1
|
Trębińska-Stryjewska A, Wakula M, Chmielarczyk M, Grzybowska EA. HAX1: A versatile, intrinsically disordered regulatory protein. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119538. [PMID: 37454914 DOI: 10.1016/j.bbamcr.2023.119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
HAX1 is a relatively small, ubiquitously expressed, predominantly mitochondrial, intrinsically disordered protein. It has been implicated in the regulation of apoptosis, cell migration, calcium cycling, proteostasis, angiogenesis, autophagy and translation. A wide spectrum of functions, numerous interactions and still elusive molecular mechanisms of action make HAX1 an intriguing subject of research. Moreover, HAX1 is involved in the pathogenesis of diseases; its deficiency leads to neutropenia and its overexpression is associated with cancer. In this review we aim to describe the characteristics of HAX1 gene and protein, and comprehensively discuss its multiple functions, highlighting the emerging role of HAX1 in protection from stress and apoptosis through maintaining cellular proteostasis and homeostasis.
Collapse
Affiliation(s)
| | - Maciej Wakula
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ewa A Grzybowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
2
|
Xie FL, Wang Y, Zhu JW, Xu HH, Guo QF, Wu Y, Liu SH. Anticancer mechanism studies of iridium(III) complexes inhibiting osteosarcoma HOS cells proliferation. J Inorg Biochem 2022; 237:112011. [PMID: 36252336 DOI: 10.1016/j.jinorgbio.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 μM,10.5 ± 1.8 μM and 7.4 ± 0.4 μM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.
Collapse
Affiliation(s)
- Fu-Li Xie
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jian-Wei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Hui-Hua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qi-Feng Guo
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Si-Hong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| |
Collapse
|
3
|
Fadeel B, Garwicz D, Carlsson G, Sandstedt B, Nordenskjöld M. Kostmann disease and other forms of severe congenital neutropenia. Acta Paediatr 2021; 110:2912-2920. [PMID: 34160857 DOI: 10.1111/apa.16005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Congenital neutropenia with autosomal recessive inheritance was first described by the Swedish paediatrician Rolf Kostmann who coined the term 'infantile genetic agranulocytosis'. The condition is now commonly referred to as Kostmann disease. These patients display a maturation arrest of the myelopoiesis in the bone marrow and reduced neutrophil numbers and suffer from recurrent, often life-threatening infections. The molecular mechanism underlying congenital neutropenia has been intensively investigated, and mutations in genes that impinge on programmed cell death have been identified. The present review provides an overview of these studies.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Daniel Garwicz
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Göran Carlsson
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Bengt Sandstedt
- Department of Woman and Child Health Karolinska University Hospital Stockholm Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
4
|
Souto XM, Ramos LS, Oliveira SSC, Branquinha MH, Santos ALS. The serine peptidase inhibitor N-ρ-tosyl-l-phenylalanine chloromethyl ketone (TPCK) affects the cell biology of Candida haemulonii species complex. Fungal Biol 2020; 125:378-388. [PMID: 33910679 DOI: 10.1016/j.funbio.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022]
Abstract
Candida haemulonii species complex (C. haemulonii, C. haemulonii var. vulnera and Candida duobushaemulonii) is composed by emerging and multidrug-resistant (MDR) yeasts. Candidiasis, the disease caused by these species, is difficult to treat and culminates in clinical failures and patient death. It is well-known that Candida peptidases play important roles in the fungus-host interactions, and hence these enzymes are promising targets for developing new antifungal drugs. Recently, serine-type peptidases were described in clinical isolates of C. haemulonii complex with the ability to cleave relevant key host proteins. Herein, the effects of serine peptidase inhibitors (SPIs) on the cell biology of this fungal complex were evaluated. Initially, eight distinct SPIs (phenylmethylsulfonyl fluoride - PMSF, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride - AEBSF, N-α-tosyl-l-lysine chloromethyl ketone hydrochloride - TLCK, N-p-tosyl-l-phenylalanine chloromethyl ketone - TPCK, simeprevir, boceprevir, danoprevir and telaprevir) were tested on the fungal growth. TPCK showed the best efficacy in controlling cell proliferation, being selected for the following experiments. This SPI induced changes in the architecture of yeast cells, as observed by scanning electron microscopy, besides injuries at the plasma membrane and reduction in the ergosterol content. TPCK also diminished the ability of yeasts to adhere to abiotic (polystyrene and glass) and biotic (murine macrophages) surfaces in a typically concentration-dependent manner. In addition, the 24 h-treatment of the mature biofilm promoted a decrease in biomass, viability and extracellular matrix. Altogether, our results highlight that SPIs may be promising new therapeutic agents in the treatment of candidiasis caused by emergent, opportunistic and MDR species forming the C. haemulonii complex.
