1
|
Salas-Leal AC, Salas-Pacheco SM, Hernández-Cosaín EI, Vélez-Vélez LM, Antuna-Salcido EI, Castellanos-Juárez FX, Méndez-Hernández EM, Llave-León OL, Quiñones-Canales G, Arias-Carrión O, Sandoval-Carrillo AA, Salas-Pacheco JM. Differential expression of PSMC4, SKP1, and HSPA8 in Parkinson's disease: insights from a Mexican mestizo population. Front Mol Neurosci 2023; 16:1298560. [PMID: 38115821 PMCID: PMC10728481 DOI: 10.3389/fnmol.2023.1298560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative condition characterized by alpha-synuclein aggregation and dysfunctional protein degradation pathways. This study investigates the differential gene expression of pivotal components (UBE2K, PSMC4, SKP1, and HSPA8) within these pathways in a Mexican-Mestizo PD population compared to healthy controls. We enrolled 87 PD patients and 87 controls, assessing their gene expression levels via RT-qPCR. Our results reveal a significant downregulation of PSMC4, SKP1, and HSPA8 in the PD group (p = 0.033, p = 0.003, and p = 0.002, respectively). Logistic regression analyses establish a strong association between PD and reduced expression of PSMC4, SKP1, and HSPA8 (OR = 0.640, 95% CI = 0.415-0.987; OR = 0.000, 95% CI = 0.000-0.075; OR = 0.550, 95% CI = 0.368-0.823, respectively). Conversely, UBE2K exhibited no significant association or expression difference between the groups. Furthermore, we develop a gene expression model based on HSPA8, PSMC4, and SKP1, demonstrating robust discrimination between healthy controls and PD patients. Notably, the model's diagnostic efficacy is particularly pronounced in early-stage PD. In conclusion, our study provides compelling evidence linking decreased gene expression of PSMC4, SKP1, and HSPA8 to PD in the Mexican-Mestizo population. Additionally, our gene expression model exhibits promise as a diagnostic tool, particularly for early-stage PD diagnosis.
Collapse
Affiliation(s)
- Alma C. Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Sergio M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Erik I. Hernández-Cosaín
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Lilia M. Vélez-Vélez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | | | - Edna M. Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| | - Ada A. Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - José M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| |
Collapse
|
2
|
Boyd RJ, McClymont SA, Barrientos NB, Hook PW, Law WD, Rose RJ, Waite EL, Rathinavelu J, Avramopoulos D, McCallion AS. Evaluating the mouse neural precursor line, SN4741, as a suitable proxy for midbrain dopaminergic neurons. BMC Genomics 2023; 24:306. [PMID: 37286935 PMCID: PMC10245633 DOI: 10.1186/s12864-023-09398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo, mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.
Collapse
Affiliation(s)
- Rachel J. Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sarah A. McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Nelson B. Barrientos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Paul W. Hook
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - William D. Law
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Rebecca J. Rose
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Eric L. Waite
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jay Rathinavelu
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Andrew S. McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
3
|
Boyd RJ, McClymont SA, Barrientos NB, Hook PW, Law WD, Rose RJ, Waite EL, Rathinavelu J, Avramopoulos D, McCallion AS. Evaluating the mouse neural precursor line, SN4741, as a suitable proxy for midbrain dopaminergic neurons. RESEARCH SQUARE 2023:rs.3.rs-2520557. [PMID: 36824793 PMCID: PMC9949168 DOI: 10.21203/rs.3.rs-2520557/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.
Collapse
|
4
|
Boyd RJ, McClymont SA, Barrientos NB, Hook PW, Law WD, Rose RJ, Waite EL, Avramopoulos D, McCallion AS. Evaluating the mouse neural precursor line, SN4741, as a suitable proxy for midbrain dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525270. [PMID: 36747739 PMCID: PMC9900784 DOI: 10.1101/2023.01.23.525270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.
