1
|
Ruiz-Haddad L, Ali M, Pronk M, van Loosdrecht MC, Saikaly PE. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100387. [PMID: 38322240 PMCID: PMC10845257 DOI: 10.1016/j.ese.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.
Collapse
Affiliation(s)
- Lucia Ruiz-Haddad
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
| | | | - Pascal E. Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Bax HHM, Jurak E. Characterization of Two Glycoside Hydrolases of Family GH13 and GH57, Present in a Polysaccharide Utilization Locus (PUL) of Pontibacter sp. SGAir0037. Molecules 2024; 29:2788. [PMID: 38930854 PMCID: PMC11206854 DOI: 10.3390/molecules29122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Glycogen, an α-glucan polymer serving as an energy storage compound in microorganisms, is synthesized through distinct pathways (GlgC-GlgA or GlgE pathway). Both pathways involve multiple enzymes, with a shared glycogen branching enzyme (GBE). GBEs play a pivotal role in establishing α-1,6-linkages within the glycogen structure. GBEs are also used for starch modification. Understanding how these enzymes work is interesting for both glycogen synthesis in microorganisms, as well as novel applications for starch modification. This study focuses on a putative enzyme GH13_9 GBE (PoGBE13), present in a polysaccharide utilization locus (PUL) of Pontibacter sp. SGAir0037, and related to the GlgE glycogen synthesis pathway. While the PUL of Pontibacter sp. SGAir0037 contains glycogen-degrading enzymes, the branching enzyme (PoGBE13) was also found due to genetic closeness. Characterization revealed that PoGBE13 functions as a typical branching enzyme, exhibiting a relatively high branching over non-branching (hydrolysis and α-1,4-transferase activity) ratio on linear maltooctadecaose (3.0 ± 0.4). Besides the GH13_9 GBE, a GH57 (PoGH57) enzyme was selected for characterization from the same PUL due to its undefined function. The combined action of both GH13 and GH57 enzymes suggested 4-α-glucanotransferase activity for PoGH57. The characterization of these unique enzymes related to a GlgE glycogen synthesis pathway provides a more profound understanding of their interactions and synergistic roles in glycogen synthesis and are potential enzymes for use in starch modification processes. Due to the structural similarity between glycogen and starch, PoGBE13 can potentially be used for starch modification with different applications, for example, in functional food ingredients.
Collapse
Affiliation(s)
| | - Edita Jurak
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| |
Collapse
|
3
|
Cereijo AE, Ferretti MV, Iglesias AA, Álvarez HM, Asencion Diez MD. Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1. Biol Chem 2024; 405:325-340. [PMID: 38487862 DOI: 10.1515/hsz-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024]
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Collapse
Affiliation(s)
- Antonela Estefania Cereijo
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - María Victoria Ferretti
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Alberto Alvaro Iglesias
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Héctor Manuel Álvarez
- Instituto de Biociencias de la Patagonia (INBIOP), 28226 Universidad Nacional de la Patagonia San Juan Bosco y CONICET , Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Matías Damian Asencion Diez
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| |
Collapse
|
4
|
Urbániková Ľ, Janeček Š. Trehalose synthases from the subfamily GH13_16 involved in α-glucan biosynthesis - a focus on their maltokinase domain. Int J Biol Macromol 2024; 268:131680. [PMID: 38641282 DOI: 10.1016/j.ijbiomac.2024.131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The subfamily GH13_16 trehalose synthase (TreS) converts maltose to trehalose and vice versa. Typically, it consists of three domains, but it may contain a C-terminal extension exhibiting clear sequence features of a maltokinase (MaK). The present in silico study was focused on collection of naturally fused TreS-MaKs and their subsequent detailed bioinformatics analysis. Hence a set of total 3354 unique sequences was compared consisting of 1900 single TreSs, 1426 fused TreS-MaKs and 28 single MaKs. Fused TreS-MaKs were divided into five groups, namely with a standard MaK, with mutations in the maltose-binding site, of the catalytic nucleophile, of the general acid/base and of both catalytic residues. Sequence logos bearing the best conserved sequence regions were prepared for both TreSs and MaKs in an effort to find unique sequence features. In addition, linkers connecting the TreS and MaK parts in the fused enzymes were analysed. This analysis revealed that MaKs in fused enzymes have an extended N-terminal regions compared to single MaKs. Finally, the evolutionary relationships were demonstrated by phylogenetic trees of TreS parts from single TreSs and fused TreS-MaKs from the same organism as well as of single TreSs existing in multiple isoforms in the same organism.
Collapse
Affiliation(s)
- Ľubica Urbániková
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia; Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, SK-91701 Trnava, Slovakia.
| |
Collapse
|
5
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Chen L, Li C, Zhong X, Lai C, Zhang B, Luo Y, Guo H, Liang K, Fang J, Zhu X, Zhang J, Guo L. The gut microbiome promotes arsenic metabolism and alleviates the metabolic disorder for their mammal host under arsenic exposure. ENVIRONMENT INTERNATIONAL 2023; 171:107660. [PMID: 36470123 DOI: 10.1016/j.envint.2022.107660] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Gut microbiome can participate in arsenic metabolism. However, its efficacy in the host under arsenic stress is still controversial. To clarify their roles in fecal arsenic excretion, tissue arsenic accumulation, host physiological states and metabolism, in this study, ninety-six C57BL/6 male mice were randomly divided to four groups, groups A and B were given sterile water, and groups C and D were given the third generation of broad-spectrum antibiotic (ceftriaxone) to erase the background gut microbiome. Subsequently, groups B and D were subchronicly exposed to arsenic containing feed prepared by adding arsenical mixture (rice arsenic composition) into control feed. In group D, the fecal total arsenic (CtAs) decreased by 25.5 %, iAsIII composition increased by 46.9 %, unclarified As (uAs) composition decreased by 92.4 %, and the liver CtAs increased by 26.7 %; the fecal CtAs was positively correlated with microbial richness and some metabolites (organic acids, amino acids, carbohydrates, SCFAs, hydrophilic bile acids and their derivatives); and fecal DMA was positively correlated with microbial richness and some metabolites (ferulic acid, benzenepropanoic acid and pentanoic acid); network analysis showed that the numbers of modules, nodes, links were decreased and vulnerability was increased; some SCFAs and hydrophilic bile acid decreased, and hydrophobic bile acids increased (Ps < 0.05). In the tissue samples of group D, Il-18 and Ifn-γ gene expression increased and intestinal barrier-related genes Muc2, Occludin and Zo-1 expression decreased (Ps < 0.05); serum glutathione and urine malondialdehyde significantly increased (Ps < 0.05); urine metabolome significantly changed and the variation was correlated with six SCFAs-producing bacteria, and some SCFAs including isobutyric acid, valeric acid and heptanoic acid decreased (Ps < 0.05). Therefore, the normal gut microbiome increases fecal arsenic excretion and biotransformation, which can maintain a healthier microbiome and metabolic functions, and alleviate the metabolic disorder for their mammal host under arsenic exposure.