Collapse
Affiliation(s)
- X M Souto
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - S S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - M H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - A L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Liang Z, Zhong Y, Meng L, Chen Y, Liu Y, Wu A, Li X, Wang M. HAX1 enhances the survival and metastasis of non-small cell lung cancer through the AKT/mTOR and MDM2/p53 signaling pathway. Thorac Cancer 2020; 11:3155-3167. [PMID: 32926529 PMCID: PMC7606027 DOI: 10.1111/1759-7714.13634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background HS‐1‐associated protein‐1 (HAX1) has been reported to be overexpressed in non‐small cell lung cancer (NSCLC) tissues. However, the underlying mechanism of HAX1 in NSCLC has not previously been demonstrated. The present study investigated the role and underlying mechanism of HAX1 in NSCLC. Methods The HAX1 expression were confirmed in NSCLC tissues through TCGA database and qRT‐PCR. Moreover, we performed qRT‐PCR, Western blotting, Transwell assays, TUNEL assays and so on to evaluate the role of HAX1 in A549 and H1299 cell lines. Results mRNA expression of HAX1 was overexpressed in NSCLC tissues compared to adjacent normal tissues according to The Cancer Genome Atlas (TCGA) database. QRT‐PCR assays showed that HAX1 mRNA expression was upregulated in NSCLC tissues. The high HAX1 mRNA levels were found to be positively associated with tumor size, TNM stage and lymphatic metastasis. Silencing of HAX1 promoted apoptosis and reduced invasion of A549 and H1299 cells by inhibiting the AKT/mTOR and MDM2/P53 signal pathway. AKT agonist SC79 could inhibit apoptosis and promote proliferation, migration and invasion of A549 and H1299 cells transfected with si‐HAX1. Conclusions The present study provided a better understanding of HAX1 mechanism in NSCLC and potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuan Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yi Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yahui Liu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Aihua Wu
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Mukherjee SP, Gupta G, Klöditz K, Wang J, Rodrigues AF, Kostarelos K, Fadeel B. Next-Generation Sequencing Reveals Differential Responses to Acute versus Long-Term Exposures to Graphene Oxide in Human Lung Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907686. [PMID: 32227449 DOI: 10.1002/smll.201907686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Numerous studies have addressed the biological impact of graphene-based materials including graphene oxide (GO), yet few have focused on long-term effects. Here, RNA sequencing is utilized to unearth responses of human lung cells to GO. To this end, the BEAS-2B cell line derived from normal human bronchial epithelium is subjected to repeated, low-dose exposures of GO (1 or 5 µg mL-1 ) for 28 days or to the equivalent, cumulative amount of GO for 48 h. Then, samples are analyzed by using the NovaSeq 6000 sequencing system followed by pathway analysis and gene ontology enrichment analysis of the differentially expressed genes. Significant differences are seen between the low-dose, long-term exposures and the high-dose, short-term exposures. Hence, exposure to GO for 48 h results in mitochondrial dysfunction. In contrast, exposure to GO for 28 days is characterized by engagement of apoptosis pathways with downregulation of genes belonging to the inhibitor of apoptosis protein (IAP) family. Validation experiments confirm that long-term exposure to GO affects the apoptosis threshold in lung cells, accompanied by a loss of IAPs. These studies reveal the sensitivity of RNA-sequencing approaches and show that acute exposure to GO is not a good predictor of the long-term effects of GO.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Govind Gupta
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Katharina Klöditz
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Artur Filipe Rodrigues
- Nanomedicine Laboratory, Faculty of Biology, Medical and Human Sciences, and National Graphene Institute, University of Manchester, Manchester, M13 9PT, UK
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medical and Human Sciences, and National Graphene Institute, University of Manchester, Manchester, M13 9PT, UK
| | - Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
7
|
Gandra RM, Silva LN, Souto XM, Sangenito LS, Cruz LPS, Braga-Silva LA, Gonçalves DS, Seabra SH, Branquinha MH, Santos ALS. The serine peptidase inhibitor TPCK induces several morphophysiological changes in the opportunistic fungal pathogen Candida parapsilosis sensu stricto. Med Mycol 2020; 57:1024-1037. [PMID: 30753649 DOI: 10.1093/mmy/myz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.
