1
|
Huang YK, Chang KC, Li CY, Lieu AS, Lin CL. AKR1B1 Represses Glioma Cell Proliferation through p38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr Issues Mol Biol 2023; 45:3391-3405. [PMID: 37185746 PMCID: PMC10136867 DOI: 10.3390/cimb45040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
3
|
Bhattacharyya R, Gupta P, Bandyopadhyay SK, Patro BS, Chattopadhyay S. Coralyne, a protoberberine alkaloid, causes robust photosenstization of cancer cells through ATR-p38 MAPK-BAX and JAK2-STAT1-BAX pathways. Chem Biol Interact 2018; 285:27-39. [PMID: 29486184 DOI: 10.1016/j.cbi.2018.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) provides an effective cancer treatment option but it requires sufficient cellular oxygen concentration to exert its photosensitizing effects. Due to hypoxic nature of most tumors, widespread clinical application of PDT is restricted and warrants development of photosensitizers which can kill cancer cells in ROS independent manner. Previously, we reported significant enhancement of the anti-cancer property of coralyne in presence of ultraviolet-A (UVA) light exposure against several human carcinoma cell lines. This study aimed at unravelling molecular cascades of events in CUVA treatment (coralyne and UVA light)-mediated photosensitization of human skin cancer. The CUVA-treatment caused robust apoptosis of A431 cancer cells, primarily through mitochondrial and lysosomal dysfunctions. Silencing of BAX conferred a significant protection against CUVA-induced apoptosis. Both lysosomal proteases and caspase-8 activation contributed to BID cleavage. Further, our results revealed that a dual signaling axis e.g., ATR-p38 MAPK and JAK2-STAT1 pathways functioned upstream of BAX activation in apoptosis response. Moreover, transient silencing of ATR and pharmacological inhibition of p38-MAPK or JAK2 significantly abolished the effect of CUVA treatment induced BAX expression and cell death, linking the extrinsic and intrinsic pathways with the observed cell death. Our data suggest that coralyne, which is known topoisomerase-I inhibitor, may be an attractive agent for photo-chemotherapeutic treatment of human skin cancers.
Collapse
Affiliation(s)
- Rahul Bhattacharyya
- Dept. of Biochemistry, KPC Medical College & Hospital, Jadavpur, 700032, Kolkata, India
| | - Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6724585. [PMID: 27123155 PMCID: PMC4829717 DOI: 10.1155/2016/6724585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023]
Abstract
We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation.
Collapse
|
5
|
Xiang Y, Yan H, Zhou J, Zhang Q, Hanley G, Caudle Y, LeSage G, Zhang X, Yin D. The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage. PLoS One 2015; 10:e0123447. [PMID: 25885582 PMCID: PMC4401452 DOI: 10.1371/journal.pone.0123447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing immunosuppression in restraint-stressed mice.
Collapse
Affiliation(s)
- Yanxiao Xiang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
- Department of Pharmacology, Shandong University School of Medicine, Jinan, People's Republic of China
| | - Hui Yan
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
| | - Jun Zhou
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
| | - Gregory Hanley
- Laboratory Animal Resources, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
| | - Gene LeSage
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
| | - Xiumei Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, People's Republic of China
- * E-mail: (XZ); (DY)
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, United States of America
- * E-mail: (XZ); (DY)
| |
Collapse
|
6
|
Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury. ASIAN PAC J TROP MED 2015; 8:48-52. [PMID: 25901924 DOI: 10.1016/s1995-7645(14)60186-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/15/2014] [Accepted: 12/20/2014] [Indexed: 11/22/2022] Open
|
7
|
Tsatsaronis JA, Walker MJ, Sanderson-Smith ML. Host responses to group a streptococcus: cell death and inflammation. PLoS Pathog 2014; 10:e1004266. [PMID: 25165887 PMCID: PMC4148426 DOI: 10.1371/journal.ppat.1004266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.