Collapse
Affiliation(s)
- Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Yunfu City Center for Disease Control, Guangdong Province 527300, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Keqing Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingwen Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jingjing Zhang
- Key Laboratory of Zebrafish Model for Development and Disease & Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
7
|
Ferretti MV, Hussien RA, Ballicora MA, Iglesias AA, Figueroa CM, Asencion Diez MD. The ADP-glucose pyrophosphorylase from Melainabacteria: a comparative study between photosynthetic and non-photosynthetic bacterial sources. Biochimie 2021; 192:30-37. [PMID: 34560201 DOI: 10.1016/j.biochi.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Until recently, the cyanobacterial phylum only included oxygenic photosynthesizer members. The discovery of Melainabacteria as a group of supposed non-photosynthetic cyanobacteria asked to revisit such scenario. From metagenomic data, we were able to identify sequences encoding putative ADP-glucose pyrophosphorylases (ADP-GlcPPase) from free-living and intestinal Melainabacteria. The respective genes were de novo synthesized and over-expressed in Escherichia coli. The purified recombinant proteins from both Melainabacteria species were active as ADP-GlcPPases, exhibiting Vmax values of 2.3 (free-living) and 7.1 U/mg (intestinal). The enzymes showed similar S0.5 values (∼0.3 mM) for ATP, while the one from the intestinal source exhibited a 6-fold higher affinity toward glucose-1P. Both recombinant ADP-GlcPPases were sensitive to glucose-6P activation (A0.5 ∼0.3 mM) and Pi and ADP inhibition (I0.5 between 0.2 and 3 mM). Interestingly, the enzymes from Melainabacteria were insensitive to 3-phosphoglycerate, which is the principal activator of ADP-GlcPPases from photosynthetic cyanobacteria. As far as we know, this is the first biochemical characterization of an active enzyme from Melainabacteria. This work contributes to a better understanding of the evolution of allosteric regulation in the ADP-GlcPPase family, which is critical for synthesizing the main reserve polysaccharide in prokaryotes (glycogen) and plants (starch). In addition, our results offer further information to discussions regarding the phylogenetic position of Melainabacteria.
Collapse
Affiliation(s)
- María V Ferretti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Rania A Hussien
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA; Department of Chemistry, Al Baha University, Al Baha, Saudi Arabia
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|
8
|
Okabe S, Shafdar AA, Kobayashi K, Zhang L, Oshiki M. Glycogen metabolism of the anammox bacterium "Candidatus Brocadia sinica". THE ISME JOURNAL 2021; 15:1287-1301. [PMID: 33288860 PMCID: PMC8115630 DOI: 10.1038/s41396-020-00850-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Presence of glycogen granules in anaerobic ammonium-oxidizing (anammox) bacteria has been reported so far. However, very little is known about their glycogen metabolism and the exact roles. Here, we studied the glycogen metabolism in "Ca. Brocadia sinica" growing in continuous retentostat cultures with bicarbonate as a carbon source. The effect of the culture growth phase was investigated. During the growing phase, intracellular glycogen content increased up to 32.6 mg-glucose (g-biomass dry wt)-1 while the specific growth rate and ATP/ADP ratio decreased. The accumulated glycogen begun to decrease at the onset of entering the near-zero growth phase and was consumed rapidly when substrates were depleted. This clearly indicates that glycogen was synthesized and utilized as an energy storage. The proteomic analysis revealed that "Ca. B. sinica" synthesized glycogen via three known glycogen biosynthesis pathways and simultaneously degraded during the progress of active anammox, implying that glycogen is being continuously recycled. When cells were starved, a part of stored glycogen was converted to trehalose, a potential stress protectant. This suggests that glycogen serves at least as a primary carbon source of trehalose synthesis for survival. This study provides the first physiological evidence of glycogen metabolism in anammox bacteria and its significance in survival under natural substrate-limited habitat.
Collapse
Affiliation(s)
- Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Amrini Amalia Shafdar
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Kanae Kobayashi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Lei Zhang
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Mamoru Oshiki
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
9
|
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, Malone JG. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 2021; 17:e1009524. [PMID: 33872310 PMCID: PMC8084333 DOI: 10.1371/journal.pgen.1009524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress. Author summary To survive outside their host, pathogenic bacteria must withstand various environmental stresses. The sugar molecule trehalose is associated with a range of abiotic stress tolerances, particularly osmotic shock. In this study, we analyse the trehalose metabolic network in the human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is intimately connected to the biosynthesis of branched α-glucan, or glycogen. Disruption of either trehalose or glycogen biosynthesis significantly reduces the ability of PAO1 to survive on steel work surfaces. While both trehalose and glycogen are important for stress tolerance, they counter very different stresses. Trehalose is important for the osmotic stress response, and survival in conditions of elevated salt. On the other hand, glycogen is responsible for desiccation tolerance and survival in low humidity environments. Trehalose does not apparently contribute to desiccation tolerance, marking a clear distinction between the roles of trehalose and glycogen in mediating abiotic stress responses in P. aeruginosa.