Collapse
Affiliation(s)
- Rafael M Gandra
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura N Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xênia M Souto
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas P S Cruz
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego S Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio H Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Tomkinson B. Tripeptidyl-peptidase II: Update on an oldie that still counts. Biochimie 2019; 166:27-37. [DOI: 10.1016/j.biochi.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
9
|
Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Sci Rep 2019; 9:4366. [PMID: 30867451 PMCID: PMC6416392 DOI: 10.1038/s41598-019-40579-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Systems biology is increasingly being applied in nanosafety research for observing and predicting the biological perturbations inflicted by exposure to nanoparticles (NPs). In the present study, we used a combined transcriptomics and proteomics approach to assess the responses of human monocytic cells to Au-NPs of two different sizes with three different surface functional groups, i.e., alkyl ammonium bromide, alkyl sodium carboxylate, or poly(ethylene glycol) (PEG)-terminated Au-NPs. Cytotoxicity screening using THP-1 cells revealed a pronounced cytotoxicity for the ammonium-terminated Au-NPs, while no cell death was seen after exposure to the carboxylated or PEG-modified Au-NPs. Moreover, Au-NR3+ NPs, but not the Au-COOH NPs, were found to trigger dose-dependent lethality in vivo in the model organism, Caenorhabditis elegans. RNA sequencing combined with mass spectrometry-based proteomics predicted that the ammonium-modified Au-NPs elicited mitochondrial dysfunction. The latter results were validated by using an array of assays to monitor mitochondrial function. Au-NR3+ NPs were localized in mitochondria of THP-1 cells. Moreover, the cationic Au-NPs triggered autophagy in macrophage-like RFP-GFP-LC3 reporter cells, and cell death was aggravated upon inhibition of autophagy. Taken together, these studies have disclosed mitochondria-dependent effects of cationic Au-NPs resulting in the rapid demise of the cells.
Collapse
|
10
|
Di Bucchianico S, Gliga AR, Åkerlund E, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part Fibre Toxicol 2018; 15:32. [PMID: 30016969 PMCID: PMC6050732 DOI: 10.1186/s12989-018-0268-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/05/2022] Open
Abstract
Background Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. Methods BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin V-FITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. Results NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. Conclusions This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity. Electronic supplementary material The online version of this article (10.1186/s12989-018-0268-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Åkerlund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Skoglund
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Feng X, Kwiecinska A, Rossmann E, Bottai M, Ishikawa T, Patarroyo M, Österborg A, Porwit A, Zheng C, Fadeel B. HAX-1 overexpression in multiple myeloma is associated with poor survival. Br J Haematol 2018; 185:179-183. [PMID: 29923187 DOI: 10.1111/bjh.15430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoli Feng
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kwiecinska
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eva Rossmann
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Taichi Ishikawa
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Porwit
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Chengyun Zheng
- Department of Haematology, Second Hospital, Shandong University, Jinan, China.,Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:71-82. [PMID: 29085973 DOI: 10.1007/s00210-017-1436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
Collapse
|
13
|
Gliga AR, Edoff K, Caputo F, Källman T, Blom H, Karlsson HL, Ghibelli L, Traversa E, Ceccatelli S, Fadeel B. Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci Rep 2017; 7:9284. [PMID: 28839176 PMCID: PMC5570910 DOI: 10.1038/s41598-017-09430-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/26/2017] [Indexed: 12/02/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) display antioxidant properties and have shown cytoprotective effects both in vitro and in vivo. Here, we explored the effects of nanoceria on neural progenitor cells using the C17.2 murine cell line as a model. First, we assessed the effects of nanoceria versus samarium (Sm) doped nanoceria on cell viability in the presence of the prooxidant, DMNQ. Both particles were taken up by cells and nanoceria, but not Sm-doped nanoceria, elicited a temporary cytoprotective effect upon exposure to DMNQ. Next, we employed RNA sequencing to explore the transcriptional responses induced by nanoceria or Sm-doped nanoceria during neuronal differentiation. Detailed computational analyses showed that nanoceria altered pathways and networks relevant for neuronal development, leading us to hypothesize that nanoceria inhibits neuronal differentiation, and that nanoceria and Sm-doped nanoceria both interfere with cytoskeletal organization. We confirmed that nanoceria reduced neuron specific β3-tubulin expression, a marker of neuronal differentiation, and GFAP, a neuroglial marker. Furthermore, using super-resolution microscopy approaches, we could show that both particles interfered with cytoskeletal organization and altered the structure of neural growth cones. Taken together, these results reveal that nanoceria may impact on neuronal differentiation, suggesting that nanoceria could pose a developmental neurotoxicity hazard.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Edoff
