric ATPases.
Collapse
Affiliation(s)
- Anna R Chase
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Ethan Laudermilch
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Jimin Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Hideki Shigematsu
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520 .,Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
28
|
Abstract
Mainly due to the advent of next-generation sequencing (NGS), the field of genetics of dystonia has rapidly grown in recent years, which led to the discovery of a number of novel dystonia genes and the development of a new classification and nomenclature for inherited dystonias. In addition, new findings from both in vivo and in vitro studies have been published on the role of previously known dystonia genes, extending our understanding of the pathophysiology of dystonia. We here review the current knowledge and recent findings in the known genes for isolated dystonia TOR1A, THAP1, and GNAL as well as for the combined dystonias due to mutations in GCH1, ATP1A3, and SGCE. We present confirmatory evidence for a role of dystonia genes that had not yet been unequivocally established including PRKRA, TUBB4A, ANO3, and TAF1. We finally discuss selected novel genes for dystonia such as KMT2B and VAC14 along with the challenges for gene identification in the NGS era and the translational importance of dystonia genetics in clinical practice.
Collapse
|
29
|
Chase AR, Laudermilch E, Schlieker C. Torsin ATPases: Harnessing Dynamic Instability for Function. Front Mol Biosci 2017; 4:29. [PMID: 28553638 PMCID: PMC5425593 DOI: 10.3389/fmolb.2017.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular activities) proteins residing in the endoplasmic reticulum and perinuclear space, where they are implicated in a variety of cellular functions. Recently, new structural and functional details about Torsins have emerged that will have a profound influence on unraveling the precise mechanistic details of their yet-unknown mode of action in the cell. While Torsins are phylogenetically related to Clp/HSP100 proteins, they exhibit comparatively weak ATPase activities, which are tightly controlled by virtue of an active site complementation through accessory cofactors. This control mechanism is offset by a TorsinA mutation implicated in the severe movement disorder DYT1 dystonia, suggesting a critical role for the functional Torsin-cofactor interplay in vivo. Notably, TorsinA lacks aromatic pore loops that are both conserved and critical for the processive unfolding activity of Clp/HSP100 proteins. Based on these distinctive yet defining features, we discuss how the apparent dynamic nature of the Torsin-cofactor system can inform emerging models and hypotheses for Torsin complex formation and function. Specifically, we propose that the dynamic assembly and disassembly of the Torsin/cofactor system is a critical property that is required for Torsins' functional roles in nuclear trafficking and nuclear pore complex assembly or homeostasis that merit further exploration. Insights obtained from these future studies will be a valuable addition to our understanding of disease etiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Anna R Chase
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA.,Department of Cell Biology, Yale School of MedicineNew Haven, CT, USA
| |
Collapse
|
30
|
Saunders CA, Harris NJ, Willey PT, Woolums BM, Wang Y, McQuown AJ, Schoenhofen A, Worman HJ, Dauer WT, Gundersen GG, Luxton GWG. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J Cell Biol 2017; 216:657-674. [PMID: 28242745 PMCID: PMC5350507 DOI: 10.1083/jcb.201507113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Patrick T Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Yuexia Wang
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Alex J McQuown
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Howard J Worman
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - William T Dauer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.,Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
31
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
32
|
Tanabe LM, Liang CC, Dauer WT. Neuronal Nuclear Membrane Budding Occurs during a Developmental Window Modulated by Torsin Paralogs. Cell Rep 2016; 16:3322-3333. [PMID: 27653693 PMCID: PMC5061049 DOI: 10.1016/j.celrep.2016.08.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/19/2016] [Accepted: 08/14/2016] [Indexed: 01/26/2023] Open
Abstract