Collapse
Affiliation(s)
- Stuart D. Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Despoina Sifouna
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - James K. M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Awad FN. Glycoside phosphorylases for carbohydrate synthesis: An insight into the diversity and potentiality. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Syson K, Batey SFD, Schindler S, Kalscheuer R, Bornemann S. A temperature-sensitive Mycobacterium smegmatis glgE mutation leads to a loss of GlgE enzyme activity and thermostability and the accumulation of α-maltose-1-phosphate. Biochim Biophys Acta Gen Subj 2020; 1865:129783. [PMID: 33166604 PMCID: PMC7805345 DOI: 10.1016/j.bbagen.2020.129783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/01/2022]
Abstract
Background The bacterial GlgE pathway is the third known route to glycogen and is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation was rescued by the glgE gene. The evidence at the time suggested glgE coded for a glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence showing GlgE to be a polymerase responsible for its biosynthesis. Methods We reconstructed and examined the temperature-sensitive mutant and characterised the mutated GlgE enzyme. Results The mutant strain accumulated the substrate for GlgE, α-maltose-1-phosphate, at the non-permissive temperature. The glycogen assay used in the original study was shown to give a false positive result with α-maltose-1-phosphate. The accumulation of α-maltose-1-phosphate was due to the lowering of the kcat of GlgE as well as a loss of stability 42 °C. The reported rescue of the phenotype by GarA could potentially involve an interaction with GlgE, but none was detected. Conclusions We have been able to reconcile apparently contradictory observations and shed light on the basis for the phenotype of the temperature-sensitive mutation. General significance This study highlights how the lowering of flux through the GlgE pathway can slow the growth mycobacteria. A single amino acid substitution in GlgE leads to loss of activity and stability. Temperature-sensitivity leads to the accumulation of GlgE's substrate in vivo. Reduced bacterial growth can be attributed to the accumulation of this substrate. It was shown how a glycogen assay can give a false positive with this substrate. This reconciles apparently contradictory observations published previously.
Collapse
Affiliation(s)
- Karl Syson
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Sibyl F D Batey
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Steffen Schindler
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Stephen Bornemann
- Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
12
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
Nishimoto M. Large scale production of lacto- N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases. Biosci Biotechnol Biochem 2019; 84:17-24. [PMID: 31566084 DOI: 10.1080/09168451.2019.1670047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Collapse
Affiliation(s)
- Mamoru Nishimoto
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
14
|
Metabolomics Studies To Decipher Stress Responses in Mycobacterium smegmatis Point to a Putative Pathway of Methylated Amine Biosynthesis. J Bacteriol 2019; 201:JB.00707-18. [PMID: 31138627 DOI: 10.1128/jb.00707-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatis IMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.
Collapse
|
15
|
Macdonald SS, Armstrong Z, Morgan-Lang C, Osowiecka M, Robinson K, Hallam SJ, Withers SG. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Cell Chem Biol 2019; 26:1001-1012.e5. [PMID: 31080075 DOI: 10.1016/j.chembiol.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Glycoside phosphorylases (GPs) catalyze the reversible phosphorolysis of glycosidic bonds, releasing sugar 1-phosphates. To identify a greater range of these under-appreciated enzymes, we have developed a high-throughput functional screening method based on molybdenum blue formation. In a proof-of-principle screen focused on cellulose-degrading GPs we interrogated ∼23,000 large insert (fosmid) clones sourced from microbial communities inhabiting two separate environments and identified seven novel GPs from carbohydrate active enzyme family GH94 and one from GH149. Characterization identified cellobiose phosphorylases, cellodextrin phosphorylases, laminaribiose phosphorylases, and a β-1,3-glucan phosphorylase. To demonstrate the versatility of the screening method, varying substrate combinations were used to identify GP activity from families GH13, GH65, GH112, and GH130 in addition to GH94 and GH149. These pilot screen and substrate versatility results provide a screening paradigm platform for recovering diverse GPs from uncultivated microbial communities acting on different substrates with considerable potential to unravel previously unknown degradative pathways within microbiomes.
Collapse
Affiliation(s)
- Spencer S Macdonald
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zachary Armstrong
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Magdalena Osowiecka
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kyle Robinson
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
16
|
Kermani AA, Roy R, Gopalasingam C, Kocurek KI, Patel TR, Alderwick LJ, Besra GS, Fütterer K. Crystal structure of the TreS:Pep2 complex, initiating α-glucan synthesis in the GlgE pathway of mycobacteria. J Biol Chem 2019; 294:7348-7359. [PMID: 30877199 PMCID: PMC6509496 DOI: 10.1074/jbc.ra118.004297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/13/2019] [Indexed: 11/15/2022] Open
Abstract
A growing body of evidence implicates the mycobacterial capsule, the outermost layer of the mycobacterial cell envelope, in modulation of the host immune response and virulence of mycobacteria. Mycobacteria synthesize the dominant capsule component, α(1→4)-linked glucan, via three interconnected and potentially redundant metabolic pathways. Here, we report the crystal structure of the Mycobacterium smegmatis TreS:Pep2 complex, containing trehalose synthase (TreS) and maltokinase (Pep2), which converts trehalose to maltose 1-phosphate as part of the TreS:Pep2–GlgE pathway. The structure, at 3.6 Å resolution, revealed that a diamond-shaped TreS tetramer forms the core of the complex and that pairs of Pep2 monomers bind to opposite apices of the tetramer in a 4 + 4 configuration. However, for the M. smegmatis orthologues, results from isothermal titration calorimetry and analytical ultracentrifugation experiments indicated that the prevalent stoichiometry in solution is 4 TreS + 2 Pep2 protomers. The observed discrepancy between the crystallized complex and the behavior in the solution state may be explained by the relatively weak affinity of Pep2 for TreS (Kd 3.5 μm at mildly acidic pH) and crystal packing favoring the 4 + 4 complex. Proximity of the ATP-binding site in Pep2 to the complex interface provides a rational basis for rate enhancement of Pep2 upon binding to TreS, but the complex structure appears to rule out substrate channeling between the active sites of TreS and Pep2. Our findings provide a structural model for the trehalose synthase:maltokinase complex in M. smegmatis that offers critical insights into capsule assembly.