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fanny Caputo
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Bioinformatics Infrastructure for Life Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Blom
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lina Ghibelli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Enrico Traversa
- Department of Chemical Science and Technology, University of Rome 'Tor Vergata', Rome, Italy
- International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Voigt J, Woestemeyer J. Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii
by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 2015; 62:711-21. [DOI: 10.1111/jeu.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Juergen Voigt
- Institute for Biochemistry; Charité, Charité-Platz 1/Virchowweg 6; D-10117 Berlin Germany
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| | - Johannes Woestemeyer
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| |
Collapse
|
15
|
Feliu N, Kohonen P, Ji J, Zhang Y, Karlsson HL, Palmberg L, Nyström A, Fadeel B. Next-generation sequencing reveals low-dose effects of cationic dendrimers in primary human bronchial epithelial cells. ACS NANO 2015; 9:146-63. [PMID: 25530437 DOI: 10.1021/nn5061783] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene expression profiling has developed rapidly in recent years with the advent of deep sequencing technologies such as RNA sequencing (RNA Seq) and could be harnessed to predict and define mechanisms of toxicity of chemicals and nanomaterials. However, the full potential of these technologies in (nano)toxicology is yet to be realized. Here, we show that systems biology approaches can uncover mechanisms underlying cellular responses to nanomaterials. Using RNA Seq and computational approaches, we found that cationic poly(amidoamine) dendrimers (PAMAM-NH2) are capable of triggering down-regulation of cell-cycle-related genes in primary human bronchial epithelial cells at doses that do not elicit acute cytotoxicity, as demonstrated using conventional cell viability assays, while gene transcription was not affected by neutral PAMAM-OH dendrimers. The PAMAMs were internalized in an active manner by lung cells and localized mainly in lysosomes; amine-terminated dendrimers were internalized more efficiently when compared to the hydroxyl-terminated dendrimers. Upstream regulator analysis implicated NF-κB as a putative transcriptional regulator, and subsequent cell-based assays confirmed that PAMAM-NH2 caused NF-κB-dependent cell cycle arrest. However, PAMAM-NH2 did not affect cell cycle progression in the human A549 adenocarcinoma cell line. These results demonstrate the feasibility of applying systems biology approaches to predict cellular responses to nanomaterials and highlight the importance of using relevant (primary) cell models.
Collapse
Affiliation(s)
- Neus Feliu
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, and ‡Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet , Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
17
|
Choi JS, Park BC, Chi SW, Bae KH, Kim S, Cho S, Son WC, Myung PK, Kim JH, Park SG. HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget 2014; 5:10084-99. [PMID: 25275296 PMCID: PMC4259407 DOI: 10.18632/oncotarget.2459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/06/2014] [Indexed: 12/03/2022] Open
Abstract
HS-1-associated protein X-1 (HAX1) is a multi-functional protein which was first identified as a Hematopoietic cell specific Lyn Substrate 1 (HS1)-binding protein. Although the roles of HAX1 in apoptosis have been unraveled and HAX1 has been proposed to be involved in several diseases, additional roles of HAX1 are still being identified. Here, we demonstrated that HAX1 directly interacted with cellular Inhibitor of Apoptosis Proteins (cIAPs), ubiquitin E3 ligases which regulate the abundance of cellular proteins, via ubiquitin-dependent proteasomal degradation. We showed that HAX1 promotes auto-ubiquitination and degradation of cIAPs by facilitating the intermolecular homodimerization of RING finger domain. Moreover, HAX1 regulates the non-canonical Nuclear Factor-κB (NF-κB) signaling pathway by modulating the stability of NF-κB-Inducing Kinase (NIK), which is one of the substrates of cIAPs. Taken together, these results unveil a novel role of HAX1 in the non-canonical NF-κB pathway, and provide an important clue that HAX1 is a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Jin Sun Choi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung Wook Chi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Cell Function Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sunhong Kim
- Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Woo-Chan Son
- Asan Institute for Life Sciences and Asan Medical Center, Seoul, Republic of Korea
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Hoon Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, Daejeon, Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
18
|
Trebinska A, Högstrand K, Grandien A, Grzybowska EA, Fadeel B. Exploring the anti-apoptotic role of HAX-1 versus BCL-XL
in cytokine-dependent bone marrow-derived cells from mice. FEBS Lett 2014; 588:2921-7. [DOI: 10.1016/j.febslet.2014.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
19
|
The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes. Toxicol Appl Pharmacol 2013; 272:559-67. [PMID: 23933532 DOI: 10.1016/j.taap.2013.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/24/2013] [Accepted: 07/28/2013] [Indexed: 12/20/2022]
Abstract
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose-response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis.