DYT1 dystonia is a neurodevelopmental disease that manifests during a discrete period of childhood. The disease is caused by impaired function of torsinA, a protein linked to nuclear membrane budding. The relationship of NE budding to neural development and CNS function is unclear, however, obscuring its potential role in dystonia pathogenesis. We find NE budding begins and resolves during a discrete neurodevelopmental window in torsinA null neurons in vivo. The developmental resolution of NE budding corresponds to increased torsinB protein, while ablating torsinB from torsinA null neurons prevents budding resolution and causes lethal neural dysfunction. Developmental changes in torsinB also correlate with NE bud formation in differentiating DYT1 embryonic stem cells, and overexpression of torsinA or torsinB rescues NE bud formation in this system. These findings identify a torsinA neurodevelopmental window that is essential for normal CNS function and have important implications for dystonia pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Lauren M Tanabe
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Grillet M, Dominguez Gonzalez B, Sicart A, Pöttler M, Cascalho A, Billion K, Hernandez Diaz S, Swerts J, Naismith TV, Gounko NV, Verstreken P, Hanson PI, Goodchild RE. Torsins Are Essential Regulators of Cellular Lipid Metabolism. Dev Cell 2016; 38:235-47. [PMID: 27453503 DOI: 10.1016/j.devcel.2016.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Accepted: 06/12/2016] [Indexed: 01/10/2023]
Abstract
Torsins are developmentally essential AAA+ proteins, and mutation of human torsinA causes the neurological disease DYT1 dystonia. They localize in the ER membranes, but their cellular function remains unclear. We now show that dTorsin is required in Drosophila adipose tissue, where it suppresses triglyceride levels, promotes cell growth, and elevates membrane lipid content. We also see that human torsinA at the inner nuclear membrane is associated with membrane expansion and elevated cellular lipid content. Furthermore, the key lipid metabolizing enzyme, lipin, is mislocalized in dTorsin-KO cells, and dTorsin increases levels of the lipin substrate, phosphatidate, and reduces the product, diacylglycerol. Finally, genetic suppression of dLipin rescues dTorsin-KO defects, including adipose cell size, animal growth, and survival. These findings identify that torsins are essential regulators of cellular lipid metabolism and implicate disturbed lipid biology in childhood-onset DYT1 dystonia.
Collapse
Affiliation(s)
- Micheline Grillet
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Adria Sicart
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Maria Pöttler
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Ana Cascalho
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sergio Hernandez Diaz
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Natalia V Gounko
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Electron Microscopy Platform, VIB Bio-Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rose E Goodchild
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium.
| |
Collapse
|
35
|
Saunders CA, Luxton GWG. LINCing defective nuclear-cytoskeletal coupling and DYT1 dystonia. Cell Mol Bioeng 2016; 9:207-216. [PMID: 27499815 DOI: 10.1007/s12195-016-0432-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mechanical forces generated by nuclear-cytoskeletal coupling through the LINC (linker of nucleoskeleton and cytoskeleton) complex, an evolutionarily conserved molecular bridge in the nuclear envelope (NE), are critical for the execution of wholesale nuclear positioning events in migrating and dividing cells, chromosome dynamics during meiosis, and mechanotransduction. LINC complexes consist of outer (KASH (Klarsicht, ANC-1, and Syne homology)) and inner (SUN (Sad1, UNC-84)) nuclear membrane proteins. KASH proteins interact with the cytoskeleton in the cytoplasm and SUN proteins in the perinuclear space of the NE. In the nucleoplasm, SUN proteins interact with A-type nuclear lamins and chromatin-binding proteins. Recent structural insights into the KASH-SUN interaction have generated several questions regarding how LINC complex assembly and function might be regulated within the perinuclear space. Here we discuss potential LINC regulatory mechanisms and focus on the potential role of AAA+ (ATPases associated with various cellular activities) protein, torsinA, as a LINC complex regulator within the NE. We also examine how defects in LINC complex regulation by torsinA may contribute to the pathogenesis of the human neurological movement disorder, DYT1 dystonia.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
36
|
Torsin ATPases: structural insights and functional perspectives. Curr Opin Cell Biol 2016; 40:1-7. [PMID: 26803745 DOI: 10.1016/j.ceb.2016.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.
Collapse
|
37
|
Serrano JB, da Cruz E Silva OAB, Rebelo S. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features. MEMBRANES 2016; 6:membranes6010008. [PMID: 26784240 PMCID: PMC4812414 DOI: 10.3390/membranes6010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
38
|
Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. eLife 2016; 5:e17983. [PMID: 27490483 PMCID: PMC4999309 DOI: 10.7554/elife.17983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
Collapse
Affiliation(s)
- F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
39
|
Abstract
Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.