Collapse
Affiliation(s)
- Rachel J. Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah A. McClymont
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nelson B. Barrientos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul W. Hook
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William D. Law
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca J. Rose
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric L. Waite
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
6
|
Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
|
7
|
Rees DJ, Roberts L, Carla Carisi M, Morgan AH, Brown MR, Davies JS. Automated Quantification of Mitochondrial Fragmentation in an In Vitro Parkinson's Disease Model. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e105. [PMID: 33147381 DOI: 10.1002/cpns.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal mitochondrial fragmentation is a phenotype exhibited in models of neurodegeneration such as Parkinson's disease. Delineating the dysfunction in mitochondrial dynamics found in diseased states can aid our understanding of underlying mechanisms of disease progression and possibly identify novel therapeutic approaches. Advances in microscopy and the availability of intuitive open-access software have accelerated the rate of image acquisition and analysis, respectively. These developments allow routine biology researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilization of cell culture techniques, high-content imaging (HCI), and the subsequent open-source image analysis pipeline for the quantification of mitochondrial fragmentation in the context of a rotenone-based in vitro Parkinson's disease model. © 2020 The Authors. Basic Protocol 1: SN4741 neuron culture and treatment in a rotenone-based model of Parkinson's disease Basic Protocol 2: Identification of cell nuclei, measurement of mitochondrial membrane potential, and measurement of mitochondrial fragmentation in mouse-derived midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Daniel J Rees
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Luke Roberts
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom
| | - M Carla Carisi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Alwena H Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom
| | - M Rowan Brown
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, United Kingdom
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom
| |
Collapse
|
8
|
Dabool L, Hakim-Mishnaevski K, Juravlev L, Flint-Brodsly N, Mandel S, Kurant E. Drosophila Skp1 Homologue SkpA Plays a Neuroprotective Role in Adult Brain. iScience 2020; 23:101375. [PMID: 32739834 PMCID: PMC7399183 DOI: 10.1016/j.isci.2020.101375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Skp1, a component of the ubiquitin E3 ligases, was found to be decreased in the brains of sporadic Parkinson's disease (PD) patients, and its overexpression prevented death of murine neurons in culture. Here we expose the neuroprotective role of the Drosophila skp1 homolog, skpA, in the adult brain. Neuronal knockdown of skpA leads to accumulation of ubiquitinated protein aggregates and loss of dopaminergic neurons accompanied by motor dysfunction and reduced lifespan. Conversely, neuronal overexpression of skpA reduces aggregate load, improves age-related motor decline, and prolongs lifespan. Moreover, SkpA rescues neurodegeneration in a Drosophila model of PD. We also show that a Drosophila homolog of FBXO7, the F Box protein, Nutcracker (Ntc), works in the same pathway with SkpA. However, skpA overexpression rescues ntc knockdown phenotype, suggesting that SkpA interacts with additional F box proteins in the adult brain neurons. Collectively, our study discloses Skp1/SkpA as a potential therapeutic target in neurodegenerative diseases. SkpA-mediated protein degradation is required for normal function of the adult brain SkpA overexpression rescues neurodegeneration in α-synuclein-induced fly PD model SkpA and Ntc work in the same pathway of protein degradation in adult brain neurons
Collapse
Affiliation(s)
- Lital Dabool
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel
| | - Liza Juravlev
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel
| | - Naama Flint-Brodsly
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel
| | - Silvia Mandel
- The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
9
|
Creation of a gene expression classifier for predicting Parkinson's disease rate of progression. J Neural Transm (Vienna) 2020; 127:755-762. [PMID: 32385576 DOI: 10.1007/s00702-020-02194-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) etiology is heterogeneous, genetic, and multi-factorial, resulting in a varied disease from a mild slow progression to a more severe rapid progression. Prognostic information on the nature of the patient's disease at diagnosis aids the physician in counseling patients on treatment options and life planning. In a cohort of PD patients from the PPMI study, the relative gene expression levels of SKP1A, UBE2K, ALDH1A1, PSMC4, HSPA8 and LAMB2 were measured in baseline blood samples by real-time quantitative PCR. At baseline PD patients were up to 2 years from diagnosis, H&Y scale ≤ 2 and PD treatment naïve. PD-Prediction algorithm comprised of ALDH1A1, LAMB2, UBE2K, SKP1A and age was created by logistic regression for predicting progression to ≤ 70% Modified Schwab and England Activities of Daily Living (S&E-ADL). In relation to patients negative for PD-Prediction (n = 180), patients positive (n = 30) for Cutoff-1 (at 82% specificity, 80.0% sensitivity) had positive hazard ratio (HR+) of 10.6 (95% CI, 2.2-50.1), and positive (n = 23) for Cutoff-2 (at 93% specificity, 47% sensitivity) had HR+ of 17.1 (95% CI, 3.2-89.9) to progress to ≤ 70% S&E-ADL within 3 years (P value < 0.0001). Likewise, patients positive for PD-Prediction Cutoff-1 (n = 49) had HR+ 4.3 (95% CI, 1.6-11.6) for faster time to H&Y 3 in relation to patients negative (n = 170) for PD-Prediction (P value = 0.0002). Our findings show an algorithm that seems to predict fast PD progression and may potentially be used as a tool to assist the physician in choosing an optimal treatment plan, improving the patient's quality of life and overall health outcome.
Collapse
|
10
|
Differential Alterations in Metabolism and Proteolysis-Related Proteins in Human Parkinson's Disease Substantia Nigra. Neurotox Res 2017; 33:560-568. [PMID: 29218503 DOI: 10.1007/s12640-017-9843-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is the most common neurodegenerative disorder after Alzheimer's disease, with the majority of cases being sporadic or "idiopathic". The aetiology of the sporadic form is still unknown, but there is a broad consensus that Parkinson's disease involves multiple pathways. In previous human post-mortem studies investigating substantia nigra of parkinsonian subjects, gene expression alterations in various metabolic pathways including protein folding, trafficking, aggregation, ubiquitination and oxidative stress were found. These studies revealed transcriptomic dysregulation of various genes, amongst others Skp1A and PSMC4 (part of ubiquitin-proteasome system), HSC70 (belonging to the chaperone family) and ALDH1A1 (an enzyme involved in the catabolism of dopamine). To investigate whether these alterations are manifested at the protein level, we performed immunohistochemical analysis in the substantia nigra of Parkinson's disease and compared them to Alzheimer's disease and non-neurological post-mortem controls. We were able to confirm cell-specific reductions in the protein content of ALHD1A1 and Skp1A in the dopaminergic neurons of the substantia nigra of Parkinsonian patients compared to Alzheimer's and control subjects. Furthermore, we observed particular distribution for HSC70 and PSMC4 in the cytoplasm and accumulation within Lewy body in the dopaminergic neurons of the substantia nigra in Parkinson patients. These findings, together with previous evidence, suggest a malfunction of the ubiquitin-proteasome and possible autophagy systems as major players in protein misfolding and aggregation in Parkinson's disease. Nevertheless, this needs further proof, possibly with trajectory time line.