Collapse
Affiliation(s)
- James A. Tsatsaronis
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- * E-mail:
| |
Collapse
|
8
|
Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis 2013; 4:e512. [PMID: 23449448 PMCID: PMC3734825 DOI: 10.1038/cddis.2013.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potent and selective proteasome inhibitor bortezomib has shown remarkable antitumor activity and is now entering clinical trials for several cancers. However, the molecular mechanisms by which bortezomib induces cytotoxicity in ovarian cancer cells still remain unclear. In this study, we show that bortezomib induced apoptosis, which was demonstrated by the downregulation of antiapoptotic molecules (Bcl-2, Bcl-XL, p-Bad, and p-AKT) and the upregulation of proapoptotic proteins (p21, p27, and cleaved-Bid) in ovarian cancer cell lines. Moreover, bortezomib stimulates Janus kinase (JAK) phosphorylation and activates heat-shock transcription factor-1 (HSF-1) and heat-shock protein 70 (HSP70), ultimately leading to signal transducer and activator of transcription 1 (STAT1) phosphorylation. Phosphorylated STAT1 partially counteracted apoptosis induced by bortezomib in cancer cells. These findings suggest that the antitumor activity of bortezomib in ovarian cancer can be improved by inhibiting bortezomib-induced STAT1 phosphorylation. This effect can be achieved by STAT1 knockdown, HSP70 knockdown, JAK inhibition, or the addition of cisplatin, one of the most commonly used anticancer drugs. These results provide the first evidence that STAT1 phosphorylation can play a role in bortezomib resistance by exerting antiapoptotic effects. They also suggest the possibility to abolish or reduce bortezomib chemoresistance in ovarian cancer by the addition of cisplatin or JAK inhibitors.
Collapse
|
9
|
Massaoka MH, Matsuo AL, Figueiredo CR, Farias CF, Girola N, Arruda DC, Scutti JAB, Romoff P, Favero OA, Ferreira MJP, Lago JHG, Travassos LR. Jacaranone induces apoptosis in melanoma cells via ROS-mediated downregulation of Akt and p38 MAPK activation and displays antitumor activity in vivo. PLoS One 2012; 7:e38698. [PMID: 22701695 PMCID: PMC3368838 DOI: 10.1371/journal.pone.0038698] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malignant melanoma is a deadly type of metastatic skin cancer with increased incidence over the past 30 years. Despite the advanced knowledge on the biology, immunobiology and molecular genetics of melanoma, the alternatives of treatment are limited with poor prognosis. On clinical trials, natural products and among them redox-active quinones have been tested in the attempt to control the growth of cancer cells. Recently, we isolated jacaranone from Pentacalia desiderabilis, a benzoquinone derivative that showed a broad antitumor activity and protective anti-melanoma effect in a syngeneic model. The purified substance is active at micromolar concentrations, is not hemolytic, and is not toxic in naïve mice. METHODOLOGY/PRINCIPAL FINDINGS The jacaranone antitumor activity was shown against several human cancer cell lines in vitro. Moreover, the induction of apoptosis in murine melanoma cells and jacaranone antitumor activity in vivo, in a melanoma experimental model, were also shown. Jacaranone renders antiproliferative and proapoptotic responses in tumor cells, by acting on Akt and p38 MAPK signaling pathways through generation of reactive oxygen species (ROS). The free radical scavenger N-acetyl-cysteine (NAC) was able to completely suppress cell death induced by jacaranone as it blocked Akt downregulation, p38 MAPK activation as well as upregulation of proapoptotic Bax. Notably, treatment of melanoma growing subcutaneously in mice with jacaranone significantly extended the mean survival times in a dose-dependent manner. CONCLUSIONS/SIGNIFICANCE The results provide evidence for the mechanisms of action of jacaranone and emphasize the potential use of this quinone for the treatment of melanoma.