Collapse
|
20
|
Ottosson-Wadlund A, Ceder R, Preta G, Pokrovskaja K, Grafström RC, Heyman M, Söderhäll S, Grandér D, Hedenfalk I, Robertson JD, Fadeel B. Requirement of Apoptotic Protease-Activating Factor-1 for Bortezomib-Induced Apoptosis but Not for Fas-Mediated Apoptosis in Human Leukemic Cells. Mol Pharmacol 2012; 83:245-55. [PMID: 23093495 DOI: 10.1124/mol.112.080788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Astrid Ottosson-Wadlund
- Division of Molecular Toxicology, Institute of Environmental Medicine, Nobels väg 13, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Preta G, Fadeel B. AIF and Scythe (Bat3) regulate phosphatidylserine exposure and macrophage clearance of cells undergoing Fas (APO-1)-mediated apoptosis. PLoS One 2012; 7:e47328. [PMID: 23077592 PMCID: PMC3471829 DOI: 10.1371/journal.pone.0047328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylserine (PS) exposure on the cell surface has been considered a characteristic feature of apoptosis and serves as a molecular cue for engulfment of dying cells by phagocytes. However, the mechanism of PS exposure is still not fully elucidated. Here we show that the cytosolic release from mitochondria of apoptosis-inducing factor (AIF) is required for PS exposure during death receptor-induced apoptosis and for efficient clearance of cell corpses by primary human macrophages. Fas-triggered PS exposure was significantly reduced upon siRNA-mediated silencing of AIF expression and by inhibition of the cytosolic translocation of AIF. In addition, AIF localizes to the plasma membrane upon Fas ligation and promotes activation of phospholipid scrambling activity. Finally, cytosolic stabilization of AIF through interaction with Scythe is shown to be involved in apoptotic PS exposure. Taken together, our results suggest an essential role for AIF and its binding partner Scythe in the pathway leading to apoptotic corpse clearance.
Collapse
Affiliation(s)
- Giulio Preta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
22
|
Sadeghi M, Lahdou I, Daniel V, Schnitzler P, Fusch G, Schefold JC, Zeier M, Iancu M, Opelz G, Terness P. Strong association of phenylalanine and tryptophan metabolites with activated cytomegalovirus infection in kidney transplant recipients. Hum Immunol 2011; 73:186-92. [PMID: 22142555 DOI: 10.1016/j.humimm.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/17/2011] [Accepted: 11/07/2011] [Indexed: 11/27/2022]
Abstract
Infection-induced inflammation triggers catabolism of proteins and amino acids. Phenylalanine and tryptophan are 2 amino acids related to infections that regulate immune responses. Polyomavirus BK (BKV) and cytomegalovirus (CMV) are important pathogens after kidney transplantation. We investigated the clinical relevance of phenylalanine, tryptophan, and tryptophan metabolites (kynurenine and quinolinic acid) plasma levels in kidney transplant recipients with active CMV (BKV(-)CMV(+), n = 12) or BK virus infection (BKV(+)CMV(-), n = 37). Recipients without active viral infections (CMV(-)BKV(-), n = 28) and CMV(-)BKV(-) healthy individuals (HCs, n = 50) served as controls. In contrast to BKV infection, activated CMV infection is tightly linked to increased phenylalanine and tryptophan metabolite plasma levels (p ≤ 0.002). The association of phenylalanine (cutoff 50 μmol/L) with CMV infection demonstrates high sensitivity (100%) and specificity (94%). By contrast, kynurenine (p = 0.029) and quinolinic acid (p = 0.003) values reflect the severity of CMV infection. In this early proof-of-concept trial, evidence indicates that activated CMV infection is strongly associated with increased phenylalanine as well as kynurenine and quinolinic acid plasma levels. Moreover, tryptophan metabolite levels correlate with disease severity. Measurement of these amino acids is an inexpensive and fast method expected to complete conventional diagnostic assays.