Collapse
|
11
|
Li X, Zhang G, Nie Q, Wu T, Jiao L, Zheng M, Wan X, Li Y, Wu S, Jiang B, Xiang X, Duan J, Lin X. Baicalein blocks α-synuclein secretion from SN4741 cells and facilitates α-synuclein polymerization to big complex. Neurosci Lett 2017; 655:109-114. [PMID: 28676257 DOI: 10.1016/j.neulet.2017.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/07/2017] [Accepted: 06/18/2017] [Indexed: 10/19/2022]
Abstract
The secretion of α-synuclein (α-syn) acts as an essential driver in the propagation of synucleinopathies in brain. The clearance of extracellular α-syn or blockade of the cell-to-cell transmission of α-syn is a promising approach to prohibiting synucleinopathies propagation. Baicalein (BAI), a flavonoid from Chinese herb, has been reported to bind covalently to α-syn to inhibit α-syn fibrillation and degrade its fibrils. However, whether BAI inhibits α-syn secretion is unclear. Here we showed that BAI reduced α-syn in the media of dopaminergic cell lines (SN4741) overexpressing wild-type α-syn (W-syn) or A53T mutant type α-syn (A53T-syn), while increased α-syn expression in cell lysates, upregulated the cell viability and increased the ratio of LC3 II/LC3 I, the latter is an indicator reflects the macroautophagic level. Intriguingly, BAI did not clear extracellular α-syn directly but facilitated α-syn polymerization to big complex (over 72kDa), which revealed that BAI probably reduced α-syn transmission by facilitating α-syn polymerization to big complex. Taken together, BAI could be a potential drug to inhibit α-syn propagation among the neurons.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Guofeng Zhang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Qi Nie
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Ting Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Luyan Jiao
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Meige Zheng
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Xiaomei Wan
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yonglin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Song Wu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan Road 2, Guangzhou 510080, China
| | - Xianhong Xiang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, #58, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.
| | - Jinhai Duan
- Department of Neurology, Guangdong General Hosptial, #106, Zhongshan 2nd Road, Guanzhou 510080, Guangdong, China.
| | - Xian Lin
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, #74, Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
12
|
Migliara G, Mueller M, Piermattei A, Brodie C, Paidas MJ, Barnea ER, Ria F. PIF* promotes brain re-myelination locally while regulating systemic inflammation- clinically relevant multiple sclerosis M.smegmatis model. Oncotarget 2017; 8:21834-21851. [PMID: 28423529 PMCID: PMC5400627 DOI: 10.18632/oncotarget.15662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
Neurologic disease diagnosis and treatment is challenging. Multiple Sclerosis (MS) is a demyelinating autoimmune disease with few clinical forms and uncertain etiology. Current studies suggest that it is likely caused by infection(s) triggering a systemic immune response resulting in antigen/non-antigen-related autoimmune response in central nervous system (CNS). New therapeutic approaches are needed. Secreted by viable embryos, PreImplantation Factor (PIF) possesses a local and systemic immunity regulatory role. Synthetic PIF (PIF) duplicates endogenous peptide's protective effect in pre-clinical autoimmune and transplantation models. PIF protects against brain hypoxia-ischemia by directly targeting microglia and neurons. In chronic experimental autoimmune encephalitis (EAE) model PIF reverses paralysis while promoting neural repair. Herein we report that PIF directly promotes brain re-myelination and reverses paralysis in relapsing remitting EAE MS model. PIF crosses the blood-brain barrier targeting microglia. Systemically, PIF decreases pro-inflammatory IL23/IL17 cytokines, while preserving CNS-specific T-cell repertoire. Global brain gene analysis revealed that PIF regulates critical Na+/K+/Ca++ ions, amino acid and glucose transport genes expression. Further, PIF modulates oxidative stress, DNA methylation, cell cycle regulation, and protein ubiquitination while regulating multiple genes. In cultured astrocytes, PIF promotes BDNF-myelin synthesis promoter and SLC2A1 (glucose transport) while reducing deleterious E2F5, and HSP90ab1 (oxidative stress) genes expression. In cultured microglia, PIF increases anti-inflammatory IL10 while reducing pro-inflammatory IFNγ expression. Collectively, PIF promotes brain re-myelination and neuroprotection in relapsing remitting EAE MS model. Coupled with ongoing, Fast-Track FDA approved clinical trial, NCT#02239562 (immune disorder), current data supports PIF's translation for neurodegenerative disorders therapy.