Collapse
Affiliation(s)
- Mariana H. Massaoka
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alisson L. Matsuo
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Carlos R. Figueiredo
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Camyla F. Farias
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Natália Girola
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Denise C. Arruda
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge A. B. Scutti
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Paulete Romoff
- Centro de Ciências e Humanidades e Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - Oriana A. Favero
- Centro de Ciências e Humanidades e Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - Marcelo J. P. Ferreira
- Centro de Ciências e Humanidades e Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, São Paulo, Brazil
| | - João H. G. Lago
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Luiz R. Travassos
- Unidade de Oncologia Experimental, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Zhang S, Rahman M, Zhang S, Wang Y, Herwald H, Jeppsson B, Thorlacius H. p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury. J Leukoc Biol 2011; 91:137-145. [DOI: 10.1189/jlb.0511268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
ABSTRACT
M1 serotype of Streptococcus pyogenes can cause STSS and acute lung damage. Herein, the purpose was to define the role of p38 MAPK signaling in M1 protein-induced pulmonary injury. Male C57BL/6 mice were treated with specific p38 MAPK inhibitors (SB 239063 and SKF 86002) prior to M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Flow cytometry was used to determine Mac-1 expression. Phosphorylation and activity of p38 MAPK were determined by immunoprecipitation and Western blot. IVM was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. M1 protein challenge increased phosphorylation and activity of p38 MAPK in the lung, which was inhibited by SB 239063 and SKF 86002. Inhibition of p38 MAPK activity decreased M1 protein-induced infiltration of neutrophils, edema, and CXC chemokine formation in the lung, as well as Mac-1 up-regulation on neutrophils. IVM showed that p38 MAPK inhibition reduced leukocyte rolling and adhesion in the pulmonary microvasculature of M1 protein-treated mice. Our results indicate that p38 MAPK signaling regulates neutrophil infiltration in acute lung injury induced by streptococcal M1 protein. Moreover, p38 MAPK activity controls CXC chemokine formation in the lung, as well as neutrophil expression of Mac-1 and recruitment in the pulmonary microvasculature. In conclusion, these findings suggest that targeting the p38 MAPK signaling pathway may open new opportunities to protect against lung injury in streptococcal infections.
Collapse
Affiliation(s)
- Songen Zhang
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| | - Su Zhang
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| | - Yongzhi Wang
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| | - Heiko Herwald
- Section for Clinical and Experimental Infection Medicine, Lund University , Malmö, Sweden
| | - Bengt Jeppsson
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University , Malmö, Sweden
| |
Collapse
|
11
|
He L, Li H, Chen L, Miao J, Jiang Y, Zhang Y, Xiao Z, Hanley G, Li Y, Zhang X, LeSage G, Peng Y, Yin D. Toll-like receptor 9 is required for opioid-induced microglia apoptosis. PLoS One 2011; 6:e18190. [PMID: 21559519 PMCID: PMC3084705 DOI: 10.1371/journal.pone.0018190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/28/2011] [Indexed: 11/30/2022] Open
Abstract
Opioids have been widely applied in clinics as one of the most potent pain
relievers for centuries, but their abuse has deleterious physiological effects
beyond addiction. However, the underlying mechanism by which microglia in
response to opioids remains largely unknown. Here we show that morphine induces
the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity
and inflammation. Interestingly, TLR9 deficiency significantly inhibited
morphine-induced apoptosis in microglia. Similar results were obtained when
endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN.
Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated
morphine-induced microglia apoptosis in wild type microglia. Morphine caused a
dramatic decrease in Bcl-2 level but increase in Bax level in wild type
microglia, but not in TLR9 deficient microglia. In addition, morphine treatment
failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase
kinase 3/6 (MKK3/6), the upstream MAPK kinase of p38 MAPK, in either TLR9
deficient or µ-opioid receptor (µOR) deficient primary microglia,
suggesting an involvement of MAPK and µOR in morphine-mediated TLR9
signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis
appears to require μOR. Collectively, these results reveal that opioids
prime microglia to undergo apoptosis through TLR9 and µOR as well. Taken
together, our data suggest that inhibition of TLR9 and/or blockage of µOR
is capable of preventing opioid-induced brain damage.