Collapse
Affiliation(s)
- April E Rose
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Rebecca S H Brown
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Christian Schlieker
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and.,b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
40
|
Goodchild RE, Buchwalter AL, Naismith TV, Holbrook K, Billion K, Dauer WT, Liang CC, Dear ML, Hanson PI. Access of torsinA to the inner nuclear membrane is activity dependent and regulated in the endoplasmic reticulum. J Cell Sci 2015; 128:2854-65. [PMID: 26092934 DOI: 10.1242/jcs.167452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
TorsinA (also known as torsin-1A) is a membrane-embedded AAA+ ATPase that has an important role in the nuclear envelope lumen. However, most torsinA is localized in the peripheral endoplasmic reticulum (ER) lumen where it has a slow mobility that is incompatible with free equilibration between ER subdomains. We now find that nuclear-envelope-localized torsinA is present on the inner nuclear membrane (INM) and ask how torsinA reaches this subdomain. The ER system contains two transmembrane proteins, LAP1 and LULL1 (also known as TOR1AIP1 and TOR1AIP2, respectively), that reversibly co-assemble with and activate torsinA. Whereas LAP1 localizes on the INM, we show that LULL1 is in the peripheral ER and does not enter the INM. Paradoxically, interaction between torsinA and LULL1 in the ER targets torsinA to the INM. Native gel electrophoresis reveals torsinA oligomeric complexes that are destabilized by LULL1. Mutations in torsinA or LULL1 that inhibit ATPase activity reduce the access of torsinA to the INM. Furthermore, although LULL1 binds torsinA in the ER lumen, its effect on torsinA localization requires cytosolic-domain-mediated oligomerization. These data suggest that LULL1 oligomerizes to engage and transiently disassemble torsinA oligomers, and is thereby positioned to transduce cytoplasmic signals to the INM through torsinA.
Collapse
Affiliation(s)
- Rose E Goodchild
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - Abigail L Buchwalter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Kristen Holbrook
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Karolien Billion
- VIB Centre for the Biology of Disease and KU Leuven, Department of Human Genetics, Campus Gasthuisberg, Leuven 3000, Belgium
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chun-Chi Liang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary Lynn Dear
- Department of Biochemistry, Cell and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
41
|
Kim AY, Seo JB, Kim WT, Choi HJ, Kim SY, Morrow G, Tanguay RM, Steller H, Koh YH. The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics 2015; 16:338. [PMID: 25903460 PMCID: PMC4415242 DOI: 10.1186/s12864-015-1518-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 04/10/2015] [Indexed: 01/11/2023] Open
Abstract
Background Dystonia1 (DYT1) dystonia is caused by a glutamic acid deletion (ΔE) mutation in the gene encoding Torsin A in humans (HTorA). To investigate the unknown molecular and cellular mechanisms underlying DYT1 dystonia, we performed an unbiased proteomic analysis. Results We found that the amount of proteins and transcripts of an Endoplasmic reticulum (ER) resident chaperone Heat shock protein cognate 3 (HSC3) and a mitochondria chaperone Heat Shock Protein 22 (HSP22) were significantly increased in the HTorAΔE– expressing brains compared to the normal HTorA (HTorAWT) expressing brains. The physiological consequences included an increased susceptibility to oxidative and ER stress compared to normal HTorAWT flies. The alteration of transcripts of Inositol-requiring enzyme-1 (IRE1)-dependent spliced X box binding protein 1(Xbp1), several ER chaperones, a nucleotide exchange factor, Autophagy related protein 8b (ATG8b) and components of the ER associated degradation (ERAD) pathway and increased expression of the Xbp1-enhanced Green Fluorescence Protein (eGFP) in HTorAΔE brains strongly indicated the activation of the unfolded protein response (UPR). In addition, perturbed expression of the UPR sensors and inducers in the HTorAΔEDrosophila brains resulted in a significantly reduced life span of the flies. Furthermore, the types and quantities of proteins present in the anti-HSC3 positive microsomes in the HTorAΔE brains were different from those of the HTorAWT brains. Conclusion Taken together, these data show that HTorAΔE in Drosophila brains may activate the UPR and increase the expression of HSP22 to compensate for the toxic effects caused by HTorAΔE in the brains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1518-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A-Young Kim
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Jong Bok Seo
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Won-Tae Kim
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Republic of Korea.
| | - Hee Jeong Choi
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Soo-Young Kim
- Korea Basic Science Institute, Sungbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Genevieve Morrow
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Robert M Tanguay
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Qc, G1V 0A6, Canada.
| | - Hermann Steller
- Howard Hughes Medical Institute, the Rockefeller University, New York, NY, 10065, USA.