Collapse
Affiliation(s)
- Giuseppe Migliara
- Università Cattolica del S. Cuore, Institute of General Pathology, Largo Francesco Vito, 100168 Rome, Italy
- Present address: Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University of Bern, 3010, Bern, Switzerland
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine, FMB 3398, New Haven, CT 06520-8063, USA
| | - Alessia Piermattei
- Università Cattolica del S. Cuore, Institute of General Pathology, Largo Francesco Vito, 100168 Rome, Italy
| | - Chaya Brodie
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine, FMB 3398, New Haven, CT 06520-8063, USA
| | - Eytan R. Barnea
- Society for the Investigation of Early Pregnancy (SIEP), Cherry Hill, NJ 08003, USA
- BioIncept, Cherry Hill, NJ 08003, USA
| | - Francesco Ria
- Università Cattolica del S. Cuore, Institute of General Pathology, Largo Francesco Vito, 100168 Rome, Italy
| |
Collapse
|
13
|
Zhang H, Li S, Liu P, Lee FHF, Wong AHC, Liu F. Proteomic analysis of the cullin 4B interactome using proximity-dependent biotinylation in living cells. Proteomics 2017; 17. [PMID: 28225217 DOI: 10.1002/pmic.201600163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
Abstract
Cullin 4B (CUL4B) mutations have been implicated in mental retardation and dopamine-related behaviors due to disruptions in their interaction with cullin-RING E3 ligases (CRLs). Thus, further identification of CUL4B substrates can increase the knowledge of protein homeostasis and illuminate the role of CUL4B in neuropsychiatric disease. However, the transient nature of the coupling between CUL4B and its substrates is difficult to detect in vivo using current approaches, thus hampers efforts to investigate functions of CRLs within unperturbed living systems. In this study, we sought to discover CUL4B interactants with or without dopamine stimulation. BirA (118G) proximity-dependent biotin labeling combined with LC-MS was employed to biotinylate and identify transient and weak interactants of CUL4B. After purification with streptavidin beads and identified by LC-MS, a total of 150 biotinylated proteins were identified at baseline condition, 53 of which are well-known CUL4B interactants. After dopamine stimulation, 29 proteins disappeared and were replaced by 21 different protein interactants. The altered CUL4B interactants suggest that CUL4B regulates protein turnover and homeostasis in response to dopamine stimulation. Our results demonstrate the potential of this approach to identify novel CUL4B-related molecules in respond to cellular stimuli, which may be applied to other types of signaling pathways.
Collapse
Affiliation(s)
- Hailong Zhang
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shupeng Li
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pingting Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Frankie H F Lee
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
15
|
Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep 2016; 3:40-52. [PMID: 26857251 DOI: 10.1007/s40572-016-0083-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the start of the postgenomics era, most Parkinson's disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene-environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case-control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood-brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides' neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.
Collapse
Affiliation(s)
- Beate R Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA. .,Center for Occupational and Environmental Health, UCLA, Los Angeles, CA, USA. .,Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA
| | - Jeff M Bronstein
- Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Shao Y, Figeys D, Ning Z, Mailloux R, Chan HM. Methylmercury can induce Parkinson's-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: a genomic and proteomic analysis on MN9D dopaminergic neuron cells. J Toxicol Sci 2016; 40:817-28. [PMID: 26558463 DOI: 10.2131/jts.40.817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to environmental chemicals has been implicated as a possible risk factor for the development of neurodegenerative diseases. Our previous study showed that methylmercury (MeHg) exposure can disrupt synthesis, uptake and metabolism of dopamine similar to 1-methyl-4-phenylpyridinium (MPP(+)). The objective of this study was to investigate the effects of MeHg exposure on gene and protein profiles in a dopaminergic MN9D cell line. MN9D cells were treated with MeHg (1-5 μM) and MPP(+) (10-40 μM) for 48 hr. Real-time PCR Parkinson's disease (PD) arrays and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) were performed for the analysis. PD PCR array results showed that 19% genes were significantly changed in the 2.5 μM MeHg treated cells, and 39% genes were changed in the 5 μM MeHg treated cells. In comparison, MPP(+) treatment (40 µM) resulted in significant changes in 25% genes. A total of 15 common genes were altered by both MeHg and MPP(+), and dopaminergic signaling transduction was the most affected pathway. Proteomic analysis identified a total of 2496 proteins, of which 188, 233 and 395 proteins were differentially changed by 1 μM and 2.5 μM MeHg, and MPP(+) respectively. A total of 61 common proteins were changed by both MeHg and MPP(+) treatment. The changed proteins were mainly involved in energetic generation-related metabolism pathway (propanoate metabolism, pyruvate metabolism and fatty acid metabolism), oxidative phosphorylation, proteasome, PD and other neurodegenerative disorders. A total of 7 genes/proteins including Ube2l3 (Ubiquitin-conjugating enzyme E2 L3) and Th (Tyrosine 3-monooxygenase) were changed in both genomic and proteomic analysis. These results suggest that MeHg and MPP(+) share many similar signaling pathways leading to the pathogenesis of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yueting Shao