Collapse
Affiliation(s)
- Lei He
- Department of Neurology, Sun Yat-sen Memorial
Hospital, Sun Yat-sen University, Guangzhou, People's Republic of
China
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
| | - Hui Li
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
| | - Lin Chen
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
- Department of Pharmacology, Shandong
University School of Medicine, Jinan, People's Republic of
China
| | - Junying Miao
- Institute of Developmental Biology, Shandong
University School of Life Science, Jinan, People's Republic of
China
| | - Yulin Jiang
- Department of Chemistry, East Tennessee State
University, Johnson City, Tennessee, United States of America
| | - Yi Zhang
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for
Cancer Research, National Cancer Institute at Frederick, Maryland, United States
of America
| | - Gregory Hanley
- Division of Laboratory Animal Resources,
College of Medicine, East Tennessee State University, Johnson City, Tennessee,
United States of America
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial
Hospital, Sun Yat-sen University, Guangzhou, People's Republic of
China
| | - Xiumei Zhang
- Department of Pharmacology, Shandong
University School of Medicine, Jinan, People's Republic of
China
| | - Gene LeSage
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
- * E-mail: (DY); (YP); (GL)
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial
Hospital, Sun Yat-sen University, Guangzhou, People's Republic of
China
- * E-mail: (DY); (YP); (GL)
| | - Deling Yin
- Department of Internal Medicine, College of
Medicine, East Tennessee State University, Johnson City, Tennessee, United
States of America
- * E-mail: (DY); (YP); (GL)
| |
Collapse
|
12
|
Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, Sha JH, He ZG, Chen Q. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem 2011; 286:8231-8239. [PMID: 21205827 DOI: 10.1074/jbc.m110.145888] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SR-A (class A macrophage scavenger receptor) is a transmembrane receptor that can bind many different ligands, including modified lipoproteins that are relevant to the development of vascular diseases. However, the precise endocytic pathways of SR-A/mediated ligands internalization are not fully characterized. In this study, we show that the SR-A/ligand complex can be endocytosed by both clathrin- and caveolae-dependent pathways. Internalizations of SR-A-lipoprotein (such as acLDL) complexes primarily go through clathrin-dependent endocytosis. In contrast, macrophage apoptosis triggered by SR-A-fucoidan internalization requires caveolae-dependent endocytosis. The caveolae-dependent process activates p38 kinase and JNK signaling, whereas the clathrin-mediated endocytosis elicits ERK signaling. Our results suggest that different SR-A endocytic pathways have distinct functional consequences due to the activation of different signaling cascades in macrophages.
Collapse
Affiliation(s)
- Xu-Dong Zhu
- From the Institute of Reproductive Medicine and; Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Yan Zhuang
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Jing-Jing Ben
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Ling-Ling Qian
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Han-Peng Huang
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Jia-Hao Sha
- From the Institute of Reproductive Medicine and
| | - Zhi-Gang He
- the Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qi Chen
- From the Institute of Reproductive Medicine and; Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and.
| |
Collapse
|
13
|
Glycine-induced cytoprotection is mediated by ERK1/2 and AKT in renal cells with ATP depletion. Eur J Cell Biol 2010; 90:333-41. [PMID: 21122942 DOI: 10.1016/j.ejcb.2010.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 10/03/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022] Open
Abstract
Glycine receptor (GlyR) activation by glycine protects cells against ATP depletion. However, the underlying mechanisms remain unclear. To define signaling pathways responsible for the GlyR mediated cytoprotection, we examined the phosphorylation status of key kinases signaling pathways in Madin-Darby canine kidney (MDCK) cells. Our results indicated that growing the ATP-depleted MDCK cells in glycine-containing media increased the level of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2), Ets-like transcription factor-1 (Elk1), AKT, and Forkhead box O-class 1 (FoxO1), decreased the level of phosphorylated p38 mitogen-activated protein kinase, while having little effect on the phosphorylation status of c-Jun N-terminal kinase 1 and 2. Similar phosphorylation changes in these molecules took place in the GlyRα1 stably expressing HEK-293 cell. We also showed that treating MDCK cells with ERK1/2 inhibitor PD98059 or AKT inhibitor LY294002 diminished cytoprotection against cell death by glycine, as determined by assessment of lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide activity. In contrast, treatment with p38 inhibitor SB203580 enhanced the glycine-induced cytoprotection. Finally, RNAi-mediated silencing of GlyRα1 abolished the glycine-induced changes in phosphorylation status of the above kinases in ATP-depleted cells. Taken together, our results suggest that the ERK1/2 and AKT signaling pathways are involved in the glycine-GlyR protection of MDCK cells against death induced by ATP depletion.