Collapse
Affiliation(s)
- Mahmoud Sadeghi
- Department of Transplantation Immunology, University of Heidelberg, D-69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Simmen T. Hax-1: a regulator of calcium signaling and apoptosis progression with multiple roles in human disease. Expert Opin Ther Targets 2011; 15:741-51. [DOI: 10.1517/14728222.2011.561787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Hadji A, Clybouw C, Auffredou MT, Alexia C, Poalas K, Burlion A, Feraud O, Leca G, Vazquez A. Caspase-3 triggers a TPCK-sensitive protease pathway leading to degradation of the BH3-only protein puma. Apoptosis 2011; 15:1529-39. [PMID: 20640889 DOI: 10.1007/s10495-010-0528-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein Puma (p53-upregulated modulator of apoptosis) belongs to the BH3-only group of the Bcl-2 family and is a major regulator of apoptosis. Although the transcriptional regulation of Puma is clearly established, little is known about the regulation of its expression at the protein levels. We show here that various signals--including the cytokine TGFβ, the death effector TRAIL or chemical drugs such as anisomycin--downregulate Puma protein levels via a novel pathway based on the sequential activation of caspase-3 and a protease inhibited by the serpase inhibitor N-tosyl-L-phenylalanine chloromethyl ketone. This pathway is specific for Puma because (1) the levels of other BH3-only proteins, such as Bim and Noxa were not modified by these stimuli and (2) this caspase-mediated degradation was dependent on both the BH3 and C-terminal domains of Puma. Our data also show that Puma is regulated during the caspase-3-dependent differentiation of murine embryonic stem cells and suggest that this pathway may be relevant and important during caspase-mediated cell differentiation not associated with apoptosis.
Collapse
Affiliation(s)
- Abbas Hadji
- INSERM U.1014, Batiment Lavoisier, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jin YJ, Zhang X, Cai C, Burakoff SJ. Alkylating HIV-1 Nef - a potential way of HIV intervention. AIDS Res Ther 2010; 7:26. [PMID: 20659345 PMCID: PMC2917394 DOI: 10.1186/1742-6405-7-26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Nef is a 27 KDa HIV-1 accessory protein. It downregulates CD4 from infected cell surface, a mechanism critical for efficient viral replication and pathogenicity. Agents that antagonize the Nef-mediated CD4 downregulation may offer a new class of drug to combat HIV infection and disease. TPCK (N-α-p-tosyl-L-phenylalanine chloromethyl ketone) and TLCK (N-α-p-tosyl-L-lysine chloromethyl ketone) are alkylation reagents that chemically modify the side chain of His or Cys residues in a protein. In search of chemicals that inhibit Nef function, we discovered that TPCK and TLCK alkylated HIV Nef. Methods Nef modification by TPCK was demonstrated on reducing SDS-PAGE. The specific cysteine residues modified were determined by site-directed mutagenesis and mass spectrometry (MS). The effect of TPCK modification on Nef-CD4 interaction was studied using fluorescence titration of a synthetic CD4 tail peptide with recombinant Nef-His protein. The conformational change of Nef-His protein upon TPCK-modification was monitored using CD spectrometry Results Incubation of Nef-transfected T cells, or recombinant Nef-His protein, with TPCK resulted in mobility shift of Nef on SDS-PAGE. Mutagenesis analysis indicated that the modification occurred at Cys55 and Cys206 in Nef. Mass spectrometry demonstrated that the modification was a covalent attachment (alkylation) of TPCK at Cys55 and Cys206. Cys55 is next to the CD4 binding motif (A56W57L58) in Nef required for Nef-mediated CD4 downregulation and for AIDS development. This implies that the addition of a bulky TPCK molecule to Nef at Cys55 would impair Nef function and reduce HIV pathogenicity. As expected, Cys55 modification reduced the strength of the interaction between Nef-His and CD4 tail peptide by 50%. Conclusions Our data suggest that this Cys55-specific alkylation mechanism may be exploited to develop a new class of anti HIV drugs.
Collapse
|