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Canada
| | | | | | | | | |
Collapse
|
17
|
Wang S, Wang Y, Sun X, Zhang Z, Liu T, Gadahi JA, Xu L, Yan R, Song X, Li X. Protective immunity against acute toxoplasmosis in BALB/c mice induced by a DNA vaccine encoding Toxoplasma gondii 10 kDa excretory-secretory antigen (TgESA10). Vet Parasitol 2015; 214:40-8. [PMID: 26421596 DOI: 10.1016/j.vetpar.2015.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii 10 kDa excretory-secretory antigen (TgESA10) is involved in the early stages of host invasion. The aim of this study was to evaluate the immune protective efficacy of a DNA vaccine encoding TgESA10 gene against acute T. gondii infection in mice. The gene sequence encoding TgESA10 was inserted into the eukaryotic expression vector pVAX I, and the efficacy of intramuscular vaccination of BALB/c mice with pVAX-ESA10 was analyzed. Mice immunized with pVAX-ESA10 elicited high titers of total IgG, IgG1, IgG2a, IgA and IgM antibodies, while IgE showed no changes. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. Additionally, we found that pVAX-ESA10 enhanced the activation of CD4(+) and CD8(+) T cells and the expression of MHC-I and MHC-II molecules in spleen in mice. Immunization with pVAX-ESA10 significantly prolonged survival time (14.3 ± 1.7 days) after challenge infection with the virulent T. gondii RH strain, compared with the control groups which died within 8 days. These results suggested that TgESA10 DNA vaccine could trigger strong humoral and cellular responses and induce partial protection against acute toxoplasmosis.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoni Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingqi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
18
|
Jeong HS, Jung ES, Sim YJ, Kim SJ, Jang JW, Hong KS, Lee WY, Chung HM, Park KT, Jung YS, Kim CH, Kim KS. Fbxo25 controls Tbx5 and Nkx2-5 transcriptional activity to regulate cardiomyocyte development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:709-21. [PMID: 25725482 DOI: 10.1016/j.bbagrm.2015.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in protein quality control, cellular signalings, and cell differentiation through the regulated turnover of key transcription factors in cardiac tissue. However, the molecular mechanism underlying Fbxo25-mediated ubiquitination of cardiac transcription factors remains elusive. We report that an Fbxo25-mediated SCF ubiquitination pathway regulates the protein levels and activities of Tbx5 and Nkx2-5 based on our studies using MG132, proteasome inhibitor, and the temperature sensitive ubiquitin system in ts20 cells. Our data indicate that Fbxo25 directly interacts with Tbx5 and Nkx2-5 in vitro and in vivo. In support of our findings, a dominant-negative mutant of Fbxo25, Fbxo251-236, prevents Tbx5 degradation and increases Tbx5 transcriptional activity in a Tbx5 responsive luciferase assay. Therefore, Fbxo25 facilitates Tbx5 degradation in an SCF-dependent manner. In addition, the silencing of endogenous Fbxo25 increases Tbx5 and Nkx2-5 mRNA levels and suppresses mESC-derived cardiomyocyte differentiation. Likewise, the exogenous expression of FBXO25 downregulates NKX2-5 level in human ESC-derived cardiomyocytes. In myocardial infarction model, Fbxo25 mRNA decreases, whereas the mRNA and protein levels of Tbx5 and Nkx2-5 increase. The protein levels of Tbx5 and Nkx2-5 are regulated negatively by Fbxo25-mediated SCF ubiquitination pathway. Thus, our findings reveal a novel mechanism for regulation of SCFFbox25-dependent Nkx2-5 and Tbx5 ubiquitination in cardiac development and provide a new insight into the regulatory mechanism of Nkx2-5 and Tbx5 transcriptional activity.
Collapse
Affiliation(s)
- Hoe-Su Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Eun-Shil Jung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ye-Ji Sim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Su-Jin Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae-Woo Jang
- Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | - Ki-Sung Hong
- Department of Developmental Biology, CHA University, Seoul 135-907, Republic of Korea
| | - Won-Young Lee
- Major of Animal Science, College of Natural Science, Konkuk University, Chungju 380-701, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kyung-Tae Park
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Chang-Hoon Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
19
|
Mayilswami S, Krishnan K, Megharaj M, Naidu R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:288-297. [PMID: 25285771 DOI: 10.1016/j.ecoenv.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
PFOS is a toxic, persistent environmental pollutant which is widespread worldwide. PFOS contamination has entered the food chain and is interfering with normal development in man and is neurotoxic, hepatotoxic and tumorigenic. The earthworm, Eisenia fetida is one of the organisms which can help to diagnose soil health and contamination at lower levels in the food chain. Studying the chronic effects of sub-lethal PFOS exposure in such an organism is therefore appropriate. As PFOS bioaccumulates and is not easily biodegraded, it is biomagnified up the food chain. Gene expression studies will give us information to develop biomarkers for early diagnosis of soil contamination, well before this contaminant passes up the food chain. We have carried out mRNA sequencing of control and chronically PFOS exposed E. fetida and reconstructed the transcripts in silico and identified the differentially expressed genes. Our findings suggest that PFOS up/down regulates neurodegenerative-related human homologues and can cause neuronal damage in E. fetida. This information will help to understand the links between neurodegenerative disorders and environmental pollutants such as PFOS. Furthermore, these up/down regulated genes can be used as biomarkers to detect a sub-lethal presence of PFOS in soil. Neuronal calcium sensor-2, nucleoside diphosphate kinase, polyadenylate-binding protein-1 and mitochondrial Pyruvate dehydrogenase protein-X component, could be potential biomarkers for sub lethal concentrations of PFOS.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| |