Collapse
Affiliation(s)
- Ali A Kermani
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rana Roy
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Chai Gopalasingam
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaudia I Kocurek
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Trushar R Patel
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Klaus Fütterer
- From the Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
17
|
Karmakar P, Gaitonde V. Promising Recent Strategies with Potential Clinical Translational Value to Combat Antibacterial Resistant Surge. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E21. [PMID: 30709019 PMCID: PMC6473725 DOI: 10.3390/medicines6010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/27/2022]
Abstract
Multiple drug resistance (MDR) for the treatment of bacterial infection has been a significant challenge since the beginning of the 21st century. Many of the small molecule-based antibiotic treatments have failed on numerous occasions due to a surge in MDR, which has claimed millions of lives worldwide. Small particles (SPs) consisting of metal, polymer or carbon nanoparticles (NPs) of different sizes, shapes and forms have shown considerable antibacterial effect over the past two decades. Unlike the classical small-molecule antibiotics, the small particles are less exposed so far to the bacteria to trigger a resistance mechanism, and hence have higher chances of fighting the challenge of the MDR process. Until recently, there has been limited progress of clinical treatments using NPs, despite ample reports of in vitro antibacterial efficacy. In this review, we discuss some recent and unconventional strategies that have explored the antibacterial efficacy of these small particles, alone and in combination with classical small molecules in vivo, and demonstrate possibilities that are favorable for clinical translations in near future.
Collapse
Affiliation(s)
- Partha Karmakar
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
18
|
Lyu T, Liu G, Zhang H, Wang L, Zhou S, Dou H, Pang B, Sha W, Zhang H. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). AMB Express 2018; 8:123. [PMID: 30073560 PMCID: PMC6072643 DOI: 10.1186/s13568-018-0652-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023] Open
Abstract
Wolves (Canis lupus) and their domesticated and close relatives, dogs (Canis lupus familiaris), have great differences in their diets and living environments. To the best of our knowledge, the fundamental question of how the abundance and function of the gut microbiota of domestic dogs evolved to adapt to the changes in host feeding habits has yet to be addressed. In this study, our comparative analyses of gut metagenomes showed that the abundance of gut microbiota between the two species have some significant differences. Furthermore, a number of taxa observed in higher numbers in domestic dogs are related to carbohydrate metabolism, which may be because that there were more complicated polysaccharides in dogs diets than that in wolves diets. A significant difference in the abundance of genes encoding glycosyltransferase family 34 (GT34), carbohydrate-binding module family 25 (CBM25), and glycoside hydrolase family 13 (GH13) between the gut microbiota metagenomes of domestic dogs and gray wolves also supported this observation. Furthermore, the domestic dog gut microbiota has greater valine, leucine and isoleucine biosynthesis and nitrogen metabolism. This result showed that compared with wolves, the domestic dog diet contains a smaller amount of animal protein, which is consistent with the dietary composition of wolves and dogs. Our results indicate that the function and abundance of gut microbiota of domestic dogs has been adapted to domestication, which is of great significance for the ability of domestic dogs to adapt to changes in food composition.
Collapse
|
19
|
Veleti SK, Petit C, Lindenberger JJ, Ronning DR, Sucheck SJ. Zwitterionic pyrrolidene-phosphonates: inhibitors of the glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEI-V279S. Org Biomol Chem 2017; 15:3884-3891. [PMID: 28422240 DOI: 10.1039/c7ob00388a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We synthesized and evaluated new zwitterionic inhibitors against glycoside hydrolase-like phosphorylase Streptomyces coelicolor (Sco) GlgEI-V279S which plays a role in α-glucan biosynthesis. Sco GlgEI-V279S serves as a model enzyme for validated anti-tuberculosis (TB) target Mycobacterium tuberculosis (Mtb) GlgE. Pyrrolidine inhibitors 5 and 6 were designed based on transition state considerations and incorporate a phosphonate on the pyrrolidine moiety to expand the interaction network between the inhibitor and the enzyme active site. Compounds 5 and 6 inhibited Sco GlgEI-V279S with Ki = 45 ± 4 μM and 95 ± 16 μM, respectively, and crystal structures of Sco GlgE-V279S-5 and Sco GlgE-V279S-6 were obtained at a 3.2 Å and 2.5 Å resolution, respectively.
Collapse
Affiliation(s)
- Sri Kumar Veleti
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
It has long been reported that Mycobacterium tuberculosis is capable of synthesizing the α-glucan glycogen. However, what makes this bacterium stand out is that it coats itself in a capsule that mainly consists of a glycogen-like α-glucan. This polymer helps the pathogen evade immune responses. In 2010, the biosynthesis of α-glucans has been shown to not only involve the classical enzymes of glycogen metabolism but also a distinct GlgE pathway. Since then, this pathway has attracted attention not least in terms of the quest for new inhibitors that could be developed into new treatments for tuberculosis. Some lines of recent inquiry have shed a lot of light on to how GlgE catalyses the polymerization of α-glucan, using α-maltose 1-phosphate (M1P) as a building block and how the pathways are regulated. Nevertheless, many unanswered questions remain regarding the synthesis and role of α-glucans in mycobacteria and the numerous other bacteria that possess the GlgE pathway.
Collapse
|
21
|
Syson K, Stevenson CEM, Miah F, Barclay JE, Tang M, Gorelik A, Rashid AM, Lawson DM, Bornemann S. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE. J Biol Chem 2016; 291:21531-21540. [PMID: 27531751 PMCID: PMC5076824 DOI: 10.1074/jbc.m116.748160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Farzana Miah
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - J Elaine Barclay
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Minhong Tang
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrii Gorelik
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abdul M Rashid
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M Lawson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stephen Bornemann
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
22
|
Suzuki E, Suzuki R. Distribution of glucan-branching enzymes among prokaryotes. Cell Mol Life Sci 2016; 73:2643-60. [PMID: 27141939 PMCID: PMC11108348 DOI: 10.1007/s00018-016-2243-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Glucan-branching enzyme plays an essential role in the formation of branched polysaccharides, glycogen, and amylopectin. Only one type of branching enzyme, belonging to glycoside hydrolase family 13 (GH13), is found in eukaryotes, while two types of branching enzymes (GH13 and GH57) occur in prokaryotes (Bacteria and Archaea). Both of these types are the members of protein families containing the diverse specificities of amylolytic glycoside hydrolases. Although similarities are found in the catalytic mechanism between the two types of branching enzyme, they are highly distinct from each other in terms of amino acid sequence and tertiary structure. Branching enzymes are found in 29 out of 30 bacterial phyla and 1 out of 5 archaeal phyla, often along with glycogen synthase, suggesting the existence of α-glucan production and storage in a wide range of prokaryotes. Enormous variability is observed as to which type and how many copies of branching enzyme are present depending on the phylum and, in some cases, even among species of the same genus. Such a variation may have occurred through lateral transfer, duplication, and/or differential loss of genes coding for branching enzyme during the evolution of prokaryotes.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan.