Collapse
|
14
|
Xie N, Wang C, Lin Y, Li H, Chen L, Zhang T, Sun Y, Zhang Y, Yin D, Chi Z. The role of p38 MAPK in valproic acid induced microglia apoptosis. Neurosci Lett 2010; 482:51-6. [PMID: 20621161 DOI: 10.1016/j.neulet.2010.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
Abstract
Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, induces apoptosis in microglia, but the underlying mechanism by which microglia apoptosis in response to VPA is not yet known. In this study, we found that the mitochondrial pathway played an important role in VPA-induced apoptosis in both BV-2 microglia and mouse primary microglial cells. In addition, VPA increased the level of phospho-p38 mitogen-activated protein kinase (MAPK), but had no effects on phospho-ERK and phospho-JNK MAPKs. Moreover, p38 inhibitor SB203580 strongly inhibited VPA-induced apoptosis and caspase-3 activation. Taken together, our results clearly demonstrated that VPA could induce apoptosis of microglia via p38 MAPK and mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Nanchang Xie
- Department of Neurology, Qilu Hospital, Shandong University, 44#, Wenhua Xi Road, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis. Mol Cell Biochem 2010; 343:271-9. [PMID: 20567883 DOI: 10.1007/s11010-010-0522-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/05/2010] [Indexed: 02/08/2023]
Abstract
We identify integrin α(v)β(3) and Fas as receptors for the streptococcal pyrogenic exotoxin B (SPE B), and G308S (SPE B mutant, glycine at residue 308 is changed to serine), which interacts with Fas only, in our previous study. Here, we explore the signal pathways that regulate proapoptotic protein expression after SPE B stimulation. We find that both SPE B and G308S can stimulate the serine phosphorylation of p53, and p53 phosphorylation is inhibited by the anti-Fas antibody but not by anti-α(V)β(3) antibody. p38 inhibitor and siRNA decrease the activation and translocation of p53 into the nucleus, which executes its transcription activity. These results indicate that after SPE B treatment, p53 is activated and p38 is the upstream of p53. p38 siRNA also decreases the binding of p53 to the bax promoter and interferes with the association of p53 and STAT1. p53, p38, and STAT1 siRNAs downregulate SPE B-induced Bax expression. This shows that SPE B activates the bax promoter via p38/p53 signal pathways through the Fas receptor, and that STAT1 acts as a coactivator of p53. In addition, p38 and p53 siRNAs inhibit SPE B-induced apoptosis. This is consistent with the findings that SPE B upregulates Bax expression through p38/p53 signal pathways that enhance cell apoptosis.
Collapse
|
16
|
Xie N, Li H, Wei D, LeSage G, Chen L, Wang S, Zhang Y, Chi L, Ferslew K, He L, Chi Z, Yin D. Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology 2010; 59:444-51. [PMID: 20600172 DOI: 10.1016/j.neuropharm.2010.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/23/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022]
Abstract
Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. We previously reported that opioids inhibit cell growth and trigger apoptosis in lymphocytes. However, the underlying mechanism by which microglia apoptosis in response to opioids is not yet known. In this study, we show that morphine induces microglia apoptosis and caspase-3 activation in an opioid-receptor dependent manner. Morphine decreased the levels of microglia phosphorylated Akt (p-Akt) and p-GSK-3β (glycogen synthase kinase-3 beta) in an opioid-receptor dependent manner. More interestingly, GSK-3β inhibitor SB216763 significantly increases morphine-induced apoptosis in both BV-2 microglia and mouse primary microglial cells. Moreover, co-treatment of microglia with SB216763 and morphine led to a significant synergistic effect on the level of phospho-p38 mitogen-activated protein kinase (MAPK). In addition, inhibition of p38 MAPK by its specific inhibitor SB203580 significantly inhibited morphine-induced apoptosis and caspase-3 activation. Taken together, our data clearly demonstrates that morphine-induced apoptosis in microglial cells, which is mediated via GSK-3β and p38 MAPK pathways.
Collapse
Affiliation(s)
- Nanchang Xie
- Department of Neurology, Qilu Hospital, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|