Collapse
|
20
|
Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, Lin Z. Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics 2014; 14:1481-94. [PMID: 24024899 DOI: 10.2217/pgs.13.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Since previous functional studies of short haplotypes and polymorphic sites of SLC6A3 have shown variant-dependent and drug-sensitive promoter activity, this study aimed to understand whether a large SLC6A3 regulatory region, containing these small haplotypes and polymorphic sites, can display haplotype-dependent promoter activity in a drug-sensitive and pathway-related manner. MATERIALS & METHODS By creating and using a single copy number luciferase-reporter vector, we examined regulation of two different SLC6A3 haplotypes (A and B) of the 5´ 18-kb promoter and two known downstream regulatory variable number tandem repeats by 17 drugs in four different cellular models. RESULTS The two regulatory haplotypes displayed up to 3.2-fold difference in promoter activity. The regulations were drug selective (37.5% of the drugs showed effects), and both haplotype and cell type dependent. Pathway analysis revealed at least 13 main signaling hubs targeting SLC6A3, including histone deacetylation, AKT, PKC and CK2 α-chains. CONCLUSION SLC6A3 may be regulated via either its promoter or the variable number tandem repeats independently by specific signaling pathways and in a haplotype-dependent manner. Furthermore, we have developed the first pathway map for SLC6A3 regulation. These findings provide a framework for understanding complex and variant-dependent regulations of SLC6A3.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Psychiatry, Harvard Medical School & Laboratory of Psychiatric Neurogenomics, Division of Alcohol & Drug Abuse, McLean Hospital, Mailstop 318, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Sandhya P, Danda D. Role of vacuolar ATPase and Skp1 in Sjögren's syndrome. Med Hypotheses 2014; 82:319-25. [PMID: 24480435 DOI: 10.1016/j.mehy.2013.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Immune mechanisms alone cannot directly account for exocrine gland dysfunction and extraglandular features such as renal tubular acidosis, neuropathy, hearing loss and fatigue in Sjögren's syndrome (SS). Absence of Vacuolar ATPase (V-ATPase) has been reported in SS related renal tubular acidosis (RTA). We hypothesise how defect in V-ATPase could account for decreased neurotransmitter release leading onto exocrine dysfunction, neuroendocrine manifestations and hearing loss which are well described manifestations in SS. S-phase-kinase-associated protein-1 (Skp1) is a constituent of RAVE which is involved in V-ATPase assembly. It is also a component of SCF ligase which is crucial in NFκB signalling. SKP1 also interacts with TRIM 21/Ro 52 which is an autoantigen in SS. By virtue of these interactions, we postulate how a defective skp1 could fit into the existing pathogenesis of SS and also account for increased risk of lymphoma in SS as well as congenital heart block in fetus of mothers with SS.
Collapse
Affiliation(s)
- Pulukool Sandhya
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India.
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India
| |
Collapse
|
22
|
Anuppalle M, Maddirevula S, Huh TL, Rhee M. Ubiquitin proteasome system networks in the neurological disorders. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.855256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
23
|
Rhodes SL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease. ENVIRONMENTAL RESEARCH 2013; 126:1-8. [PMID: 23988235 PMCID: PMC3832349 DOI: 10.1016/j.envres.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/07/2013] [Accepted: 08/02/2013] [Indexed: 05/06/2023]
Abstract
Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures.
Collapse
Affiliation(s)
- Shannon L. Rhodes
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
| | | | - Myles Cockburn
- Dept of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
- Dept of Geography, USC, Los Angeles, CA
| | - Jeff M. Bronstein
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Janet S. Sinsheimer
- Depts of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA
| | - Beate Ritz
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
24
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Poly-glutamine (polyQ) diseases are neurodegenerative disorders characterised by expanded CAG repeats in the causative genes whose proteins form inclusion bodies. Various E3 ubiquitin ligases are implicated in neurodegenerative disorders. We report that dysfunction of the SCF (Skp1-Cul1-F-box protein) complex, one of the most well-characterised ubiquitin ligases, is associated with pathology in polyQ diseases like Huntington's disease (HD) and Machado–Joseph disease (MJD). We found that Cullin1 (Cul1) and Skp1, core components of the SCF complex, are reduced in HD mice brain. A reduction in Cul1 levels was also observed in cellular HD model and fly models of both HD and MJD. We show that Cul1 is able to genetically modify mutant huntingtin aggregates because its silencing results in increased aggregate load in cultured cells. Moreover, we demonstrate that silencing dCul1 and dSkp1 in Drosophila results in increased aggregate load and enhanced polyQ-induced toxicity. Our results imply that reduced levels of SCF complex might contribute to polyQ disease pathology.