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, 1605-4 Gwanyangdong, Dongan-gu, Anyang, Gyeonggido, 431-060, Republic of Korea. .,Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| |
Collapse
|
42
|
Li H, Wu HC, Liu Z, Zacchi LF, Brodsky JL, Zolkiewski M. Intracellular complexes of the early-onset torsion dystonia-associated AAA+ ATPase TorsinA. SPRINGERPLUS 2014; 3:743. [PMID: 25674472 PMCID: PMC4320221 DOI: 10.1186/2193-1801-3-743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/09/2014] [Indexed: 01/25/2023]
Abstract
A single GAG codon deletion in the gene encoding torsinA is linked to most cases of early-onset torsion dystonia. TorsinA is an ER-localized membrane-associated ATPase from the AAA+ superfamily with an unknown biological function. We investigated the formation of oligomeric complexes of torsinA in cultured mammalian cells and found that wild type torsinA associates into a complex with a molecular weight consistent with that of a homohexamer. Interestingly, the dystonia-linked variant torsinAΔE displayed a reduced propensity to form the oligomers compared to the wild type protein. We also discovered that the deletion of the N-terminal membrane-associating region of torsinA abolished oligomer formation. Our results demonstrate that the dystonia-linked mutation in the torsinA gene produces a protein variant that is deficient in maintaining its oligomeric state and suggest that ER membrane association is required to stabilize the torsinA complex.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA
| | - Hui-Chuan Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA
| | - Zhonghua Liu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA ; Department of Embryology, Carnegie Institution, Baltimore, MD 21218 USA
| | - Lucia F Zacchi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
43
|
Abstract
Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin-activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism.
Collapse
|
44
|
Harata NC. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:260. [PMID: 25279252 PMCID: PMC4175402 DOI: 10.7916/d8js9nr2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/25/2014] [Indexed: 12/01/2022]
Abstract
Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.
Collapse
Affiliation(s)
- N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
45
|
Abstract
Isolated inherited dystonia-formerly referred to as primary dystonia-is characterized by abnormal motor functioning of a grossly normal appearing brain. The disease manifests as abnormal involuntary twisting movements. The absence of overt neuropathological lesions, while intriguing, has made it particularly difficult to unravel the pathogenesis of isolated inherited dystonia. The explosion of genetic techology enabling the identification of the causative gene mutations is transforming our understanding of dystonia pathogenesis, as the molecular, cellular and circuit level consequences of these mutations are identified in experimental systems. Here, I review the clinical genetics and cell biology of three forms of inherited dystonia for which the causative mutation is known: DYT1 (TOR1A), DYT6 (THAP1), DYT25 (GNAL).
Collapse
Affiliation(s)
- William Dauer
- Department of Neurology, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109-220, USA,
| |
Collapse
|
46
|
Sosa BA, Demircioglu FE, Chen JZ, Ingram J, Ploegh HL, Schwartz TU. How lamina-associated polypeptide 1 (LAP1) activates Torsin. eLife 2014; 3:e03239. [PMID: 25149450 PMCID: PMC4358337 DOI: 10.7554/elife.03239] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) resides at the nuclear envelope and interacts with Torsins, poorly understood endoplasmic reticulum (ER)-localized AAA+ ATPases, through a conserved, perinuclear domain. We determined the crystal structure of the perinuclear domain of human LAP1. LAP1 possesses an atypical AAA+ fold. While LAP1 lacks canonical nucleotide binding motifs, its strictly conserved arginine 563 is positioned exactly where the arginine finger of canonical AAA+ ATPases is found. Based on modeling and electron microscopic analysis, we propose that LAP1 targets Torsin to the nuclear envelope by forming an alternating, heterohexameric (LAP1-Torsin)3 ring, in which LAP1 acts as the Torsin activator. The experimental data show that mutation of arginine 563 in LAP1 reduces its ability to stimulate TorsinA ATPase hydrolysis. This knowledge may help scientists understand the etiology of DYT1 primary dystonia, a movement disorder caused by a single glutamate deletion in TorsinA.