| | - Ryuichiro Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan
| |
Collapse
|
23
|
Rashid AM, Batey SFD, Syson K, Koliwer-Brandl H, Miah F, Barclay JE, Findlay KC, Nartowski KP, Khimyak YZ, Kalscheuer R, Bornemann S. Assembly of α-Glucan by GlgE and GlgB in Mycobacteria and Streptomycetes. Biochemistry 2016; 55:3270-84. [PMID: 27221142 DOI: 10.1021/acs.biochem.6b00209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∼16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both.
Collapse
Affiliation(s)
- Abdul M Rashid
- Biological Chemistry Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sibyl F D Batey
- Biological Chemistry Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Karl Syson
- Biological Chemistry Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Hendrik Koliwer-Brandl
- Institute for Medical Microbiology and Hospital Hygiene, and Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Farzana Miah
- Biological Chemistry Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - J Elaine Barclay
- Cell and Developmental Biology Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Kim C Findlay
- Cell and Developmental Biology Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Karol P Nartowski
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, and Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stephen Bornemann
- Biological Chemistry Department, John Innes Centre , Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
24
|
Cereijo AE, Asencion Diez MD, Dávila Costa JS, Alvarez HM, Iglesias AA. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria. Front Microbiol 2016; 7:830. [PMID: 27313571 PMCID: PMC4890535 DOI: 10.3389/fmicb.2016.00830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 01/29/2023] Open
Abstract
Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions.
Collapse
Affiliation(s)
- Antonela E Cereijo
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - Matías D Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| | - José S Dávila Costa
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Héctor M Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales Universidad Nacional de la Patagonia San Juan Bosco Comodoro Rivadavia, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral, CONICET, Centro Científico Tecnológico, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
| |
Collapse
|
25
|
Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C. The revisited genome ofPseudomonas putidaKT2440 enlightens its value as a robust metabolicchassis. Environ Microbiol 2016; 18:3403-3424. [DOI: 10.1111/1462-2920.13230] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Eugeni Belda
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology; 28, rue du Dr. Roux, Paris, Cedex 15 75724 France
| | - Ruben G. A. van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Maria José Lopez-Sanchez
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Stéphane Cruveiller
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Valérie Barbe
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute, National Sequencing Center; 2 rue Gaston Crémieux 91057 Evry France
| | - Claire Fraser
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore MD USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
- School of Biology, Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
| | - Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics; Geneva CH-1206 Switzerland
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - David Vallenet
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Zoé Rouy
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Claudine Médigue
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| |
Collapse
|
26
|
Miah F, Bibb MJ, Barclay JE, Findlay KC, Bornemann S. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate. MICROBIOLOGY-SGM 2016; 162:1208-1219. [PMID: 27121970 PMCID: PMC5042117 DOI: 10.1099/mic.0.000296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.
Collapse
Affiliation(s)
- Farzana Miah
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Elaine Barclay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
27
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
28
|
Abstract
Glycogen accumulation occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited because of the lack of a growth nutrient, e.g., a nitrogen source. This review describes the enzymatic reactions involved in glycogen synthesis and the allosteric regulation of the first enzyme, ADP-glucose pyrophosphorylase. The properties of the enzymes involved in glycogen synthesis, ADP-glucose pyrophosphorylase, glycogen synthase, and branching enzyme are also characterized. The data describing the genetic regulation of the glycogen synthesis are also presented. An alternate pathway for glycogen synthesis in mycobacteria is also described.
Collapse
|
29
|
Mendes V, Blaszczyk M, Maranha A, Empadinhas N, Blundell TL. Structure of Mycobacterium thermoresistibile GlgE defines novel conformational states that contribute to the catalytic mechanism. Sci Rep 2015; 5:17144. [PMID: 26616850 PMCID: PMC4663749 DOI: 10.1038/srep17144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022] Open
Abstract
GlgE, an enzyme of the pathway that converts trehalose to α-glucans, is essential for Mycobacterium tuberculosis. Inhibition of GlgE, which transfers maltose from a maltose-1-phosphate donor to α-glucan/maltooligosaccharide chain acceptor, leads to a toxic accumulation of maltose-1-phosphate that culminates in cellular death. Here we describe the first high-resolution mycobacterial GlgE structure from Mycobacterium thermoresistibile at 1.96 Å. We show that the structure resembles that of M. tuberculosis and Streptomyces coelicolor GlgEs, reported before, with each protomer in the homodimer comprising five domains. However, in M. thermoresistibile GlgE we observe several conformational states of the S domain and provide evidence that its high flexibility is important for enzyme activity. The structures here reported shed further light on the interactions between the N-terminal domains and the catalytic domains of opposing chains and how they contribute to the catalytic reaction. Importantly this work identifies a useful surrogate system to aid the development of GlgE inhibitors against opportunistic and pathogenic mycobacteria.