Collapse
|
26
|
Hunecke D, Spanel R, Länger F, Nam SW, Borlak J. MYC-regulated genes involved in liver cell dysplasia identified in a transgenic model of liver cancer. J Pathol 2012; 228:520-33. [DOI: 10.1002/path.4059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022]
|
27
|
Manavalan A, Ramachandran U, Sundaramurthi H, Mishra M, Sze SK, Hu JM, Feng ZW, Heese K. Gastrodia elata Blume (tianma) mobilizes neuro-protective capacities. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:219-241. [PMID: 22773961 PMCID: PMC3388733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Tianma (Gastrodia elata Blume) is a traditional Chinese medicine (TCM) often used for the treatment of headache, convulsions, hypertension and neurodegenerative diseases. Tianma also modulates the cleavage of the amyloid precursor protein App and cognitive functions in mice. The neuronal actions of tianma thus led us to investigate its specific effects on neuronal signalling. Accordingly, this pilot study was designed to examine the effects of tianma on the proteome metabolism in differentiated mouse neuronal N2a cells using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach. We identified 2178 proteins, out of which 74 were found to be altered upon tianma treatment in differentiated mouse neuronal N2a cells. Based on the observed data obtained, we hypothesize that tianma could promote neuro-regenerative processes by inhibiting stress-related proteins and mobilizing neuroprotective genes such as Nxn, Dbnl, Mobkl3, Clic4, Mki67 and Bax with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
Affiliation(s)
- Arulmani Manavalan
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Umamaheswari Ramachandran
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Husvinee Sundaramurthi
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mishra
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of ScienceKunming, Yunnan 650204, People’s Republic of China
| | - Zhi Wei Feng
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
| | - Klaus Heese
- School of Biological Sciences, College of Science, Nanyang Technological University60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Advanced Studies, Nanyang Technological University60 Nanyang View, Singapore 639673, Singapore
| |
Collapse
|
28
|
Molochnikov L, Rabey JM, Dobronevsky E, Bonucelli U, Ceravolo R, Frosini D, Grünblatt E, Riederer P, Jacob C, Aharon-Peretz J, Bashenko Y, Youdim MBH, Mandel SA. A molecular signature in blood identifies early Parkinson's disease. Mol Neurodegener 2012; 7:26. [PMID: 22651796 PMCID: PMC3424147 DOI: 10.1186/1750-1326-7-26] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/31/2012] [Indexed: 01/01/2023] Open
Abstract
Background The search for biomarkers in Parkinson’s disease (PD) is crucial to identify the disease early and monitor the effectiveness of neuroprotective therapies. We aim to assess whether a gene signature could be detected in blood from early/mild PD patients that could support the diagnosis of early PD, focusing on genes found particularly altered in the substantia nigra of sporadic PD. Results The transcriptional expression of seven selected genes was examined in blood samples from 62 early stage PD patients and 64 healthy age-matched controls. Stepwise multivariate logistic regression analysis identified five genes as optimal predictors of PD: p19 S-phase kinase-associated protein 1A (odds ratio [OR] 0.73; 95% confidence interval [CI] 0.60–0.90), huntingtin interacting protein-2 (OR 1.32; CI 1.08–1.61), aldehyde dehydrogenase family 1 subfamily A1 (OR 0.86; 95% CI 0.75–0.99), 19 S proteasomal protein PSMC4 (OR 0.73; 95% CI 0.60–0.89) and heat shock 70-kDa protein 8 (OR 1.39; 95% CI 1.14–1.70). At a 0.5 cut-off the gene panel yielded a sensitivity and specificity in detecting PD of 90.3 and 89.1 respectively and the area under the receiving operating curve (ROC AUC) was 0.96. The performance of the five-gene classifier on the de novo PD individuals alone composing the early PD cohort (n = 38), resulted in a similar ROC with an AUC of 0.95, indicating the stability of the model and also, that patient medication had no significant effect on the predictive probability (PP) of the classifier for PD risk. The predictive ability of the model was validated in an independent cohort of 30 patients at advanced stage of PD, classifying correctly all cases as PD (100% sensitivity). Notably, the nominal average value of the PP for PD (0.95 (SD = 0.09)) in this cohort was higher than that of the early PD group (0.83 (SD = 0.22)), suggesting a potential for the model to assess disease severity. Lastly, the gene panel fully discriminated between PD and Alzheimer’s disease (n = 29). Conclusions The findings provide evidence on the ability of a five-gene panel to diagnose early/mild PD, with a possible diagnostic value for detection of asymptomatic PD before overt expression of the disorder.
Collapse
|
29
|
Mandel SA, Fishman-Jacob T, Youdim MB. Targeting Skp1, an Ubiquitin E3 Ligase Component Found Decreased in Sporadic Parkinsons Disease. NEURODEGENER DIS 2012; 10:220-3. [DOI: 10.1159/000333223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
|
30
|
Genetic reduction of the E3 ubiquitin ligase element, SKP1A and environmental manipulation to emulate cardinal features of Parkinson's disease. Parkinsonism Relat Disord 2012; 18 Suppl 1:S177-9. [DOI: 10.1016/s1353-8020(11)70055-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Kumar P, Pradhan K, Karunya R, Ambasta RK, Querfurth HW. Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders. J Neurochem 2011; 120:350-70. [DOI: 10.1111/j.1471-4159.2011.07588.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Habibi E, Masoudi-Nejad A, Abdolmaleky HM, Haggarty SJ. Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 2011; 11:523-37. [DOI: 10.1007/s10142-011-0246-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 02/02/2023]
|
33
|
Abstract
Parkinson's disease (PD) is a primary neurodegenerative movement disorder. In most cases it occurs as a sporadic type of disease, but there are also rare familial forms. Pathologically Parkinson's disease is characterized by loss of dopaminergic neurons in the compact part of substantia nigra. As a part of the neurodegenerative process protein aggregates will accumulate as Lewy bodies in dopaminergic neurons (1). In addition, non-dopaminergic neurons are known to be affected in Parkinsons's disease, for example, in several brain stem nuclei and the olfactoric bulb (2-4). The pathogenic process underlying the death of dopaminergic neurons is far from fully understood. Along with mitochondrial dysfunction, excitotoxicity, neuroinflammation and oxidative stress (5-8), recent evidence indicates that accumulation of protein filaments in Lewy bodies actively takes part in the degeneration of neurons. This will be further discussed below.