Collapse
Affiliation(s)
- Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - James Z Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
47
|
Liang CC, Tanabe LM, Jou S, Chi F, Dauer WT. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest 2014; 124:3080-92. [PMID: 24937429 DOI: 10.1172/jci72830] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Lack of a preclinical model of primary dystonia that exhibits dystonic-like twisting movements has stymied identification of the cellular and molecular underpinnings of the disease. The classical familial form of primary dystonia is caused by the DYT1 (ΔE) mutation in TOR1A, which encodes torsinA, AAA⁺ ATPase resident in the lumen of the endoplasmic reticular/nuclear envelope. Here, we found that conditional deletion of Tor1a in the CNS (nestin-Cre Tor1a(flox/-)) or isolated CNS expression of DYT1 mutant torsinA (nestin-Cre Tor1a(flox/ΔE)) causes striking abnormal twisting movements. These animals developed perinuclear accumulation of ubiquitin and the E3 ubiquitin ligase HRD1 in discrete sensorimotor regions, followed by neurodegeneration that was substantially milder in nestin-Cre Tor1a(flox/ΔE) compared with nestin-Cre Tor1a(flox/-) animals. Similar to the neurodevelopmental onset of DYT1 dystonia in humans, the behavioral and histopathological abnormalities emerged and became fixed during CNS maturation in the murine models. Our results establish a genetic model of primary dystonia that is overtly symptomatic, and link torsinA hypofunction to neurodegeneration and abnormal twisting movements. These findings provide a cellular and molecular framework for how impaired torsinA function selectively disrupts neural circuits and raise the possibility that discrete foci of neurodegeneration may contribute to the pathogenesis of DYT1 dystonia.
Collapse
|
48
|
Maric M, Haugo AC, Dauer W, Johnson D, Roller RJ. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins. Virology 2014; 460-461:128-37. [PMID: 25010278 DOI: 10.1016/j.virol.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022]
Abstract
Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway.
Collapse
Affiliation(s)
- Martina Maric
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Alison C Haugo
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - William Dauer
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Johnson
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201, USA
| | - Richard J Roller
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Zacchi LF, Wu HC, Bell SL, Millen L, Paton AW, Paton JC, Thomas PJ, Zolkiewski M, Brodsky JL. The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J Biol Chem 2014; 289:12727-47. [PMID: 24627482 PMCID: PMC4007462 DOI: 10.1074/jbc.m113.529123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA(+) ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.
Collapse
Affiliation(s)
- Lucía F. Zacchi
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hui-Chuan Wu
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Samantha L. Bell
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Millen
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Adrienne W. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Philip J. Thomas
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Michal Zolkiewski
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Jeffrey L. Brodsky
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
50
|
Kayman-Kurekci G, Talim B, Korkusuz P, Sayar N, Sarioglu T, Oncel I, Sharafi P, Gundesli H, Balci-Hayta B, Purali N, Serdaroglu-Oflazer P, Topaloglu H, Dincer P. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul Disord 2014; 24:624-33. [PMID: 24856141 DOI: 10.1016/j.nmd.2014.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Abstract
We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle.
Collapse
Affiliation(s)
- Gulsum Kayman-Kurekci
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, Bilkent, 06800 Ankara, Turkey
| | - Turkan Sarioglu
- Department of Histology and Embryology, Istanbul University, Istanbul Medical Faculty, Capa, 34093 Istanbul, Turkey
| | - Ibrahim Oncel
- Department of Pediatrics, Neurology Unit, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Parisa Sharafi
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Hulya Gundesli
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Nuhan Purali
- Department of Biophysics, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Piraye Serdaroglu-Oflazer
- Department of Neurology, Istanbul University, Istanbul Medical Faculty, Capa, 34093 Istanbul, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Neurology Unit, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey.
| |
Collapse
|