Collapse
Affiliation(s)
- Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Ana Maranha
- Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nuno Empadinhas
- Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
30
|
Yassin AF, Lapidus A, Han J, Reddy TBK, Huntemann M, Pati A, Ivanova N, Markowitz V, Woyke T, Klenk HP, Kyrpides NC. High quality draft genome sequence of Corynebacterium ulceribovis type strain IMMIB-L1395(T) (DSM 45146(T)). Stand Genomic Sci 2015; 10:50. [PMID: 26380638 PMCID: PMC4572677 DOI: 10.1186/s40793-015-0036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/07/2015] [Indexed: 01/21/2023] Open
Abstract
Corynebacterium ulceribovis strain IMMIB L-1395(T) (= DSM 45146(T)) is an aerobic to facultative anaerobic, Gram-positive, non-spore-forming, non-motile rod-shaped bacterium that was isolated from the skin of the udder of a cow, in Schleswig Holstein, Germany. The cell wall of C. ulceribovis contains corynemycolic acids. The cellular fatty acids are those described for the genus Corynebacterium, but tuberculostearic acid is not present. Here we describe the features of C. ulceribovis strain IMMIB L-1395(T), together with genome sequence information and its annotation. The 2,300,451 bp long genome containing 2,104 protein-coding genes and 54 RNA-encoding genes and is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.
Collapse
Affiliation(s)
- Atteyet F Yassin
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
| | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
| | - James Han
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|
32
|
Puchart V. Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnol Adv 2015; 33:261-76. [DOI: 10.1016/j.biotechadv.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
|
33
|
Macdonald SS, Blaukopf M, Withers SG. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. J Biol Chem 2015; 290. [PMID: 25533455 PMCID: PMC4335228 DOI: 10.1074/jbc.m114.621110|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
CAZy glycoside hydrolase family GH3 consists primarily of stereochemistry-retaining β-glucosidases but also contains a subfamily of β-N-acetylglucosaminidases. Enzymes from this subfamily were recently shown to use a histidine residue within a His-Asp dyad contained in a signature sequence as their catalytic acid/base residue. Reasons for their use of His rather than the Glu or Asp found in other glycosidases were not apparent. Through studies on a representative member, the Nag3 β-N-acetylglucosaminidase from Cellulomonas fimi, we now show that these enzymes act preferentially as glycoside phosphorylases. Their need to accommodate an anionic nucleophile within the enzyme active site explains why histidine is used as an acid/base catalyst in place of the anionic glutamate seen in other GH3 family members. Kinetic and mechanistic studies reveal that these enzymes also employ a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate, which was directly detected by mass spectrometry. Phosphate has no effect on the rates of formation of the glycosyl-enzyme intermediate, but it accelerates turnover of the N-acetylglucosaminyl-enzyme intermediate ∼3-fold, while accelerating turnover of the glucosyl-enzyme intermediate several hundredfold. These represent the first reported examples of retaining β-glycoside phosphorylases, and the first instance of free β-GlcNAc-1-phosphate in a biological context.
Collapse
Affiliation(s)
- Spencer S. Macdonald
- From the Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Markus Blaukopf
- From the Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G. Withers
- From the Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada, Supported by a Tier 1 Canada Research Chair. To whom correspondence should be addressed. Tel.: 604-822-3402; Fax: 604-822-8869; E-mail:
| |
Collapse
|
34
|
O'Neill EC, Field RA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 2015; 403:23-37. [PMID: 25060838 PMCID: PMC4336185 DOI: 10.1016/j.carres.2014.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 01/10/2023]
Abstract
Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise.
Collapse
Affiliation(s)
- Ellis C O'Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
35
|
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 2015; 197:1394-407. [PMID: 25666133 DOI: 10.1128/jb.02395-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings, taken together, suggest that C. glutamicum MalP is the first α-glucan phosphorylase that does not fit into the current system for classification of bacterial α-glucan phosphorylases and exemplifies the complex mechanisms underlying the control of glycogen content and maltose metabolism in this model organism.
Collapse
|
36
|
Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep 2015; 5:8026. [PMID: 25619172 PMCID: PMC4306142 DOI: 10.1038/srep08026] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/02/2015] [Indexed: 02/04/2023] Open
Abstract
A novel four-step pathway identified recently in mycobacteria channels trehalose to glycogen synthesis and is also likely involved in the biosynthesis of two other crucial polymers: intracellular methylglucose lipopolysaccharides and exposed capsular glucan. The structures of three of the intervening enzymes - GlgB, GlgE, and TreS - were recently reported, providing the first templates for rational drug design. Here we describe the structural characterization of the fourth enzyme of the pathway, mycobacterial maltokinase (Mak), uncovering a eukaryotic-like kinase (ELK) fold, similar to methylthioribose kinases and aminoglycoside phosphotransferases. The 1.15 Å structure of Mak in complex with a non-hydrolysable ATP analog reveals subtle structural rearrangements upon nucleotide binding in the cleft between the N- and the C-terminal lobes. Remarkably, this new family of ELKs has a novel N-terminal domain topologically resembling the cystatin family of protease inhibitors. By interfacing with and restraining the mobility of the phosphate-binding region of the N-terminal lobe, Mak's unusual N-terminal domain might regulate its phosphotransfer activity and represents the most likely anchoring point for TreS, the upstream enzyme in the pathway. By completing the gallery of atomic-detail models of an essential pathway, this structure opens new avenues for the rational design of alternative anti-tubercular compounds.
Collapse
|
37
|
Macdonald SS, Blaukopf M, Withers SG. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. J Biol Chem 2014; 290:4887-4895. [PMID: 25533455 DOI: 10.1074/jbc.m114.621110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CAZy glycoside hydrolase family GH3 consists primarily of stereochemistry-retaining β-glucosidases but also contains a subfamily of β-N-acetylglucosaminidases. Enzymes from this subfamily were recently shown to use a histidine residue within a His-Asp dyad contained in a signature sequence as their catalytic acid/base residue. Reasons for their use of His rather than the Glu or Asp found in other glycosidases were not apparent. Through studies on a representative member, the Nag3 β-N-acetylglucosaminidase from Cellulomonas fimi, we now show that these enzymes act preferentially as glycoside phosphorylases. Their need to accommodate an anionic nucleophile within the enzyme active site explains why histidine is used as an acid/base catalyst in place of the anionic glutamate seen in other GH3 family members. Kinetic and mechanistic studies reveal that these enzymes also employ a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate, which was directly detected by mass spectrometry. Phosphate has no effect on the rates of formation of the glycosyl-enzyme intermediate, but it accelerates turnover of the N-acetylglucosaminyl-enzyme intermediate ∼3-fold, while accelerating turnover of the glucosyl-enzyme intermediate several hundredfold. These represent the first reported examples of retaining β-glycoside phosphorylases, and the first instance of free β-GlcNAc-1-phosphate in a biological context.