Collapse
Affiliation(s)
- V Gundersen
- Department of Anatomy and the CMBN, University of Oslo, Oslo, Norway.
| |
Collapse
|
34
|
Junyent F, de Lemos L, Verdaguer E, Folch J, Ferrer I, Ortuño-Sahagún D, Beas-Zárate C, Romero R, Pallàs M, Auladell C, Camins A. Gene expression profile in JNK3 null mice: a novel specific activation of the PI3K/AKT pathway. J Neurochem 2011; 117:244-52. [DOI: 10.1111/j.1471-4159.2011.07195.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Han Y, Khodr CE, Sapru MK, Pedapati J, Bohn MC. A microRNA embedded AAV α-synuclein gene silencing vector for dopaminergic neurons. Brain Res 2011; 1386:15-24. [PMID: 21338582 DOI: 10.1016/j.brainres.2011.02.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/10/2011] [Accepted: 02/14/2011] [Indexed: 11/17/2022]
Abstract
Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson's disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons.
Collapse
Affiliation(s)
- Ye Han
- Neurobiology Program, Department of Pediatrics, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University,Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
36
|
Tasker RA, Adams-Marriott AL, Shaw CA. New animal models of progressive neurodegeneration: tools for identifying targets in predictive diagnostics and presymptomatic treatment. EPMA J 2010. [PMID: 23199060 PMCID: PMC3405326 DOI: 10.1007/s13167-010-0019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mental and neurological disorders are increasingly prevalent and constitute a major societal and economic burden worldwide. Many of these diseases and disorders are characterized by progressive deterioration over time, that ultimately results in identifiable symptoms that in turn dictate therapy. Disease-specific symptoms, however, often occur late in the degenerative process. A better understanding of presymptomatic events could allow for the development of new diagnostics and earlier interventions that could slow or stop the disease process. Such studies of progressive neurodegeneration require the use of animal models that are characterized by delayed or slowly developing disease phenotype(s). This brief review describes several examples of such animal models that have recently been developed with relevance to various neurological diseases and disorders, and delineates the potential of such models to aid in predictive diagnosis, early intervention and disease prevention.
Collapse
Affiliation(s)
- R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A4P3
| | | | | |
Collapse
|
37
|
Mandel SA, Fishman-Jacob T, Youdim MBH. Modeling sporadic Parkinson's disease by silencing the ubiquitin E3 ligase component, SKP1A. Parkinsonism Relat Disord 2010; 15 Suppl 3:S148-51. [PMID: 20082978 DOI: 10.1016/s1353-8020(09)70803-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Large-scale transcriptomics analysis of gene expression profile of sporadic Parkinson's disease (PD) substantia nigra (SN) has identified a number of differentially expressed genes participating in the neurotoxic cascade of DA neurons death, in particular those related to handling of proteins, dopaminergic transmission and iron metabolism. One of them, SKP1A (p19, S-phase kinase-associated protein 1A), an essential component of the ubiquitin-E3 ligase Skp1, Cullin 1, F-box protein (SCF) complex, has been found to be significantly decreased in the SN pars compacta of post-mortem parkinsonian brains. Recently, a new genetic cell model of sporadic PD was developed by knocking-down SKP1A in SN-derived cell-line infected with short hairpin RNA lentiviruses. SKP1A deficiency resulted in increased susceptibility to cell death and a decline in the expression of dopaminergic phenotypic markers. SKP1A-silenced cells were unable to arrest at G(0)/G(1,) when induced to differentiate, entering into an aberrant cell cycle and progressive death. During this process the cells developed rounded aggregates with characteristics of LB-like inclusions (aggresomes) including immunoreactivity for gamma-tubulin, alpha-synuclein, ubiquitin, tyrosine hydroxylase, Hsc-70 and proteasome subunit. In conclusion, future studies should focus on a careful consideration of crucial dopaminergic interacting genes, as emerged from human sporadic PD, which will serve as a basis for the development of a slowly progressive genetic animal model of sporadic PD, with the potential of evaluating drugs with "disease modifying activity".
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf Center for Neurodegenerative Diseases Research and Department of Molecular Pharmacology, Faculty of Medicine Technion, Haifa, Israel.
| | | | | |
Collapse
|
38
|
Rogers N, Paine S, Bedford L, Layfield R. Review: the ubiquitin-proteasome system: contributions to cell death or survival in neurodegeneration. Neuropathol Appl Neurobiol 2010; 36:113-24. [PMID: 20202119 DOI: 10.1111/j.1365-2990.2010.01063.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The significance of the accumulation of ubiquitin-positive intraneuronal inclusions in the brains of those affected with different neurodegenerative diseases is currently unclear. While one interpretation is that the disease mechanism(s) involves dysfunction of an ubiquitin-mediated process, such as the ubiquitin-proteasome system, the inclusions are also found in surviving neurones, suggesting a possible neuroprotective role. Here we review recent evidence in support of these seemingly opposing notions gleaned from cell and animal models as well as investigations of patient samples, with particular emphasis on studies relevant to Parkinson's disease.
Collapse
Affiliation(s)
- N Rogers
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|