Collapse
Affiliation(s)
- Spencer S Macdonald
- Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Markus Blaukopf
- Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Centre for High-throughput Biology, Departments of Chemistry and of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
38
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
39
|
Homotypic dimerization of a maltose kinase for molecular scaffolding. Sci Rep 2014; 4:6418. [PMID: 25245657 PMCID: PMC4171701 DOI: 10.1038/srep06418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/08/2014] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) uses maltose-1-phosphate to synthesize α-glucans that make up the major component of its outer capsular layer. Maltose kinase (MaK) catalyzes phosphorylation of maltose. The molecular basis for this phosphorylation is currently not understood. Here, we describe the first crystal structure of MtbMaK refined to 2.4 Å resolution. The bi-modular architecture of MtbMaK reveals a remarkably unique N-lobe. An extended sheet protrudes into ligand binding pocket of an adjacent monomer and contributes residues critical for kinase activity. Structure of the complex of MtbMaK bound with maltose reveals that maltose binds in a shallow cavity of the C-lobe. Structural constraints permit phosphorylation of α-maltose only. Surprisingly, instead of a Gly-rich loop, MtbMaK employs 'EQS' loop to tether ATP. Notably, this loop is conserved across all MaK homologues. Structures of MtbMaK presented here unveil features that are markedly different from other kinases and support the scaffolding role proposed for this kinase.
Collapse
|
40
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
41
|
Nobre A, Alarico S, Maranha A, Mendes V, Empadinhas N. The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies. MICROBIOLOGY-SGM 2014; 160:1547-1570. [PMID: 24858083 DOI: 10.1099/mic.0.075895-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trehalose is a natural glucose disaccharide identified in the 19th century in fungi and insect cocoons, and later across the three domains of life. In members of the genus Mycobacterium, which includes the tuberculosis (TB) pathogen and over 160 species of nontuberculous mycobacteria (NTM), many of which are opportunistic pathogens, trehalose has been an important focus of research over the last 60 years. It is a crucial player in the assembly and architecture of the remarkable mycobacterial cell envelope as an element of unique highly antigenic glycolipids, namely trehalose dimycolate ('cord factor'). Free trehalose has been detected in the mycobacterial cytoplasm and occasionally in oligosaccharides with unknown function. TB and NTM infection statistics and death toll, the decline in immune responses in the aging population, human immunodeficiency virus/AIDS or other debilitating conditions, and the proliferation of strains with different levels of resistance to the dated drugs in use, all merge into a serious public-health threat urging more effective vaccines, efficient diagnostic tools and new drugs. This review deals with the latest findings on mycobacterial trehalose biosynthesis, catabolism, processing and recycling, as well with the ongoing quest for novel trehalose-related mechanisms to be targeted by novel TB therapeutics. In this context, the drug-discovery pipeline has recently included new lead compounds directed toward trehalose-related targets highlighting the potential of these pathways to stem the tide of rising drug resistance.
Collapse
Affiliation(s)
- Ana Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Maranha
- Biosciences PhD Program, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- III/UC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
42
|
2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate. PLoS One 2014; 9:e86548. [PMID: 24466148 PMCID: PMC3899277 DOI: 10.1371/journal.pone.0086548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
The glycoside hydrolase family (GH) 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816) from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi)-dependent hydrolysis of kojibiose at the rate of 0.43 s−1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-d-glucose 1-phosphate (βGlc1P) as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a kcat of 2.8 s−1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H218O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-d-glucosylglycerol (GG) at the rate of 180 s−1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a kcat of 95 s−1. We propose 2-O-α-d-glucopyranosylglycerol: phosphate β-d-glucosyltransferase as the systematic name and 2-O-α-d-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates.
Collapse
|
43
|
Miah F, Koliwer-Brandl H, Rejzek M, Field RA, Kalscheuer R, Bornemann S. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria. ACTA ACUST UNITED AC 2013; 20:487-93. [PMID: 23601637 PMCID: PMC3918855 DOI: 10.1016/j.chembiol.2013.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/12/2013] [Accepted: 02/28/2013] [Indexed: 11/16/2022]
Abstract
Trehalose synthase (TreS) was thought to catalyze flux from maltose to trehalose, a precursor of essential trehalose mycolates in mycobacterial cell walls. However, we now show, using a genetic approach, that TreS is not required for trehalose biosynthesis in Mycobacterium smegmatis, whereas two alternative trehalose-biosynthetic pathways (OtsAB and TreYZ) are crucial. Consistent with this direction of flux, trehalose levels in Mycobacterium tuberculosis decreased when TreS was overexpressed. In addition, TreS was shown to interconvert the α anomer of maltose and trehalose using (1)H and (19)F-nuclear magnetic resonance spectroscopies using its normal substrates and deoxyfluoromaltose analogs, with the nonenzymatic mutarotation of α/β-maltose being slow. Therefore, flux through TreS in mycobacteria flows from trehalose to α-maltose, which is the appropriate anomer for maltose kinase of the GlgE α-glucan pathway, which in turn contributes to intracellular and/or capsular polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Farzana Miah
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
44
|
Roy R, Usha V, Kermani A, Scott DJ, Hyde EI, Besra GS, Alderwick LJ, Fütterer K. Synthesis of α-glucan in mycobacteria involves a hetero-octameric complex of trehalose synthase TreS and Maltokinase Pep2. ACS Chem Biol 2013; 8:2245-55. [PMID: 23901909 PMCID: PMC3805332 DOI: 10.1021/cb400508k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Recent evidence established that
the cell envelope of Mycobacterium
tuberculosis, the bacillus causing tuberculosis (TB), is
coated by an α-glucan-containing capsule that has been implicated
in persistence in a mouse infection model. As one of three known metabolic
routes to α-glucan in mycobacteria, the cytoplasmic GlgE-pathway
converts trehalose to α(1 → 4),α(1 → 6)-linked
glucan in 4 steps. Whether individual reaction steps, catalyzed by
trehalose synthase TreS, maltokinase Pep2, and glycosyltransferases
GlgE and GlgB, occur independently or in a coordinated fashion is
not known. Here, we report the crystal structure of M. tuberculosis TreS, and show by small-angle X-ray scattering and analytical ultracentrifugation
that TreS forms tetramers in solution. Together with Pep2, TreS forms
a hetero-octameric complex, and we demonstrate that complex formation
markedly accelerates maltokinase activity of Pep2. Thus, complex formation
may act as part of a regulatory mechanism of the GlgE pathway, which
overall must avoid accumulation of toxic pathway intermediates, such
as maltose-1-phosphate, and optimize the use of scarce nutrients.
Collapse
Affiliation(s)
- Rana Roy
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Ali Kermani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus,
Sutton Bonington LE12 5RD, U.K
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon OX11
0FA, U.K
| | - Eva I. Hyde
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
45
|
Caner S, Nguyen N, Aguda A, Zhang R, Pan YT, Withers SG, Brayer GD. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology 2013; 23:1075-83. [PMID: 23735230 DOI: 10.1093/glycob/cwt044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation.
Collapse
Affiliation(s)
- Sami Caner
- Department of Biochemistry and Molecular Biology, University of British Columbia, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol 2013; 17:301-9. [PMID: 23403067 DOI: 10.1016/j.cbpa.2013.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylases are one group of carbohydrate active enzymes involved in the cleavage and formation of glycosidic linkages together with glycoside hydrolases and sugar nucleotide-dependent glycosyltransferases. Noticeably, the catalyzed phosphorolysis is reversible, making phosphorylases suitable catalysts for efficient synthesis of particular oligosaccharides from a donor sugar 1-phosphate and suitable carbohydrate acceptors with strict regioselectivity. Although utilization of phosphorylases for oligosaccharide synthesis has been limited because only few different enzymes are known, recently the number of reported phosphorylases has gradually increased, providing the variation making these enzymes useful tools for efficient synthesis of diverse oligosaccharides.
Collapse
|
47
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
48
|
Insights into glycogen metabolism in chemolithoautotrophic bacteria from distinctive kinetic and regulatory properties of ADP-glucose pyrophosphorylase from Nitrosomonas europaea. J Bacteriol 2012; 194:6056-65. [PMID: 22961847 DOI: 10.1128/jb.00810-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.
Collapse
|
49
|
Mendes V, Maranha A, Alarico S, Empadinhas N. Biosynthesis of mycobacterial methylglucose lipopolysaccharides. Nat Prod Rep 2012; 29:834-44. [PMID: 22678749 DOI: 10.1039/c2np20014g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterial pathogenesis is closely associated with a unique cell envelope rich in complex carbohydrates and unique lipids, among which are the mycolic acids. Mycobacteria also synthesize unique intracellular polymethylated polysaccharides (PMPSs), namely methylglucose lipopolysaccharides (MGLPs), which are acylated with short-chain fatty acids, and methylmannose polysaccharides (MMPs). Since PMPSs modulate the synthesis of long-chain fatty acids in vitro, the possibility of a similar role in vivo and the regulation of mycolic acids assembly have been anticipated. Unlike MGLPs, MMPs have been identified in M. smegmatis and other fast-growing mycobacteria but not in M. tuberculosis, implying an essential role for MGLPs in this pathogen and turning the biosynthetic enzymes into attractive drug targets. The genome of M. tuberculosis was decoded 14 years ago but only recently has the identity of the genes involved in MGLPs biosynthesis been investigated. Two gene clusters (Rv1208-Rv1213 and Rv3030-Rv3037c) containing a few genes considered to be essential for M. tuberculosis growth, have initially been proposed to coordinate MGLPs biosynthesis. Among these genes, only the product of Rv1208 for the first step in the MGLPs pathway has, so far, been crystallized and its three-dimensional structure been determined. However, recent results indicate that at least three additional clusters may be involved in this pathway. The functional assignment of authentic roles to some of these M. tuberculosis H37Rv genes sheds new light on the intricacy of MGLPs biogenesis and renewed interest on their biological role.
Collapse
Affiliation(s)
- Vitor Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
50
|
Syson K, Stevenson CEM, Rejzek M, Fairhurst SA, Nair A, Bruton CJ, Field RA, Chater KF, Lawson DM, Bornemann S. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem 2011; 286:38298-38310. [PMID: 21914799 DOI: 10.1074/jbc.m111.279315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GlgE is a recently identified (1→4)-α-d-glucan:phosphate α-d-maltosyltransferase involved in α-glucan biosynthesis in bacteria and is a genetically validated anti-tuberculosis drug target. It is a member of the GH13_3 CAZy subfamily for which no structures were previously known. We have solved the structure of GlgE isoform I from Streptomyces coelicolor and shown that this enzyme has the same catalytic and very similar kinetic properties to GlgE from Mycobacterium tuberculosis. The S. coelicolor enzyme forms a homodimer with each subunit comprising five domains, including a core catalytic α-amylase-type domain A with a (β/α)(8) fold. This domain is elaborated with domain B and two inserts that are specifically configured to define a well conserved donor pocket capable of binding maltose. Domain A, together with domain N from the neighboring subunit, forms a hydrophobic patch that is close to the maltose-binding site and capable of binding cyclodextrins. Cyclodextrins competitively inhibit the binding of maltooligosaccharides to the S. coelicolor enzyme, showing that the hydrophobic patch overlaps with the acceptor binding site. This patch is incompletely conserved in the M. tuberculosis enzyme such that cyclodextrins do not inhibit this enzyme, despite acceptor length specificity being conserved. The crystal structure reveals two further domains, C and S, the latter being a helix bundle not previously reported in GH13 members. The structure provides a framework for understanding how GlgE functions and will help guide the development of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Shirley A Fairhurst
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Alap Nair
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Celia J Bruton
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, United Kingdom.
| |
Collapse
|